1. Support for Biologic MIE1 => KE1:	al Plausibility of KERs
Increases in cellular	
ROS leads to	Biological Plausibility of the MIE1 => KE1 is moderate.
porcupine-induced	Rationale: Increases in cellular ROS caused by/causes DNA
Wnt secretion and	damage, which will alter several signaling pathways including
Wnt signaling	Wnt signaling. ROS stimulate inflammatory factor production
activation	and Wnt/ β -catenin signaling (Vallée & Lecarpentier, 2018).
	Biological Plausibility of the MIE2 => KE1 is moderate.
MIE2 => KE1:	Rationale: Sustained ROS increase caused by/causes DNA
Chronic ROS leads	damage, which will alter several signaling pathways including
to	Wnt signaling. Macrophages accumulate into injured tissue to
porcupine-induced	recover the tissue damage, which may be followed by
Wnt secretion and	porcupine-induced Wnt secretion. ROS stimulate
Wnt signaling	inflammatory factor production and Wnt/ β -catenin signaling
activation	(Vallée & Lecarpentier, 2018).
KE1 => KE2:	Biological Plausibility of the KE1 => KE2 is moderate.
Porcupine-induced	Rationale: Secreted Wnt ligand stimulates Wnt/ β -catenin
Wnt secretion and	signaling, in which $\beta\text{catenin}$ is activated. Wnt ligand binds to
Wnt signaling	Frizzled receptor, which leads to GSK3 β inactivation. GSK3 β
activation leads to	inactivation leads to β -catenin dephosphorylation, which
beta-catenin	avoids the ubiquitination of the $\beta{\mbox{catenin}}$ and stabilize the
activation	β -catenin (Clevers & Nusse, 2012).
	Biological Plausibility of the KE2 => KE3 is moderate.
	Rationale: $\beta\text{catenin}$ activation, of which mechanism include
	the stabilization of the dephosphorylated $\boldsymbol{\beta}$ -catenin and
	translocation of $\beta\mbox{catenin}$ into the nucleus, induce the
KE2 => KE3:	formation of $\beta\mbox{-catenin-TCF}$ complex and transcription of
beta-catenin	transcription factors such as Snail, Zeb and Twist (Clevers $\&$
activation leads to	Nusse, 2012) (Ahmad et al., 2012; Pearlman et al., 2017; Sohn
Epithelial-mesenchy	et al., 2019; Yang W et al., 2019).
mal transition (EMT)	EMT-related transcription factors including Snail, ZEB and

	Twist are up-regulated in cancer cells (Diaz et al., 2014). The
	transcription factors such as Snail, ZEB and Twist bind to
	E-cadherin (CDH1) promoter and inhibit the CDH1
	transcription via the consensus E-boxes (5'-CACCTG-3'
	or 5' -CAGGTG-3'), which leads to EMT (Diaz et al., 2014).
	Biological Plausibility of the KE3 => AO is moderate.
	Rationale: Some population of the cells exhibiting EMT
	demonstrates the feature of cancer stem cells (CSCs), which
	are related to cancer malignancy (Shibue & Weinberg, 2017;
	Tanabe, 2015a, 2015b; Tanabe et al., 2015).
	EMT phenomenon is related to cancer metastasis and
	cancer therapy resistance (Smith & Bhowmick, 2016;
	Tanabe, 2013). Increase expression of enzymes that degrade
KE3 => AO:	the extracellular matrix components and the decrease in
Epithelial-mesenchy	adhesion to the basement membrane in EMT induce the cell
mal transition (EMT)	escape from the basement membrane and metastasis (Smith
leads to	& Bhowmick, 2016). Morphological changes observed during
treatment-resistant	EMT is associated with therapy resistance (Smith &
gastric cancer	Bhowmick, 2016).
2. Support for essentiality of KEs	
KE1:	
Porcupine-induced	Essentiality of the KE1 is moderate.
Wnt secretion and	Rationale for Essentiality of KEs in the AOP: The Wnt
Wnt signaling	signaling activation is essential for the subsequent $eta-$ catenin
activation	activation and cancer resistance.
	Essentiality of the KE2 is moderate.
KE2:	Rationale for Essentiality of KEs in the AOP: β-catenin
beta-catenin	activation is essential for the Wnt-induced cancer
activation	resistance.
KE3:	Essentiality of the KE3 is moderate.
Epithelial-mesenchy	Rationale for Essentiality of KEs in the AOP: EMT is
mal transition (EMT)	essential for the Wnt-induced cancer promotion and

