Table 1. Studies providing empirical evidence for the relationship between KE5 (Event 1500) and KE6 (Event 1501). +: Severity of Response. References available in main KER page. | Stressor
(Reference) | In vitro/in
vivo/ex
vivo | Species/Cell line | Exposure Conditions | KE5 (Event 1500) Increased, fibroblast proliferation, and myofibroblast differentiation | | | | | | KE6 (Event 1501) Increased, extracellular matrix deposition | |--|--|--|--|---|--|----------------------|---|---|--|---| | Diphtheria toxin (Osterholzer et al., 2013) | In vivo | C57BL/6 mice WT Diphtheria toxin receptor (DTR) + | 10.0 µg/kg intraperitoneal injection once/day, 14 days. | Exudate
macrophages
(ExM)
increased in
DTR+ lungs | orcrophages of ExM and Ly-6C ^{high} reased in monocytes in | | and Ly6C ^{high} monocytes in DTR+ mice | | pe of ExM
nocytes in | Lung collagen content in DTR+ mice | | al., 2013) | mice DTR+/CCR2-/- mice Evaluation: 7, 14, 21, days after onset of treatment. | | Day 14: | | Day 14:
Expression mRNA or
protein:
Arginase, iNOS, IL-13 and
TFG-β, CD45+, Col1+ and
CCR4. | | IL-13 and | Day 21: increase hydroxyproline content | | | | SiO ₂
(Fang et al., 2018) | In vivo | Stock TEK-GFP 287
Sato/JNju (Tie2-
GFP) mice | 0.5 g/Kg intratracheal instillation. Evaluation: 28 days post exposure | Day 28: GFP localized with α-SMA/Acta2 in lung tissue | | | | | Day 28: Sirius red staining (marks collagen I and III) co-localized with GFP signal. | | | | In vitro | Mouse
microvascular lung
cells (MML1) | 50 μg/cm² for 6, 12, 24,
48 h. | expression of mesenchymal endother markers (Col1A1, Acta2) express endother markers PECAM | | expressi
endothel | , | | iferation
migration | | | | | | | 12 h: +
24 h: ++
48 h: +++ | 6 n:
12 h: +
24 h: +
48 h: ++ | | 12 h:
24 h: | | n:
n: + | | | | Human | Lung sections from patients | Patients with silicosis | | | | Day 28: Decrease Tie2-GFP and HECTD1 expression | | | | | MWCNT (Dong et al., 2017) | In vivo | Male C57BL/6J WT mice B6.129S4- Timp1tm1Pds/J (Timp1 KO) mice | 40 μg/mouse pharyngeal aspiration. Evaulation: 1, 3, 7, 14 days post exposure | Timp1
mRNA and
protein
levels
increased in
lung, BALF
and serum | Increase FN1
protein
expression in
lungs | | Increase
FSP prot
expression
in lungs | ein | Increase
Ki67 and
PCNA
expression
levels in
lungs | Collagen deposition
(Masson's trichrome) | | | | | | | Day 1: ++ Day 3: +++ Day 7: +++ Day 14: + ase in the levels of D63, integrin β1, | | | Day 1: + Day 3: ++ Day 7: +++ Day 14: ++ Day 7: Mice Timp1KO showed a significant | |---|---------|--|--|--|---|--|--|---| | CeO ₂ nanoparticles (Ma et al. | In vivo | Male Sprague-
Dawley rats | 0.15-7 mg/Kg
intratracheal instillation
Evaluation: 1 – 28 days | involved in ce | ell cycle regulation | (WT and Timp | Increased α-SMA expression in lung tissue | reduction of fibrosis as compared to WT. Increases hydroxyproline content in lung tissue | | 2017) | | | post exposure | 3.5 mg/Kg
Day 3: +
Day 28: +++ | | 3.5mg/Kg
Day 1:
+++
Day 3:
++
Day 28: | Day 28
3.5 mg/Kg: +
7 mg/Kg: + | | | | Ex vivo | Alveolar
Macrophages
Fibroblasts
ATII cells | Isolated from CeO2
exposed rats 1 - 28 days
post-exposure | Increased TG
(Macrophage
3.5mg/Kg Ce
Day 1:
Day 3: ++
Day 10: ++
Day 28: + | (Fibrobla | tion SM (Fik ATI Day kg: + + + Day g: +++ Day | oroblasts & I) / 3 (ATII) mg/kg: +++ / 28 problasts) | | | Bleomycin
(Hu et al.,
2015) | In vivo | Notch1 conditional
knockout (CKO) and
WT mice | 2 U/kg endotracheal injection (WT & CKO mice) Evaluation: 7 – 28 days post exposure | Increased prince expression Jagged1 and Notch1 in William mouse lungs | expression mRNA α T and Col1 | on per
α-SMA α-S
I, in It
protein
ed WT | reased
centage of
MA+ cells
ungs | Increased hydroxyproline content in lung tissue | | Bleomycin | In vivo | Female C57BL/6 | 20l (4.25 H/ml in DDS) | Jagged1 Day 7: ++ Day 14: ++ Day 21: + Day 28: + Notch1 Day 7: ++ Day 14: + Day 21: Day 28: | Day 14
α-SMA (protein
& mRNA): +++
Col1 (protein &
mRNA): +++
Notch1(protein): | Day 14 WT mice: +++ CKO mice: + | Day 28 CKO mice sh significant att collagen depo | enuation of osition as | |--------------------------------|----------|---|---|--|---|--|--|--| | TGF-b (Blaauboer et al., 2014) | In vivo | mice | 30 μl (1.25 U/ml in PBS)
Bleomycin intratracheal
instillation.
