Event:389

From AOP-Wiki
Jump to: navigation, search


Event Title

Intracellular Calcium overload, Increased
Intracellular Calcium overload, Increased

Key Event Overview

Please follow link to widget page to edit this section.

If you manually enter text in this section, it will get automatically altered or deleted in subsequent edits using the widgets.

AOPs Including This Key Event

AOP Name Event Type Essentiality
Binding of agonists to ionotropic glutamate receptors in adult brain causes excitotoxicity that mediates neuronal cell death, contributing to learning and memory impairment. KE Moderate

Taxonomic Applicability

Name Scientific Name Evidence Links

Level of Biological Organization

Biological Organization
Cellular

How this Key Event works

For the relevant paragraphs below please see AOP entitled Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities.

Biological state: KE Calcium influx, Decreased

Biological compartments: KE Calcium influx, Decreased

General role in biology: KE Calcium influx, Decreased


The text specific for this AOP:

It is now well accepted that modest activation of NMDARs leading to modest increases in postsynaptic calcium are optimal for triggering LTD (Lledo et al. 1998; Bloodgood and Sabatin, 2007; Bloodgood et al. 2009), whereas much stronger activation of NMDARs leading to much larger increases in postsynaptic calcium are required to trigger LTP (Luscher and Malenka, 2012; Malenka 1994). Indeed, high-frequency stimulation causes a strong temporal summation of the excitatory postsynaptic potentials (EPSPs), and depolarization of the postsynaptic cell is sufficient to relieve the Mg2+ block of the NMDAR and allow a large amount of calcium to enter into the postsynaptic cells. Therefore, intra-cellular calcium is measured as a readout for evaluation NMDAR stimulation.

How it is Measured or Detected

Methods that have been previously reviewed and approved by a recognized authority should be included in the Overview section above. All other methods, including those well established in the published literature, should be described here. Consider the following criteria when describing each method: 1. Is the assay fit for purpose? 2. Is the assay directly or indirectly (i.e. a surrogate) related to a key event relevant to the final adverse effect in question? 3. Is the assay repeatable? 4. Is the assay reproducible?

Please see KE Calcium influx, Decreasedin the AOP entitled: Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities.

Evidence Supporting Taxonomic Applicability

Please see KE Calcium influx, Decreasedin the AOP entitled Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities.

References

Bloodgood BL, Sabatini BL., Nonlinear regulation of unitary synaptic signals by CaV2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron, 2007, 53:249–260.

Bloodgood BL, Giessel AJ, Sabatini BL., Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines. PLoS Biol., 2009, 7: e1000190.

Lledo PM, Zhang X, Sudhof TC, Malenka RC, Nicoll RA., Postsynaptic membrane fusion and long-term potentiation. Science, 1998, 279: 399–403.

Malenka RC. Synaptic plasticity in the hippocampus: LTP and LTD. Cell, 1994, 78: 535–538.

Luscher C. and Robert C. Malenka. NMDA Receptor-Dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD). Cold Spring Harb Perspect Biol., 2012, 4: a005710.