From AOP-Wiki
Jump to: navigation, search

Event Title

Hypertension, N/A

Key Event Overview

Please follow link to widget page to edit this section.

If you manually enter text in this section, it will get automatically altered or deleted in subsequent edits using the widgets.

AOPs Including This Key Event

AOP Name Event Type Essentiality
Oxidative Stress Leading to Hypertension AO [[Aop:149#Essentiality of the Key Events|]]

Taxonomic Applicability

Name Scientific Name Evidence Links
Homo sapiens Homo sapiens Strong NCBI
Mus musculus Mus musculus Strong NCBI
Rattus norvegicus Rattus norvegicus Strong NCBI

Affected Organs

Synonym Scientific Name Evidence Links

Level of Biological Organization

Biological Organization

How this Key Event works

Hypertension is an important cardiovascular risk factor and considered one of the leading causes of cardiovascular morbidity and mortality (Kizhakekuttu and Widlansky, 2010). It is defined as a chronic elevation in blood pressure and is characterized by elevated systemic vascular resistance due to dysregulated vasomotor function and structural remodeling (Lee and Griendling, 2008). Although many genetic and environmental factors contribute to the development to hypertension, oxidative stress appears to be the main pathway involved in its pathogenesis. Excessive reactive oxygen species (ROS) contributes to endothelial nitric oxide synthase (eNOS) uncoupling, resulting in increased superoxide production but decreased nitric oxide (NO), a critical regulator of vascular homeostasis (Silva et al., 2012). Depletion of NO leads to impaired endothelium-dependent vasodilation, thus promoting endothelial dysfunction, which is a hallmark of hypertension.

How it is Measured or Detected

Arterial blood pressure is commonly measured using a sphygmomanometer, which provides systolic and diastolic blood pressure measurements in millimeters of mercury (mmHg).

Evidence Supporting Taxonomic Applicability

Animal models including mouse and rat models were developed to study hypertension in humans (Leong et al., 2015).


Durand, M.J., and Gutterman, D.D. (2013). Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirc. N. Y. N 1994 20, 239–247.

Kizhakekuttu, T.J., and Widlansky, M.E. (2010). Natural antioxidants and hypertension: promise and challenges. Cardiovasc. Ther. 28, e20–e32.

Leong, X.-F., Ng, C.-Y., Jaarin, K., Leong, X.-F., Ng, C.-Y., and Jaarin, K. (2015). Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis, Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis. BioMed Res. Int. BioMed Res. Int. 2015, 2015, e528757.

Silva, B.R., Pernomian, L., and Bendhack, L.M. (2012). Contribution of oxidative stress to endothelial dysfunction in hypertension. Front. Physiol. 3, 441.