<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Emilie Elmelund; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Monica K. Draskau; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Henrik Holbech; Department of Biology, University of Southern Denmark, DK-5230, Odense M, Denmark </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Terje Svingen; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark</span></span></span></span></p>
<td>Under development: Not open for comment. Do not cite</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="abstract">
<h2>Abstract</h2>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">This AOP links <em>in utero</em> inhibition of 5α-reductase with hypospadias in male offspring. Hypospadias is a common reproductive disorder with a prevalence of up to ~1/125 newborn boys </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Leunbach et al., 2025; Paulozzi, 1999)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. Developmental exposure to endocrine disrupting chemicals is suspected to contribute to some cases of hypospadias </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Mattiske & Pask, 2021)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. Hypospadias can be indicative of fetal disruptions to male reproductive development, and is associated with short anogenital distance and cryptorchidism </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Skakkebaek et al., 2016)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. Thus, hypospadias is included as an endpoint in OECD test guidelines (TG) for developmental and reproductive toxicity (TG 414, 416, 421/422, and 443; </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(OECD, 2016b, 2016a, 2018a, 2018b, 2021)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">), as both a measurement of adverse reproductive effects and a direct clinical adverse outcome.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">5α-reductase is an enzyme that converts testosterone to dihydrotestosterone (DHT). In normal male reproductive development, DHT activates the androgen receptor (AR) in peripheral reproductive tissues to drive differentiation of the male phenotype, including development of the penis. While testosterone also acts directly at the AR, DHT is 5-10 times more potent and in peripheral tissues conversion to DHT is necessary for proper masculinization </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Amato et al., 2022; Davey & Grossmann, 2016)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. This AOP delineates the evidence that inhibition of 5α-reductase reduces DHT levels and consequently AR activation, thereby disrupting penis development and causing hypospadias. The AOP is supported by <em>in vitro </em>experiments upstream of AR activation and by <em>in vivo </em>and human case studies downstream of AR activation. Downstream of a reduction in AR activation, the molecular mechanisms of hypospadias development are not fully delineated, highlighting a knowledge gap in this AOP. Thus, the AOP has potential for inclusion of additional KEs and elaboration of molecular causality links, once these are established. Given that hypospadias is both a clinical and toxicological endpoint, this AOP is considered highly relevant in a regulatory context. </span></span></span></span></p>
</div>
<div id="background">
<h3>Background</h3>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">This AOP is a part of an AOP network for reduced androgen receptor activation causing hypospadias in male offspring. The other AOPs in this network are AOP-477 (‘Androgen receptor antagonism leading to hypospadias in male (mammalian) offspring’), and AOP-570 (‘Decreased testosterone synthesis leading to hypospadias in male (mammalian) offspring’). The purpose of the AOP network is to organize the well-established evidence for anti-androgenic mechanisms-of-action leading to hypospadias, thus informing predictive toxicology and identifying knowledge gaps for investigation and method development. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">This work received funding from the European Food and Safety Authority (EFSA) under Grant agreement no. GP/EFSA/PREV/2022/01 and from the Danish Environmental Protection Agency</span></span> <span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">under the Danish Center for Endocrine Disrupters (CeHoS).</span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Although the upstream part of the AOPN has a broad applicability domain, the overall AOPN is considered only applicable to male mammals during fetal life, restricted by the applicability of KER-2828 (‘Decrease, AR activation leads to hypospadias’). The term hypospadias is mainly used for describing malformation of the male, and not female, external genitalia. Some studies refer to hypospadias in females, but these have not been reported to be caused by exposure to 5α-reductase inhibitors, and the mechanisms behind these malformations are likely different from the mechanisms in males </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Greene, 1937; Stewart et al., 2018)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. The genital tubercle is programmed by androgens to differentiate into a penis in fetal life in the masculinization programming window, followed by the morphologic differentiation </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Welsh et al., 2008)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. In humans, hypospadias is diagnosed at birth and can also often be observed in rats and mice at this time point, although the rodent penis does not finish developing until a few weeks after birth </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Baskin & Ebbers, 2006; Sinclair et al., 2017)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. The disruption to androgen programming leading to hypospadias thus take place during fetal life, but the AO is best detected postnatally. Regarding taxonomic applicability, hypospadias has mainly been identified in rodents and humans, and the evidence in this AOP is almost exclusively from these species. It is, however, biologically plausible that the AOP is applicable to other mammals as well</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">, given the conserved role of androgens in mammalian reproductive development, and hypospadias has been observed in many domestic animal and wildlife species, albeit not coupled to 5α-reductase inhibition. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Uncertainties and inconsistencies</span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Biological plausibility provides strong support for the essentiality of this event, as DHT (produced by 5α-reductase) is one of the primary drivers of penis development.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">In utero </span></span></em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">exposure to the 5α-reductase inhibitor finasteride can cause hypospadias in male rats </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Clark et al., 1993)</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Human case studies of 5α-reductase deficiency support the essentiality of this KE, as mutations in 5α-reductase can cause low DHT levels and associated hypospadias in males </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Robitaille & Langlois, 2020)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. See also table 4 in KER-2828 listing disruptions of AR activity associated with hypospadias in humans.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">In the human case studies, DHT is only measured postnatally and not in fetal life.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Biological plausibility provides strong support for the essentiality of this event, as DHT is a ligand of the AR and one of the primary drivers of penis development.</span></span></span></span></p>
