Event:973

From AOP-Wiki
Jump to: navigation, search


Event Title

Akt/eNOS activity, Decrease

Key Event Overview

Please follow link to widget page to edit this section.

If you manually enter text in this section, it will get automatically altered or deleted in subsequent edits using the widgets.

AOPs Including This Key Event

AOP Name Event Type Essentiality
Oxidative Stress Leading to Hypertension KE Strong

Taxonomic Applicability

Name Scientific Name Evidence Links
Homo sapiens Homo sapiens NCBI
Bos taurus Bos taurus NCBI
Mus musculus Mus musculus NCBI

Level of Biological Organization

Biological Organization
Cellular

How this Key Event works

Endothelial nitric oxide synthase (eNOS) is responsible for the generation of nitric oxide (NO), which is an important regulator of vascular homeostasis. The activity of eNOS can be regulated through calmodulin-mediated dimerization, tetrahydrobiopterin-mediated conversion of L-arginine to L-citrulline, protein-protein interactions with heat shock protein 90 and caveolin, S-nitrosylation, acetylation and phosphorylation (Atochin et al., 2007; Qian and Fulton, 2013). eNOS has been shown to be phosphorylated at multiple sites including tyrosine (Y), serine (Ser) and threonine (Thr) residues. Serine-threonine protein kinase Akt, a multifunctional regulator of cellular processes like glucose metabolism and proliferation, can directly phosphorylate eNOS at Ser1177/Ser1179, leading to increased eNOS enzymatic activity and subsequent NO production (Dimmeler et al., 1999; Fulton et al., 1999). Inhibition of the Akt or a mutation of Akt site on eNOS attenuates eNOS phosphorylation and its activity, resulting in decreased NO bioavailability and endothelial dysfunction.

How it is Measured or Detected

Western blot analysis can be performed to determine the expression levels of phosphorylated eNOS, phosphorylated Akt, total Akt and total eNOS proteins using the appropriate anti-phospho-eNOS, anti-phospho-Akt, anti-eNOS, and anti-Akt antibodies. Alternatively, eNOS activity can be measured using the conversion of L-arginine to L-citrulline assay.

Evidence Supporting Taxonomic Applicability

Decreased Akt and eNOS activity was observed in humans, cows, and mice.

References

Atochin, D.N., Wang, A., Liu, V.W.T., Critchlow, J.D., Dantas, A.P.V., Looft-Wilson, R., Murata, T., Salomone, S., Shin, H.K., Ayata, C., et al. (2007). The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. J. Clin. Invest. 117, 1961–1967.

Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., and Zeiher, A.M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601–605.

Fulton, D., Gratton, J.P., McCabe, T.J., Fontana, J., Fujio, Y., Walsh, K., Franke, T.F., Papapetropoulos, A., and Sessa, W.C. (1999). Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597–601.

Qian, J., and Fulton, D. (2013). Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Oxid. Physiol. 4, 347.