Difference between revisions of "Event:682"

From AOP-Wiki
Jump to: navigation, search
(References)
(References)
 
Line 85: Line 85:
 
Miura M, Yoshioka M, Miyakawa H, Kato H, Ito KI. (1997) Properties of calcium spikes revealed during GABAA receptor antagonism in hippocampal CA1 neurons from guinea pigs. J Neurophysiol. 78(5):2269-79.
 
Miura M, Yoshioka M, Miyakawa H, Kato H, Ito KI. (1997) Properties of calcium spikes revealed during GABAA receptor antagonism in hippocampal CA1 neurons from guinea pigs. J Neurophysiol. 78(5):2269-79.
  
Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, Williams SM (Eds). 2001. Neuroscience. 2nd edition. Chapter 7. Neurotransmitter Receptors and Their Effects. Sunderland (MA): Sinauer Associates.
+
Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, Williams SM (Eds). 2001. Neuroscience. 2nd edition. Chapter 7. Neurotransmitter Receptors and Their Effects. Sunderland (MA): Sinauer Associates. Available from: http://www.ncbi.nlm.nih.gov/books/NBK10799/.
 
+
 
<references />
 
<references />

Latest revision as of 14:25, 23 June 2016


Event Title

Amplified excitatory postsynaptic potential (EPSP), Generation
Amplified EPSP, Generation

Key Event Overview

Please follow link to widget page to edit this section.

If you manually enter text in this section, it will get automatically altered or deleted in subsequent edits using the widgets.

AOPs Including This Key Event

AOP Name Event Type Essentiality
Binding to the picrotoxin site of ionotropic GABA receptors leading to epileptic seizures KE Strong

Taxonomic Applicability

Name Scientific Name Evidence Links
mouse Mus musculus Strong NCBI
rat Rattus norvegicus Strong NCBI
guinea pig Cavia porcellus Strong NCBI

Level of Biological Organization

Biological Organization
Tissue

How this Key Event works

In neuroscience, an excitatory postsynaptic potential (EPSP) is defined as a neurotransmitter-induced postsynaptic potential change that depolarizes the cell, and hence increases the likelihood of initiating a postsynaptic action potential (Purves et al. 2001). On the contrary, an inhibitory postsynaptic potential (IPSP) decreases this likelihood. Whether a postsynaptic response is an EPSP or an IPSP depends on the type of channel that is coupled to the receptor, and on the concentration of permeant ions inside and outside the cell. In fact, the only factor that distinguishes postsynaptic excitation from inhibition is the reversal potential of the postsynaptic potential (PSP) in relation to the threshold voltage for generating action potentials in the postsynaptic cell. When an active presynaptic cell releases neurotransmitters into the synapse, some of them bind to receptors on the postsynaptic cell. Many of these receptors contain an ion channel capable of passing positively charged ions (e.g., Na+ or K+) or negatively charged ions (e.g., Cl-) either into or out of the cell. In epileptogenesis, discharges reduced GABA-A receptor-mediated hyperpolarizing IPSPs by shifting their reversal potentials in a positive direction. At the same time, the amplitudes of Schaffer collateral-evoked RS-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated EPSPs and action potential-independent miniature EPSPs were enhanced, whereas N-methyl-d-aspartate receptor-mediated EPSPs remained unchanged. Together, these changes in synaptic transmission produce a sustained increase in hippocampal excitability (Lopantsev et al. 2009).

How it is Measured or Detected

EPSPs are usually recorded using intracellular electrodes. See Miura et al. (1997) and Bromfield et al. (2006) for details.

Evidence Supporting Taxonomic Applicability

Miura et al. (1997) reported supporting evidence from guinea pigs whereas Dichter and Ayala (1987) and Bromfield et al. (2006) summarized relevant studies on humans.

References

Bromfield EB, Cavazos JE, Sirven JI. (2006) Chapter 1, Basic Mechanisms Underlying Seizures and Epilepsy. In: An Introduction to Epilepsy [Internet]. West Hartford (CT): American Epilepsy Society; Available from: http://www.ncbi.nlm.nih.gov/books/NBK2510/.

Dichter MA, Ayala GF. (1987) Cellular mechanisms of epilepsy: A status report. Science 237:157-64.

Lopantsev V, Both M, Draguhn A. 2009. Rapid Plasticity at Inhibitory and Excitatory Synapses in the Hippocampus Induced by Ictal Epileptiform Discharges. Eur J Neurosci 29(6):1153–64.

Miura M, Yoshioka M, Miyakawa H, Kato H, Ito KI. (1997) Properties of calcium spikes revealed during GABAA receptor antagonism in hippocampal CA1 neurons from guinea pigs. J Neurophysiol. 78(5):2269-79.

Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, Williams SM (Eds). 2001. Neuroscience. 2nd edition. Chapter 7. Neurotransmitter Receptors and Their Effects. Sunderland (MA): Sinauer Associates. Available from: http://www.ncbi.nlm.nih.gov/books/NBK10799/.