<p style="text-align:left"> </p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">In patients with 5α-reductase deficiency, DHT levels are reduced and hypospadias are frequently observed, as listed in table 4 in KER-2828.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">In the human case studies, DHT is only measured postnatally and not in fetal life, As hypospadias is a congenital malformation, it cannot be “reversed” by postnatal DHT treatment. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Biological plausibility provides strong support for the essentiality of this event, as AR activation is critical for normal penis development.</span></span></span></span></p>
<p style="text-align:left"> </p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Conditional or full knockout of <em>Ar</em> in mice results in partly or full sex-reversal of males, including a female-like urethral opening </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Willingham et al., 2006; Yucel et al., 2004; Zheng et al., 2015)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. Human subjects with <em>AR</em> mutations may also have associated hypospadias (as listed in table 4 in KER-2828).</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">KE-286</span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Altered, transcription of genes by AR (low)</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Biological plausibility provides support for the essentiality of this event. AR is a nuclear receptor and transcription factor regulating transcription of genes, and androgens, acting through AR, are essential for normal male penis development. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Known AR-responsive genes active in normal penis development have been thoroughly reviewed </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Amato et al., 2022)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">There are currently no AR-responsive genes proved to be causally involved in hypospadias, and it is known that the AR can also signal through non-genomic actions </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Leung & Sadar, 2017)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">.</span></span></span></span></p>
<p style="text-align:center"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Low</span></span></span></span></p>
</td>
</tr>
</tbody>
</table>
<p> </p>
<h3>Weight of Evidence Summary</h3>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">The confidence in each of the KERs comprising the AOP are judged as high, with both high biological plausibility and high confidence in the empirical evidence. The mechanistic link between KE-286 (‘altered, transcription of genes by AR’) and AO-2082 (‘hypospadias’) is not established, but given the high confidence in the KERs including the non-adjacent KER-2828 linking to the AO, the overall confidence in the AOP is judged as <strong>high</strong>. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">It is well established that 5α-reductase converts testosterone to DHT. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">In vitro, in vivo</span></span></em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"> and human studies with 5α-reductase inhibitors have shown dose-dependent decreases in formation of DHT </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Draskau et al., 2024)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">KER-1935</span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Decrease, DHT levels leads to decrease, AR activation</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">It is well established that DHT activates the AR.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Direct evidence for this KER is not possible since KE-1614 can currently not be measured and is considered an <em>in vivo</em> effect. Indirect evidence using proxy read-outs of AR activation, either <em>in vitro</em> or <em>in vivo</em> strongly supports the relationship </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Draskau et al., 2024)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">KER-2124</span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Decrease, AR activation leads to altered, transcription of genes by AR</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">It is well established that the AR regulates gene transcription.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">In vivo</span></span></em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"> animal studies and human genomic profiling show tissue-specific changes to gene expression upon disruption of AR </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Draskau et al., 2024)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">.<em> </em></span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">KER-2828</span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Decrease, AR activation leads to hypospadias</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">It is well established that AR drives penis differentiation. Numerous <em>in vivo</em> toxicity studies and human case studies indirectly show that decreased AR activation leads to hypospadias, with few inconsistencies. The empirical evidence moderately supports dose, temporal, and incidence concordance for the KER. </span></span></span></span></p>
</td>
</tr>
</tbody>
</table>