Evaluation: 1 – 5 weeks
post exposure. | Increased α-SMA pr
lungs | otein ievei on histoid | ogical staining in | collagen
formation
and gene
expression | matrix
proteins
Increased
protein level
on
histological
staining in
lungs | | | | | | Week 1: ++
Week 2: +++
Week 3: + | | | Gene expression of elastin, type V collagen and tenascin C highly correlated to new collagen formation | Elastin Week 1: + Week 2: ++ Week 3: +++ Type V collagen and tenascin C Week 1: +++ Week 2: ++ Week 4: ++ | | | In vitro | Primary normal
human lung
fibroblast (NHLF)
Human fetal lung
fibroblast (HFL-1) | 1, 2, 4, 10 ng/mL TGF-β Evaluation: 24, 48 h | Increased mRNA expression 24 h | Increased ELN,
COL5A1 mRNA
expression 24 h | Increased mRNA expression 48 h, elastin coated surface | | | | Radiation (Judge et al., 2015) | Study
population/
In vivo/In
vitro | Lung biopsies from patients with thoracic radiation for cancer treatment C57BL/6 mice Primary human lung fibroblast | 5 Gy total body plus 10 Gy thoracic radiation (mice). Evaluation: 12-26 weeks post exposure 3, 7 Gy (primary human lung fibroblasts) Evaluation: 5 days post exposure | 1: 1: 2: + 2: 5: ++ 5: | ++ 2: ++ | COLSA1 TNC 1: 1: 2: + 2: + 5: ++ 5: + 10: +++ Increased α- SMA protein expression, soluble collagen I, Col1A1, and Col3A1 mRNA levels (Fibroblasts) Soluble Collagen 3 Gy: 7 Gy: +++ Col1A1 7 Gy: +++ Col3A1 7 Gy: +++ | (10 ng/ml TGF-b) +++ (ACTA2 COL1A1 ELN) TGF-β1 activation (Fibrobla sts) 3 Gy: +++ 7 Gy: ++++ | Increased collagen fibers deposition trichrome stain Lung biopsies: +++ | |--|---|---|--|--|-------------------------------------|--|--|--| | Copper oxide nanoparticles (Lai et al. 2018) | In vivo | C57BL/6 mice | 1, 2.5, 5, 10 mg/Kg intranasal instillation Evaluation: 7, 14, 28 days post exposure | Increased
mRNA
levels of
CCL-2,
CCL-3, IL-4,
IL-10, IFN-
α, TGF-β1
at day 14. | Cell
apoptosis in
lung tissue | Increased
TGF-β1
content in
BALF at day
14 | Increase
d α-SMA
at day 28 | Increased collagen-I and hydroxyproline content at day 28 | | | | | | 5: +++ | Day 14:
1: +
2.5: ++
5: +++
5mg/kg:
Day 7: ++
Day 14:
+++
Day 28:
+++ | 2.5: +++
5: ++++ | 2.5: ++
5: ++++ | 2.5: ++ 5: +++ | |------------------------------------|----------|--|---|--------------------------------------|--|---------------------|--------------------|---| | Cadmium chloride (Li et al., 2017) | In vivo | C57BL/6 vimentin knockout mice C57BL/6 WT mice | 0.009, 0.018 mg/Kg intratracheal instillation (once / 2 days; 8 weeks) Evaluation: weeks 1, 2, 4, 8 of exposure. | Increased α-
Week 4: +++ | SMA in lung tiss | sue (0.009 mg/Kg) | | Increased (0.009 mg/Kg) Subepithelial thickness Week 4: ++ Airway resistance Week 4: ++ Collagen-I staining Week 4: +++ Picro-siruis red Week 4: +++ Collagen content (Sircol assay) Week 1: Week 2: ++ Week 4: ++ Week 8: +++ | | | In vitro | Primary human fibroblast | 5, 10, 20 μM for 3 h.
Allowed to recover for 3,
24, 48, 72 h. | 3 h:
24 h:
48 h: +
72 h: ++ | SMA for 3 h followed for 3 h followed | | | Increased Soluble collagen (48 h recover) 5: 10: +++ 20: ++++ Soluble collagen (20uM CdCl2) 3 h: 24 h: ++++ | | | 72 h: ++ | 48 h: ++++
72 h: ++++ | |--|----------|--| | | | Fibronectin and Collagen (10 & 20uM CdCl2) 3 h: + 24 h: ++ 48 h: +++ 72 h: +++ |