1. Support for Biological Plausibility of KERs	
	Biological Plausibility of the MIE => KE1 is high.
	Rationale: Upon the inhibition of HDAC by HDIs, the
MIE => KE1:	acetylation of lysine in histone remains and it leads to
Histone deacetylase	transcriptional activation or repression, changes in DNA
inhibition leads to	replication and DNA damage repair. Activity of histone
histone acetylation	acetyltransferase (HAT) in testis nuclear protein was increased
increase	with MAA addition [Wade et al., 2008].
	Biological Plausibility of the KE1 => KE2 is moderate.
	Rationale: Gene transcription is regulated by histone acetylation
	[Struhl, 1998]. Acetylation of histones neutralizes the positive
	charge of the histones. Thus, less compacted DNA can be
	bound more easily by transcription factors and transcribed. In
	the models proposed for the relationship between histone
	acetylation and transcription, histone acetylation can be
KE1 => KE2:	untargeted and occur at both promoter and nonpromoter
Histone acetylation,	regions, targeted generally to promoter regions, or targeted to
increase leads to	specific promoters by gene-specific activator proteins [Richon
cell cycle, disrupted	et al., 2000; Struhl, 1998].
	Biological Plausibility of the KE2 => KE3 is moderate.
	Rationale: Prolonged cell cycle arrest will lead to either
KE2 => KE3: Cell	senescence or apoptosis. Especially for fast dividing and still
cycle, disrupted	differentiating cells, such an arrest will most certainly induce
leads to apoptosis	apoptosis as the normal cellular program cannot be followed.
	Biological Plausibility of the KE3 => KE4 is moderate.
	Rationale: During development and in tissue homeostasis,
KE3 => KE4:	apoptosis is needed to control organ size. If apoptosis is induced
Apoptosis leads to	at a higher rate, one can assume it leading to atrophy of the
spermatocyte	target organ. Especially when target organ / target cells are fast
depletion	replicating, abnormal levels of apoptosis will lead to depletion.
KE4 => AO:	Biological Plausibility of the KE4 => AO is moderate.
Spermatocyte	Rationale: Spermatocyte depletion is one of the main

depletion leads to	characteristics of testicular atrophy.	
testicular atrophy		
2. Support for essentiality of KEs		
	Essentiality of the KE2 is moderate.	
	Rationale for Essentiality of KEs in the AOP:	
	HDAC1-defecient embryonic stem cells showed reduced	
	proliferation rates, which correlates with decreased	
	cyclin-associated kinase activities and elevated levels of the	
	cyclin-dependent kinase inhibitor 1A, a cell cycle regulator p21	
	[Lagger et al., 2002]. Loss of HDAC1 leads to significantly	
KE2: Cell cycle,	reduced overall deacetylase activity, hyperacetylation of a	
disrupted	subset of histones H3 and H4 [Lagger et al., 2002].	
3. Empirical support for KERs		
	Empirical Support of the MIE => KE1 is high.	
	Rationale: HDAC inhibitors increase histone acetylation in	
	brain [Schroeder et al., 2013]. The major empirical evidence	
	came from the incubation of cell culture cells with small	
	molecule compounds that inhibit HDAC enzymes followed by	
	western blots or acid urea gel analysis. The first evidence was	
	shown by Riggs et al. who showed that incubation of HeLa	
	cells with n-butyrate leads to an accumulation of acetylated	
	histone proteins [Riggs et al., 1977]. Later, it was shown that	
	<i>n</i> -butyrate specifically increases the acetylation of histone by	
	the incorporation of radioactive [3H]acetate and analysis of the	
	histones on acid urea gels that allow the detection of acetylated	
MIE => KE1:	histones [Cousens et al., 1979]. TSA was shown to be an	
Histone deacetylase	HDAC inhibitor by acid urea gel analysis in 1990 [Yoshida et	
inhibition leads to	al., 1990] and good evidence for VPA as an HDAC inhibitor in	

vitro and in vivo was shown using acetyl-specific antibodies

and western blot [Gottlicher et al., 2001].

histone acetylation,

increase

	Empirical Support of the KE1 => KE2 is moderate.
	Rationale: Increase in histone acetylation by HDAC inhibition
	induces the cell cycle regulator expression and inhibits
	progression through the cell cycle. Histone acetylation regulates
	the gene transcriptional mechanism [Struhl, 1998]. Acetylation
	of histones promotes the RNA polymerase reaction [Allfrey et
	al., 1964; Pogo et al., 1966]. Since several results supported a
KE1 => KE2:	model in which increased histone acetylation is targeted to
Histone acetylation,	specific gene and occurs throughout the entire genome, not just
increase leads to	the promoter regions, histone acetylation may lead to gene
cell cycle, disrupted	transcription of the cell cycle regulator [Richon et al., 2000].
	Empirical Support of the KE2 => KE3 is moderate.
	Rationale: Cell cycle arrest such as G ₁ arrest and G ₁ /S arrest are
	observed in apoptosis [Li et al., 2012; Dong et al., 2010].
KE2 => KE3: Cell	microRNA-1 and microRNA-206 represses CCND2, while
cycle, disrupted	microRNA-29 represses CCND2 and induces G ₁ arrest and
leads to apoptosis	apoptosis in rhabdomyosarcoma [Li et al., 2012].
	Empirical Support of the KE3 => KE4 is high.
	Rationale: MicroRNA-21 regulates the spermatogonial stem
	cell homeostasis, in which suppression of microRNA-21 with
KE3 => KE4:	anti-miR-21 oligonucleotides led to apoptosis of
Apoptosis leads to	spermatogonial stem cell-enriched germ cell cultures and the
spermatocyte	decrease in the number of spermatogonial stem cells [Niu et al.,
depletion	2011].
	Empirical Support of the KE4 => AO is high.
KE4 => AO:	Rationale: The testicular atrophy seen in 2-methoxyethanol
Spermatocyte	(2-ME), or its major metabolite MAA, treated rats in vivo and
depletion leads to	in human, and rat in vitro culture was associated with
testicular atrophy	spermatocyte depletion [Beattie et al., 1984].