<h3>Quantitative Consideration</h3>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">The quantitative understanding of this AOP is judged as low. </span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Amato, C. M., Yao, H. H.-C., & Zhao, F. (2022). One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. <em>Frontiers in Endocrinology</em>, <em>13</em>, 910964. https://doi.org/10.3389/fendo.2022.910964</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Baskin, L., & Ebbers, M. (2006). Hypospadias: Anatomy, etiology, and technique. <em>Journal of Pediatric Surgery</em>, <em>41</em>(3), 463–472. https://doi.org/10.1016/j.jpedsurg.2005.11.059</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Bhasin, S., Cunningham, G. R., Hayes, F. J., Matsumoto, A. M., Snyder, P. J., Swerdloff, R. S., & Montori, V. M. (2010). Testosterone Therapy in Men with Androgen Deficiency Syndromes: An Endocrine Society Clinical Practice Guideline. <em>The Journal of Clinical Endocrinology & Metabolism</em>, <em>95</em>(6), 2536–2559. https://doi.org/10.1210/jc.2009-2354</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Chamberlain, N. L., Driver, E. D., & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. <em>Nucleic Acids Research</em>, <em>22</em>(15), 3181–3186. https://doi.org/10.1093/nar/22.15.3181</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Clark, R. L., Anderson, C. A., Prahalada, S., Robertson, R. T., Lochry, E. A., Leonard, Y. M., Stevens, J. L., & Hoberman, A. M. (1993). Critical Developmental Periods for Effects on Male Rat Genitalia Induced by Finasteride, a 5α-Reductase Inhibitor. <em>Toxicology and Applied Pharmacology</em>, <em>119</em>(1), 34–40. https://doi.org/10.1006/taap.1993.1041</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Davey, R. A., & Grossmann, M. (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. <em>The Clinical Biochemist. Reviews</em>, <em>37</em>(1), 3–15.</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Draskau, M., Rosenmai, A., Bouftas, N., Johansson, H., Panagiotou, E., Holmer, M., Elmelund, E., Zilliacus, J., Beronius, A., Damdimopoulou, P., van Duursen, M., & Svingen, T. (2024). Aop Report: An Upstream Network for Reduced Androgen Signalling Leading to Altered Gene Expression of Ar Responsive Genes in Target Tissues. <em>Environ Toxicol Chem</em>, <em>In Press</em>.</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Greene, R. R. (1937). Production of Experimental Hypospadias in the Female Rat. <em>Proceedings of the Society for Experimental Biology and Medicine</em>, <em>36</em>(4), 503–506. https://doi.org/10.3181/00379727-36-9287P</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Holmer, M. L., Zilliacus, J., Draskau, M. K., Hlisníková, H., Beronius, A., & Svingen, T. (2024). Methodology for developing data-rich Key Event Relationships for Adverse Outcome Pathways exemplified by linking decreased androgen receptor activity with decreased anogenital distance. <em>Reproductive Toxicology</em>, <em>128</em>, 108662. https://doi.org/10.1016/j.reprotox.2024.108662</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Leunbach, T. L., Berglund, A., Ernst, A., Hvistendahl, G. M., Rawashdeh, Y. F., & Gravholt, C. H. (2025). Prevalence, Incidence, and Age at Diagnosis of Boys With Hypospadias: A Nationwide Population-Based Epidemiological Study. <em>Journal of Urology</em>, <em>213</em>(3), 350–360. https://doi.org/10.1097/JU.0000000000004319</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Leung, J. K., & Sadar, M. D. (2017). Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. <em>Frontiers in Endocrinology</em>, <em>8</em>. https://doi.org/10.3389/fendo.2017.00002</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Mattiske, D. M., & Pask, A. J. (2021). Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. <em>Current Research in Toxicology</em>, <em>2</em>, 179–191. https://doi.org/10.1016/j.crtox.2021.03.004</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Paulozzi, L. J. (1999). <em>International trends in rates of hypospadias and cryptorchidism.</em></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Robitaille, J., & Langlois, V. S. (2020). Consequences of steroid-5α-reductase deficiency and inhibition in vertebrates. <em>General and Comparative Endocrinology</em>, <em>290</em>, 113400. https://doi.org/10.1016/j.ygcen.2020.113400</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Sinclair, A., Cao, M., Pask, A., Baskin, L., & Cunha, G. (2017). Flutamide-induced hypospadias in rats: A critical assessment. <em>Differentiation; Research in Biological Diversity</em>, <em>94</em>, 37–57. https://doi.org/10.1016/j.diff.2016.12.001</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Skakkebaek, N. E., Rajpert-De Meyts, E., Louis, G. M. B., Toppari, J., Andersson, A.-M., Eisenberg, M. L., Jensen, T. K., Jorgensen, N., Swan, S. H., Sapra, K. J., Ziebe, S., Priskorn, L., & Juul, A. (2016). Male Reproductive Disorders And Fertility Trends: Influences Of Environement And Genetic susceptibility. <em>PHYSIOLOGICAL REVIEWS</em>, <em>96</em>(1), 55–97. https://doi.org/10.1152/physrev.00017.2015</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Stewart, M. K., Mattiske, D. M., & Pask, A. J. (2018). In utero exposure to both high- and low-dose diethylstilbestrol disrupts mouse genital tubercle development†. <em>Biology of Reproduction</em>, <em>99</em>(6), 1184–1193. https://doi.org/10.1093/biolre/ioy142</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Svingen, T., Villeneuve, D. L., Knapen, D., Panagiotou, E. M., Draskau, M. K., Damdimopoulou, P., & O’Brien, J. M. (2021). A Pragmatic Approach to Adverse Outcome Pathway Development and Evaluation. <em>Toxicological Sciences</em>, <em>184</em>(2), 183–190. https://doi.org/10.1093/toxsci/kfab113</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Tut, T. G., Ghadessy, F. J., Trifiro, M. A., Pinsky, L., & Yong, E. L. (1997). Long Polyglutamine Tracts in the Androgen Receptor Are Associated with Reduced <em>Trans</em> -Activation, Impaired Sperm Production, and Male Infertility <sup>1</sup>. <em>The Journal of Clinical Endocrinology & Metabolism</em>, <em>82</em>(11), 3777–3782. https://doi.org/10.1210/jcem.82.11.4385</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Welsh, M., Saunders, P. T. K., Fisken, M., Scott, H. M., Hutchison, G. R., Smith, L. B., & Sharpe, R. M. (2008). Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. <em>Journal of Clinical Investigation</em>, <em>118</em>(4), 1479–1490. https://doi.org/10.1172/JCI34241</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Willingham, E., Agras, K., Souza, A. J. de, Konijeti, R., Yucel, S., Rickie, W., Cunha, G., & Baskin, L. (2006). Steroid receptors and mammalian penile development: An unexpected role for progesterone receptor? <em>The Journal of Urology</em>, <em>176</em>(2), 728–733. https://doi.org/10.1016/j.juro.2006.03.078</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Yucel, S., Liu, W., Cordero, D., Donjacour, A., Cunha, G., & Baskin, L. (2004). Anatomical studies of the fibroblast growth factor-10 mutant, Sonic Hedge Hog mutant and androgen receptor mutant mouse genital tubercle. <em>Advances in Experimental Medicine and Biology</em>, <em>545</em>, 123–148. https://doi.org/10.1007/978-1-4419-8995-6_8</span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif">Zheng, Z., Armfield, B., & Cohn, M. (2015). Timing of androgen receptor disruption and estrogen exposure underlies a spectrum of congenital penile anomalies. <em>Proceedings of the National Academy of Sciences of the United States of America</em>, <em>112</em>(52), E7194-203. https://doi.org/10.1073/pnas.1515981112</span></span></p>