	acquisition of resistance to anti-cancer drug.	
3. Empirical support for KERs		
MIE1 => KE1:		
Increases in cellular		
ROS leads to	Empirical Support of the MIE1 => KE1 is moderate.	
porcupine-induced	Rationale: Production of ROS by DNA double-strand break	
Wnt secretion and	causes the tissue damages (Gao et al., 2019).	
Wnt signaling	ROS signaling induces Wnt/ eta -catenin signaling (Pérez et al.,	
activation	2017).	
MIE2 => KE1:		
Chronic ROS leads		
to	Empirical Support of the MIE2 => KE1 is moderate.	
porcupine-induced	Rationale: Production of ROS by DNA double-strand break	
Wnt secretion and	causes the tissue damages (Gao et al., 2019).	
Wnt signaling	ROS signaling induces Wnt/ eta -catenin signaling (Pérez et al.,	
activation	2017).	
	Empirical Support of the KE1 => KE2 is moderate.	
	Rationale: Dishevelled (DVL), a positive regulator of Wnt	
	signaling, form the complex with FZD and lead to trigger the	
	Wnt signaling together with Wnt coreceptor low-density	
KE1 => KE2:	lipoprotein (LDL) receptor-related protein 6 (LRP6) (Clevers	
Porcupine-induced	& Nusse, 2012; Jiang et al., 2015).	
Wnt secretion and	Wnt binds to FZD and activate the Wnt signaling (Clevers &	
Wnt signaling	Nusse, 2012; Janda et al., 2012; Nile et al., 2017). Wnt binding	
activation leads to	towards FZD induce the formation of the protein complex	
beta-catenin	with LRP5/6 and DVL, leading to the down-stream signaling	
activation	activation including beta-catenin (Clevers & Nusse, 2012).	
KE2 => KE3:	Empirical Support of the KE2 => KE3 is moderate.	
beta-catenin	Rationale: The inhibition of c-MET, which is overexpressed in	
activation leads to	diffuse-type gastric cancer, induced increase in	
Epithelial-mesenchy	phosphorylated β -catenin, decrease in β -catenin and Snail	

mal transition (EMT) (Sohn et al., 2019). The garcinol, that has anti-cancer effect, increases phosphorylated beta-catenin, decreases β-catenin and ZEB1/ZEB2, and inhibit EMT (Ahmad et al., 2012). The inhibition of sortilin by AF38469 (a sortilin inhibitor) or small interference RNA (siRNA) results in decrease in β-catenin and Twist expression in human glioblastoma cells (Yang W. et al., 2019). Histone deacetylase inhibitors effect on EMT-related transcription factors including ZEB, Twist and Snail (Wawruszak et al., 2019). Snail and Zeb induces EMT and suppress E-cadherin (CDH1) (Batlle et al., 2000; Diaz et al., 2014; Peinado et al., 2007). Empirical Support of the KE3 => AO is moderate. Rationale: EMT activation induces the expression of multiple members of the ATP-binding cassette (ABC) transporter family, which results in doxorubicin resistance (Saxena et al., 2011; Shibue & Weinberg, 2017). TGFβ-1 induced EMT results in the acquisition of cancer stem cell (CSC) like properties (Pirozzi et al., 2011; Shibue & Weinberg, 2017). Snail-induced EMT induces the cancer metastasis and resistance to dendritic cell-mediated immunotherapy (Kudo-Saito et al., 2009). Zinc finger E-box-binding homeobox (ZEB1)-induced EMT KE3 => AO: results in relief of miR-200-mediated repression of programmed cell death 1 ligand (PD-L1) expression, a major Epithelial-mesenchy mal transition (EMT) inhibitory ligand for the programmed cell death protein leads to (PD-1) immune-checkpoint protein on CD8⁺ cytotoxic T Treatment-resistant lymphocyte (CTL), subsequently the CD8⁺ T cell immunosuppression and metastasis (Chen et al., 2014). gastric cancer