Event:861

From AOP-Wiki
Jump to: navigation, search


Event Title

Ketogenesis (production of ketone bodies), Decreased

Key Event Overview

Please follow link to widget page to edit this section.

If you manually enter text in this section, it will get automatically altered or deleted in subsequent edits using the widgets.

AOPs Including This Key Event

AOP Name Event Type Essentiality
Antagonist binding to PPARalpha leading to starvation-like body-weight loss KE Strong

Taxonomic Applicability

Name Scientific Name Evidence Links
Mus musculus Mus musculus Strong NCBI
Homo sapiens Homo sapiens Strong NCBI

Level of Biological Organization

Biological Organization
Molecular

How this Key Event works

The liver plays a key role in processing the fundamental energy substrate, acetyl-CoA, into metabolic currencies that contribute to the systemic cellular energy needs of the whole organism. The liver represents a key organ involved in systemic energy distribution given its ability to synthesize glucose (an ability shared only with the kidney, Gerich et al 2001) as well as its exclusive role in the generation of ketone bodies (Cahill 2006, Sengupta et al 2010, Kersten 2014). This is especially important for the metabolic energy needs of the brain which can only use glucose and the ketone body, β-hydroxybutyrate for cellular energy production (Cahill 2006, Owen 2005, Kersten 2014). Therefore, ketogenesis is critical to supporting general systemic energy homeostasis in fasting events (Cahill 2006, Evans et al 2004, Sengupta et al 2010). Interference with ketogenesis, for example by PPARα inhibition, has been demonstrated to inhibit β-hydroxybutyrate production (measured in serum) during fasting events in mice (Badman et al 2007, Potthoff 2009, Sengupta et al 2010). The Badman et al (2007) study indicated that metabolism of fatty acid substrates (measured as liver triglycerides) that would otherwise contribute to β-hydroxybutyrate production was additionally inhibited under PPARα knockout.

In a fasting state, humans transition from the use of exogenous glucose to glucose derived from glycogen within 4 hours with a steadily increasing proportion of glucose usage that is derived from gluconeogenesis up to 2 days (Cahill 2006). Beyond 2 days of fasting, ketone body production (β-hydroxybutyrate) increasingly supports the energy demands of the brain (Cahill 2006).

How it is Measured or Detected

Methods that have been previously reviewed and approved by a recognized authority should be included in the Overview section above. All other methods, including those well established in the published literature, should be described here. Consider the following criteria when describing each method: 1. Is the assay fit for purpose? 2. Is the assay directly or indirectly (i.e. a surrogate) related to a key event relevant to the final adverse effect in question? 3. Is the assay repeatable? 4. Is the assay reproducible?

The quantification of β-hydroxybutyrate described in Cahill 2006 was measured in a cell-free system catalyzed by D(-)-p-hydroxybutyric dehydrogenase where all components of the reaction [ D(-)-fl-hydroxybutyrate + DPN+ = acetoacetate + DPNH + H+ ] were able to be quantitatively determined (Williamson et al 1962).

Serum β-hydroxybutyrate was measured using Stanbio Laboratory small-scale enzymatic assays in Badman et al (2007) and by Wako Chemicals D-3-hydroxybutyric acid kit in Potthoff et al (2009).

SMART micro-FPLC (Amersham Biosciences) consisting of a Superose 6 PC 3.2/30 column (Amersham Biosciences) equilibrated in 13 PBS buffer was conducted where triglyceride and cholesterol fractions were investigated by enzymatic assay (Wako Diagnostics) as described in Badman et al (2007).

Clinical observations of ketone bodies have been simplified by the development of urine test strips that can provide quantitative values for the ketone bodies aceto-acetate, acetone and 3-hydroxybutyrate using reflectometry (Penders et al 2005).

Evidence Supporting Taxonomic Applicability

Evidence provided for human in Cahill (2006), Owen et al (2005) and Williamson et al (1962). Evidence for mouse provided in Kersten et al (1999).

References


Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E: Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell metabolism 2007, 5(6):426-437.

Cahill Jr., G.F., 2006. Fuel metabolism in starvation. Annual Review of Nutrition 26:1e22.

Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Reviews 20(5): 649-688. Evans RM, Barish GD, Wang YX: PPARs and the complex journey to obesity. Nat Med 2004, 10(4):355-361.

Gerich JE, Meyer C, Woerle HJ, Stumvoll M: Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 2001, 24(2):382-391. Kersten S. 2014. Integrated physiology and systems biology of PPARalpha. Molecular Metabolism 2014, 3(4):354-371.

Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W: Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999, 103(11):1489-1498.

Owen OE: Ketone bodies as a fuel for the brain during starvation. Biochem Mol Biol Educ 2005, 33(4):246-251.

Penders J, Fiers T, Giri M, Wuyts B, Ysewyn L, Delanghe JR: Quantitative measurement of ketone bodies in urine using reflectometry. Clin Chem Lab Med 2005, 43(7):724-729.

Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA et al: FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proceedings of the National Academy of Sciences 2009, 106(26):10853-10858.

Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM: mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468(7327):1100-1104.

Williamson DH, Mellanby J, Krebs HA: Enzymic determination of d(−)-β-hydroxybutyric acid and acetoacetic acid in blood. Biochem J 1962, 82(1):90-96.