<p><span style="font-size:11pt">This KE is applicable to both sexes, across developmental stages into adulthood, in many different tissues and across mammalian taxa. <span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<p><span style="font-size:11pt">Essentially the reaction performed by the isozymes is the same, but the enzyme is differentially expressed in the body. 5α-reductase type 1 is mainly linked to the production of neurosteroids, 5α-reductase type 2 is mainly involved in production of 5α-DHT, whereas 5α-reductase type 3 is involved in N-glycosylation (Robitaille & Langlois, 2020). </span></p>
<p><span style="font-size:11pt">The expression profile of the three 5α-reductase isoforms depends on the developmental stage, the tissue of interest, and the disease state of the tissue. The enzymes have been identified in, for instance, non-genital and genital skin, scalp, prostate, liver, seminal vesicle, epididymis, testis, ovary, kidney, exocrine pancreas, and brain (Azzouni, 2012, Uhlen 2015).</span></p>
<p><span style="font-size:11pt">5α-reductase is well-conserved, all primary species in Eukaryota contain all three isoforms (from plant, amoeba, yeast to vertebrates) (Azzouni, 2012) and the enzymes are expressed in both males and females (Langlois, 2010, Uhlen 2015).</span></p>
<h4>Key Event Description</h4>
<p><span style="font-size:11pt">This KE describes the inhibition of 5α-reductases (3-oxo-5α-steroid 4-dehydrogenases). These enzymes are widely expressed in tissues of both sexes and responsible for conversion of steroid hormones.</span></p>
<p><span style="font-size:11pt">There are three isozymes: 5α-reductase type 1, 2, and 3.<span style="color:black"> The substrates for 5</span><span style="color:black">α</span><span style="color:black">-reductases are 3-oxo (3-keto), </span><span style="color:black">Δ</span><sup><span style="color:black">4,5</span></sup><span style="color:black"> C19/C21 steroids such as testosterone, progesterone, androstenedione, epi-testosterone, cortisol, aldosterone, and deoxycorticosterone. The enzymatic reaction leads to an irreversible breakage of the double bond between carbon 4 and 5 and subsequent insertion of a hydride anion at carbon 5 and insertion of a proton at carbon 4. The reaction is aided by the cofactor NADPH. The substrate affinity and reaction velocity differ depending on the combination of substrate and enzyme isoform, for instance 5</span><span style="color:black">α</span><span style="color:black">-reductase type 2 has a higher substrate affinity for testosterone than the type 1 isoform of the enzyme, and the enzymatic reaction occurs at a higher velocity under optimal conditions. Likewise, inhibitors of 5</span><span style="color:black">α-reductase may exhibit differential effects depending on isoforms (Azzouni et al., 2012).</span></span></p>
<h4>How it is Measured or Detected</h4>
<p><span style="font-size:11pt">There is currently (as of 2023) no OECD test guideline for the measurement of 5α-reductase inhibition.</span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Assessing the ability of chemicals to inhibit the activity of 5α-reductase is challenging, but has been </span></span>assessed using transfected cell lines. This has been demonstrated in HEK-293 cells stably transfected with human 5α-reductase type 1, 2, and 3 <span style="color:black">(Yamana et al., 2010)</span>, in CHO cells stably transfected with human 5α-reductase type 1 and 2 <span style="color:black">(Thigpens et al., 1993)</span>, and COS cells transfected with human and rat 5α-reductase with unspecified isoforms <span style="color:black">(Andersson & Russell, 1990)</span>. The transfected cells are typically used as intact cells or cell homogenates. Further, 5α-reductase 1 and 2 has been successfully expressed and isolated from <em>Escherichia coli </em>with subsequent functionality allowing for examination of enzyme inhibition <span style="color:black">(Peng et al., 2020)</span>. <span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">The availability of the stably transfected cell lines and the isolated enzymes to the scientific community is unknown.</span></span></span></p>
<p><span style="font-size:11pt">The output of the above methods could be decreased dihydrotestosterone (DHT) with increasing test chemical concentrations. Other substrates exist for the different isoforms that could be used to assess the enzymatic inhibition<span style="color:black"> (Peng et al., 2020)</span>. The use of radiolabeled steroids has historic and continued use for 5α-reductase inhibition examination <span style="color:black">(Andersson & Russell, 1990; Peng et al., 2020; Thigpens et al., 1993; Yamana et al., 2010); however, alternative methods are available, such as conventional ELISA kits or</span> advanced analytical methods such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS).</span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Andersson, S., & Russell, D. W. (1990). Structural and biochemical properties of cloned and expressed human and rat steroid 5a-reductases. <em>Proc. Natl. Acad. Sci. </em><em>USA</em>, <em>87</em>, 3640–3644. https://www.pnas.org</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Azzouni, F., Godoy, A., Li, Y., & Mohler, J. (2012). The 5 alpha-reductase isozyme family: A review of basic biology and their role in human diseases. In <em>Advances in Urology</em>. https://doi.org/10.1155/2012/530121</span></span></p>
<p><span style="font-size:14px">Langlois VS, Zhang D, Cooke GM, Trudeau VL. (2010). Evolution of steroid-5alpha-reductases and comparison of their function with 5beta-reductase. <em>Gen Comp Endocrinol</em>. 166(3):489-97. doi: 10.1016/j.ygcen.2009.08.004. </span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Peng, H. M., Valentin-Goyco, J., Im, S. C., Han, B., Liu, J., Qiao, J., & Auchus, R. J. (2020). Expression in escherichia coli, purification, and functional reconstitution of human steroid 5α-reductases. <em>Endocrinology (United States)</em>, <em>161</em>(8), 1–11. https://doi.org/10.1210/ENDOCR/BQAA117</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Robitaille, J., & Langlois, V. S. (2020). Consequences of steroid-5α-reductase deficiency and inhibition in vertebrates. In <em>General and Comparative Endocrinology</em> (Vol. 290). Academic Press Inc. https://doi.org/10.1016/j.ygcen.2020.113400</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Thigpens, A. E., Cala, K. M., & Russell, D. W. (1993). Characterization of Chinese Hamster Ovary Cell Lines Expressing Human Steroid 5a-Reductase Isozymes. <em>The Journal of Biological Chemistry</em>, <em>268</em>(23), 17404–17412.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Thigpens, A. E., Cala, K. M., & Russell, D. W. (1993). Characterization of Chinese Hamster Ovary Cell Lines Expressing Human Steroid 5a-Reductase Isozymes. <em>The Journal of Biological Chemistry</em>, <em>268</em>(23), 17404–17412.</span></span><!--StartFragment --></p>
<p><span style="font-size:14px">Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I. M., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A. K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., … Pontén, F. (2015). Tissue-based map of the human proteome. Science, 347(6220). https://doi.org/10.1126/science.1260419</span></p>
<p><!--EndFragment --></p>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Yamana, K., Fernand, L., Luu-The, V., & Luu-The, V. (2010). Human type 3 5</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">α</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">-reductase is expressed in peripheral tissues at higher levels than types 1 and 2 and its activity is potently inhibited by finasteride and dutasteride. <em>Hormone Molecular Biology and Clinical Investigation</em>, <em>2</em>(3), 293–299. https://doi.org/10.1515/HMBCI.2010.035</span></span></p>
<td><a href="/aops/288">Aop:288 - Inhibition of 17α-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to birth reproductive defects (cryptorchidism) in male (mammals)</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/289">Aop:289 - Inhibition of 5α-reductase leading to impaired fecundity in female fish</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/305">Aop:305 - 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/527">Aop:527 - Decreased, Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII) leads to Hypospadias, increased</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/571">Aop:571 - 5α-reductase inhibition leading to hypospadias in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/576">Aop:576 - 5α-reductase inhibition leading to increased nipple retention (NR) in male (rodent) offspring</a></td>
<p><span style="font-size:11pt">This KE is applicable to both sexes, across developmental stages and adulthood, in many different tissues and across mammals.</span></p>
<p><span style="font-size:11pt">In both humans and rodents, DHT is important for the <em>in utero</em> differentiation and growth of the prostate and male external genitalia (Azzouni et al., 2012; Gerald & Raj, 2022). Besides its critical role in development, DHT also induces growth of facial and body hair during puberty in humans <span style="color:black">(Azzouni et al., 2012)</span>.</span></p>
<p><span style="font-size:11pt">In mammals, the role of DHT in females is less established <span style="color:black">(Swerdloff et al., 2017), however studies suggest that androgens are important in e.g. bone metabolism and growth, as well as female reproduction from follicle development to parturition (Hammes & Levin, 2019).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<h4>Key Event Description</h4>
<p style="text-align:justify"><span style="font-size:11pt"><span style="background-color:white"><span style="color:black">Dihydrotestosterone (DHT) is an endogenous steroid hormone and a potent androgen. The level of DHT in tissue or blood is dependent on several factors, such as the synthesis, uptake/release, metabolism, and elimination from the system, which again can be dependent on biological compartment and developmental stage.</span></span></span></p>
<p><span style="font-size:11pt"><span style="background-color:white"><span style="color:black">DHT is primarily synthesized from testosterone (T) via the irreversible enzymatic reaction facilitated by 5α</span></span><span style="background-color:white"><span style="color:black">-Reductases (5</span></span><span style="background-color:white"><span style="color:black">α-REDs) (Swerdloff et al., 2017). Different isoforms of this enzyme are differentially expressed in specific tissues (e.g. prostate, skin, liver, and hair follicles) at different developmental stages, and depending on disease status (Azzouni et al., 2012; Uhlén et al., 2015), which ultimately affects the local production of DHT. </span></span></span></p>
<p><span style="font-size:11pt"><span style="background-color:white"><span style="color:black">An alternative (“backdoor”) pathway , exists for DHT formation that is independent of T and androstenedione as precursors. </span></span><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">While first discovered in marsupials, the physiological importance of this pathway has now also been established in other mammals including humans (Renfree and Shaw, 2023). </span></span><span style="background-color:white"><span style="color:black">This pathway relies on the conversion of progesterone (P) or 17-OH-P to androsterone and then androstanediol through several enzymatic reactions and finally, the conversion of androstanediol into DHT probably by HSD17B6 (Miller & Auchus, 2019; Naamneh Elzenaty et al., 2022). The “backdoor” synthesis pathway is a result of an interplay between placenta, adrenal gland, and liver during fetal life (Miller & Auchus, 2019).</span></span></span></p>
<p><span style="font-size:11pt"><span style="background-color:white"><span style="color:black">The conversion of T to DHT by 5α-RED in peripheral tissue is mainly responsible for the circulating levels of DHT, though some tissues express enzymes needed for further metabolism of DHT consequently leading to little release and contribution to circulating levels (Swerdloff et al.). </span></span></span></p>
<p><span style="font-size:11pt"><span style="background-color:white"><span style="color:black">The initial conversion of DHT into inactive steroids is primarily through 3α</span></span><span style="background-color:white"><span style="color:black">-hydroxysteroid dehydrogenase (3</span></span><span style="background-color:white"><span style="color:black">α</span></span><span style="background-color:white"><span style="color:black">-HSD) and 3</span></span><span style="background-color:white"><span style="color:black">β-HSD in liver, intestine, skin, and androgen-sensitive tissues. The subsequent conjugation is mainly mediated by uridine 5´-diphospho (UDP)-glucuronyltransferase 2 (UGT2) leading to biliary and urinary elimination from the system. Conjugation also occurs locally to control levels of highly potent androgens (Swerdloff et al., 2017).</span></span></span></p>
<p><span style="font-size:11pt"><span style="background-color:white"><span style="color:black">Disruption of any of the aforementioned processes may lead to decreased DHT levels, either systemically or at tissue level.</span></span></span></p>
<h4>How it is Measured or Detected</h4>
<p><span style="font-size:11pt"><span style="font-size:10.5pt"><span style="background-color:white"><span style="color:black">Several methods exist for DHT identification and quantification, such as conventional immunoassay methods (ELISA or RIA) and advanced analytical methods as liquid chromatography tandem mass spectrometry (LC-MS/MS). The methods can have differences in detection and quantification limits, which should be considered depending on the DHT levels in the sample of interest. Further, the origin of the sample (e.g. cell culture, tissue, or blood) will have implications for the sample preparation. </span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-size:10.5pt"><span style="background-color:white"><span style="color:black">Conventional immunoassays have limitations in that they can overestimate the levels of DHT compared to levels determined by gas chromatography mass spectrometry and liquid chromatography tandem mass spectrometry (Hsing et al., 2007; Shiraishi et al., 2008). This overestimation may be explained by lack of specificity of the DHT antibody used in the RIA and cross-reactivity with T in samples (Swerdloff et al., 2017).</span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Test guideline no. 456 (OECD 2023) uses a cell line, NCI-H295, capable of producing DHT at low levels. The test guideline is not validated for this hormone. Measurement of DHT levels in these cells require low detection and quantification limits. Any effect on DHT can be a result of many upstream molecular events that are specific for the NCI-H295 cells, and which may differ in other models for steroidogenesis.</span></span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Azzouni, F., Godoy, A., Li, Y., & Mohler, J. (2012). The 5 alpha-reductase isozyme family: A review of basic biology and their role in human diseases. In <em>Advances in Urology</em>. https://doi.org/10.1155/2012/530121</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gerald, T., & Raj, G. (2022). Testosterone and the Androgen Receptor. In <em>Urologic Clinics of North America</em> (Vol. 49, Issue 4, pp. 603–614). W.B. Saunders. https://doi.org/10.1016/j.ucl.2022.07.004</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hammes, S. R., & Levin, E. R. (2019). Impact of estrogens in males and androgens in females. In <em>Journal of Clinical Investigation</em> (Vol. 129, Issue 5, pp. 1818–1826). American Society for Clinical Investigation. https://doi.org/10.1172/JCI125755</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hsing, A. W., Stanczyk, F. Z., Bélanger, A., Schroeder, P., Chang, L., Falk, R. T., & Fears, T. R. (2007). Reproducibility of serum sex steroid assays in men by RIA and mass spectrometry. <em>Cancer Epidemiology Biomarkers and Prevention</em>, <em>16</em>(5), 1004–1008. https://doi.org/10.1158/1055-9965.EPI-06-0792</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Miller, W. L., & Auchus, R. J. (2019). The “backdoor pathway” of androgen synthesis in human male sexual development. <em>PLoS Biology</em>, <em>17</em>(4). https://doi.org/10.1371/journal.pbio.3000198</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Naamneh Elzenaty, R., du Toit, T., & Flück, C. E. (2022). Basics of androgen synthesis and action. In <em>Best Practice and Research: Clinical Endocrinology and Metabolism</em> (Vol. 36, Issue 4). Bailliere Tindall Ltd. https://doi.org/10.1016/j.beem.2022.101665</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">OECD (2023), Test No. 456: H295R Steroidogenesis Assay, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264122642-en.</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Renfree, M. B., and Shaw, G. (2023). The alternate pathway of androgen metabolism and window of sensitivity. J. Endocrinol., JOE-22-0296. doi:10.1530/JOE-22-0296.</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Shiraishi, S., Lee, P. W. N., Leung, A., Goh, V. H. H., Swerdloff, R. S., & Wang, C. (2008). Simultaneous measurement of serum testosterone and dihydrotestosterone by liquid chromatography-tandem mass spectrometry. <em>Clinical Chemistry</em>, <em>54</em>(11), 1855–1863. https://doi.org/10.1373/clinchem.2008.103846</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Swerdloff, R. S., Dudley, R. E., Page, S. T., Wang, C., & Salameh, W. A. (2017). Dihydrotestosterone: Biochemistry, physiology, and clinical implications of elevated blood levels. In <em>Endocrine Reviews</em> (Vol. 38, Issue 3, pp. 220–254). Endocrine Society. https://doi.org/10.1210/er.2016-1067</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I. M., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A. K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., … Pontén, F. (2015). Tissue-based map of the human proteome. <em>Science</em>, <em>347</em>(6220). https://doi.org/10.1126/science.1260419</span></span></p>
<td><a href="/aops/288">Aop:288 - Inhibition of 17α-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to birth reproductive defects (cryptorchidism) in male (mammals)</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/305">Aop:305 - 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/306">Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/307">Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/344">Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/372">Aop:372 - Androgen receptor antagonism leading to testicular cancer </a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/477">Aop:477 - Androgen receptor (AR) antagonism leading to hypospadias in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/345">Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/111">Aop:111 - Decrease in androgen receptor activity leading to Leydig cell tumors (in rat)</a></td>
<td>MolecularInitiatingEvent</td>
</tr>
<tr>
<td><a href="/aops/570">Aop:570 - Decreased testosterone synthesis leading to hypospadias in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/571">Aop:571 - 5α-reductase inhibition leading to hypospadias in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/575">Aop:575 - Decreased testosterone synthesis leading to increased nipple retention (NR) in male (rodent) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/576">Aop:576 - 5α-reductase inhibition leading to increased nipple retention (NR) in male (rodent) offspring</a></td>
<p><span style="font-size:11pt">This KE is considered broadly applicable across mammalian taxa as all mammals express the AR in numerous cells and tissues where it regulates gene transcription required for developmental processes and functions. <span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<h4>Key Event Description</h4>
<p><span style="font-size:11pt">This KE refers to decreased activation of the androgen receptor (AR) as occurring in complex biological systems such as tissues and organs in vivo. It is thus considered distinct from KEs describing either blocking of AR or decreased androgen synthesis.</span></p>
<p style="text-align:justify"><span style="font-size:11pt">The AR is a nuclear transcription factor with canonical AR activation regulated by the binding of the androgens such as testosterone or dihydrotestosterone (DHT). Thus, AR activity can be decreased by reduced levels of steroidal ligands (testosterone, DHT) or the presence of compounds interfering with ligand binding to the receptor <span style="color:black">(Davey & Grossmann, 2016; Gao et al., 2005)</span>.</span></p>
<p style="text-align:justify"><span style="font-size:11pt">In the inactive state, AR is sequestered in the cytoplasm of cells by molecular chaperones. In the classical (genomic) AR signaling pathway, AR activation causes dissociation of the chaperones, AR dimerization and translocation to the nucleus to modulate gene expression. AR binds to the androgen response element (ARE) <span style="color:black">(Davey & Grossmann, 2016; Gao et al., 2005)</span>. <span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Notably, for transcriptional regulation the AR is closely associated with other co-factors that may differ between cells, tissues and life stages. In this way, the functional consequence of AR activation is cell- and tissue-specific. This dependency on co-factors such as the SRC proteins also means that stressors affecting recruitment of co-activators to AR can result in decreased AR activity (Heinlein & Chang, 2002).</span></span></span></p>
<p style="text-align:justify"><span style="font-size:11pt">In the inactive state, AR is sequestered in the cytoplasm of cells by molecular chaperones. In the classical (genomic) AR signaling pathway, AR activation causes dissociation of the chaperones, AR dimerization and translocation to the nucleus to modulate gene expression. AR binds to the androgen response element (ARE) <span style="color:black">(Davey & Grossmann, 2016; Gao et al., 2005)</span>. <span style="font-family:Arial,Helvetica,sans-serif">Notably, for transcriptional regulation the AR is closely associated with other co-factors that may differ between cells, tissues and life stages. In this way, the functional consequence of AR activation is cell- and tissue-specific. This dependency on co-factors such as the SRC proteins also means that stressors affecting recruitment of co-activators to AR can result in decreased AR activity (Heinlein & Chang, 2002), as shown for the pyrethroid cypermethrin (Wang et al., 2016).</span></span></p>
<p style="text-align:justify"><span style="font-size:11pt">Ligand-bound AR may also associate with cytoplasmic and membrane-bound proteins to initiate cytoplasmic signaling pathways with other functions than the nuclear pathway. Non-genomic AR signaling includes association with Src kinase to activate MAPK/ERK signaling and activation of the PI3K/Akt pathway. Decreased AR activity may therefore be a decrease in the genomic and/or non-genomic AR signaling pathways <span style="color:black">(Leung & Sadar, 2017)</span>.</span></p>
<h4>How it is Measured or Detected</h4>
<p><span style="font-size:11pt">This KE specifically focuses on decreased <em>in vivo</em> activation, with most methods that can be used to measure AR activity carried out <em>in vitro</em>. They provide indirect information about the KE and are described in lower tier MIE/KEs (see for example MIE/KE-26 for AR antagonism, KE-1690 for decreased T levels and KE-1613 for decreased dihydrotestosterone levels). </span><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Assays may in the future be developed to measure AR activation in mammalian organisms. </span></span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Davey, R. A., & Grossmann, M. (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. <em>The Clinical Biochemist. Reviews</em>, <em>37</em>(1), 3–15.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gao, W., Bohl, C. E., & Dalton, J. T. (2005). Chemistry and structural biology of androgen receptor. <em>Chemical Reviews</em>, <em>105</em>(9), 3352–3370. https://doi.org/10.1021/cr020456u</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Heinlein, C. A., & Chang, C. (2002). Androgen Receptor (AR) Coregulators: An Overview. https://academic.oup.com/edrv/article/23/2/175/2424160</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Leung, J. K., & Sadar, M. D. (2017). Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. <em>Frontiers in Endocrinology</em>, <em>8</em>. <a href="https://doi.org/10.3389/fendo.2017.00002" style="color:#0563c1; text-decoration:underline">https://doi.org/10.3389/fendo.2017.00002</a></span></span></p>
<p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Wang Q, Zhou JL, Wang H, Ju Q, Ding Z, Zhou XL, Ge X, Shi QM, Pan C, Zhang JP, Zhang MR, Yu HM, Xu LC. (2016). Inhibition effect of cypermethrin mediated by co-regulators SRC-1 and SMRT in interleukin-6-induced androgen receptor activation. <em>Chemosphere</em>. 158:24-9. doi: 10.1016/j.chemosphere.2016.05.053</span></span></p>
<table>
<tbody>
<tr>
<td colspan="1" rowspan="1">
<p> </p>
</td>
<td colspan="1" rowspan="1">
<p> </p>
</td>
</tr>
</tbody>
</table>
<h4><a href="/events/286">Event: 286: Altered, Transcription of genes by the androgen receptor</a></h4>
<h5>Short Name: Altered, Transcription of genes by the AR</h5>
<p>Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the transactivation domain show more divergence, which may affect AR-mediated gene regulation across species (Davey and Grossmann 2016). Despite certain inter-species differences, AR function mediated through gene expression is highly conserved, with mutation studies from both humans and rodents showing strong correlation for AR-dependent development and function (Walters et al. 2010). </p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">This KE is considered broadly applicable across mammalian taxa, sex and developmental stages, as all mammals express the AR in numerous cells and tissues where it regulates gene transcription required for developmental processes and function. </span><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<h4>Key Event Description</h4>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">This KE refers to transcription of genes by the androgen receptor (AR) as occurring in complex biological systems such as tissues and organs <em>in vivo</em>. </span><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Rather than measuring individual genes, this KE aims to capture patterns of effects at transcriptome level in specific target cells/tissues. In other words, it can be replaced by specific KEs for individual adverse outcomes as information becomes available, for example the transcriptional toxicity response in prostate tissue for AO: prostate cancer, perineum tissue for AO: reduced AGD, etc. AR regulates many genes that differ between tissues and life stages and, importantly, different gene transcripts within individual cells can go in either direction since AR can act as both transcriptional activator and suppressor. Thus, the ‘directionality’ of the KE cannot be either reduced or increased, but instead describe an altered transcriptome. </span></span></span></p>
<p><u>The Androgen Receptor and its function</u></p>
<p><span style="font-size:12.0pt">The AR belongs to the steroid hormone nuclear receptor family. It is a ligand-activated transcription factor with three domains: the N-terminal domain, the DNA-binding domain, and the ligand-binding domain with the latter being the most evolutionary conserved (Davey and Grossmann 2016). </span>Androgens <span style="font-size:12.0pt">(such as dihydrotestosterone and testosterone) are AR ligands and </span>act by binding to the AR in androgen-responsive tissues (Davey and Grossmann 2016). Human AR mutations and mouse knockout models have established a fundamental role for AR in masculinization and spermatogenesis (Maclean et al.; Walters et al. 2010; Rana et al. 2014). The AR is also expressed in many other tissues such as bone, muscles, ovaries and within the immune system (Rana et al. 2014).</p>
<p> </p>
<p><u>Altered transcription of genes by the AR as a Key Event</u></p>
<p>Upon activation by ligand-binding, the AR translocates from the cytoplasm to the cell nucleus, dimerizes, binds to androgen response elements in the DNA to modulate gene transcription (Davey and Grossmann 2016). The transcriptional targets vary between cells and tissues, as well as with developmental stages and is also dependent on available co-regulators (Bevan and Parker 1999; Heemers and Tindall 2007). <span style="font-size:12.0pt">It should also be mentioned that the AR can work in other ‘non-canonial’ ways such as non-genomic signaling, and ligand-independent activation (Davey & Grossmann, 2016; Estrada et al, 2003; Jin et al, 2013). </span></p>
<p>A large number of known, and proposed, target genes of AR canonical signaling have been identified by analysis of gene expression following treatments with AR agonists (Bolton et al. 2007; Ngan et al. 2009<span style="font-size:12.0pt">, Jin et al. 2013</span>).</p>
<h4>How it is Measured or Detected</h4>
<p>Altered transcription of genes by the AR can be measured by measuring the transcription level of known downstream target genes by RT-qPCR or other transcription analyses approaches, e.g. transcriptomics.</p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Since this KE aims to capture AR-mediated transcriptional patterns of effect, downstream bioinformatics analyses will typically be required to identify and compare effect footprints. Clusters of genes can be statistically associated with, for example, biological process terms or gene ontology terms relevant for AR-mediated signaling. Large transcriptomics data repositories can be used to compare transcriptional patterns between chemicals, tissues, and species (e.g. TOXsIgN (Darde et al, 2018a; Darde et al, 2018b), comparisons can be made to identified sets of AR ‘biomarker’ genes (e.g. as done in (Rooney et al, 2018)), and various methods can be used e.g. connectivity mapping (Keenan et al, 2019).</span></span></span></p>
<h4>References</h4>
<p>Bevan C, Parker M (1999) The role of coactivators in steroid hormone action. Exp. Cell Res. 253:349–356</p>
<p>Bolton EC, So AY, Chaivorapol C, et al (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21:2005–2017. doi: 10.1101/gad.1564207</p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Calibri",sans-serif">Darde, T. A., Gaudriault, P., Beranger, R., Lancien, C., Caillarec-Joly, A., Sallou, O., et al. </span><span style="font-family:"Calibri",sans-serif">(2018a). TOXsIgN: a cross-species repository for toxicogenomic signatures. Bioinformatics 34, 2116–2122. doi:10.1093/bioinformatics/bty040.</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Calibri",sans-serif">Darde, T. A., Chalmel, F., and Svingen, T. (2018b). </span><span style="font-family:"Calibri",sans-serif">Exploiting advances in transcriptomics to improve on human-relevant toxicology. Curr. Opin. Toxicol. 11–12, 43–50. doi:10.1016/j.cotox.2019.02.001.</span></span></span></p>
<p>Davey RA, Grossmann M (2016) Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 37:3–15</p>
<p>Estrada M, Espinosa A, Müller M, Jaimovich E (2003) Testosterone Stimulates Intracellular Calcium Release and Mitogen-Activated Protein Kinases Via a G Protein-Coupled Receptor in Skeletal Muscle Cells. Endocrinology 144:3586–3597. doi: 10.1210/en.2002-0164</p>
<p>Heemers H V., Tindall DJ (2007) Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28:778–808</p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">Jin, Hong Jian, Jung Kim, and Jindan Yu. 2013. “Androgen Receptor Genomic Regulation.” Translational Andrology and Urology 2(3):158–77. doi: 10.3978/j.issn.2223-4683.2013.09.01</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Calibri",sans-serif">Keenan, A. B., Wojciechowicz, M. L., Wang, Z., Jagodnik, K. M., Jenkins, S. L., Lachmann, A., et al. (2019). Connectivity Mapping: Methods and Applications. Annu. Rev. Biomed. Data Sci. 2, 69–92. doi:10.1146/ANNUREV-BIODATASCI-072018-021211.</span></span></span></p>
<p>Maclean HE, Chu S, Warne GL, Zajact JD Related Individuals with Different Androgen Receptor Gene Deletions</p>
<p>MacLeod DJ, Sharpe RM, Welsh M, et al (2010) Androgen action in the masculinization programming window and development of male reproductive organs. In: International Journal of Andrology. Blackwell Publishing Ltd, pp 279–287</p>
<p>Ngan S, Stronach EA, Photiou A, et al (2009) Microarray coupled to quantitative RT&ndash;PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 28:2051–2063. doi: 10.1038/onc.2009.68<span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><a name="_Hlk148352925"></a></span></span></p>
<p>Rana K, Davey RA, Zajac JD (2014) Human androgen deficiency: Insights gained from androgen receptor knockout mouse models. Asian J. Androl. 16:169–177</p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Calibri",sans-serif">Rooney, J. P., Chorley, B., Kleinstreuer, N., and Corton, J. C. (2018). Identification of Androgen Receptor Modulators in a Prostate Cancer Cell Line Microarray Compendium. Toxicol. Sci. 166, 146–162. doi:10.1093/TOXSCI/KFY187.</span></span></span></p>
<p>Walters KA, Simanainen U, Handelsman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 16:543–558. doi: 10.1093/humupd/dmq003</p>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Taxonomic applicability: </span></strong><span style="color:black">Numerous studies have shown an association in humans between <em>in utero </em>exposure to endocrine disrupting chemicals and hypospadias. In mice and rats, <em>in utero </em>exposure to several endocrine disrupting chemicals, in particular estrogens and antiandrogens, have been shown to cause hypospadias in male offspring at different frequencies (Mattiske & Pask, 2021). Androgen-driven development of the </span></span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">male external genitalia is evolutionary conserved in most mammals and, to some extent, also in other vertebrate classes </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Gredler et al., 2014)</span></span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">. </span></span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Hypospadias can in principle occur in all animals that form a genital tubercle and have been observed in many domestic animal species and wildlife species.</span></span></p>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Life stage applicability: </span></strong><span style="color:black">Penis development is finished prenatally in humans, and hypospadias is diagnosed at birth </span><span style="color:black">(Baskin & Ebbers, 2006)</span><span style="color:black">. In rodents, penis development is not fully completed until weeks after birth, but hypospadias may be identified in early postnatal life as well, and in some cases in late gestation </span><span style="color:black">(Sinclair et al., 2017)</span><span style="color:black">.</span></span></span></p>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Sex applicability: </span></strong><span style="color:black">Hypospadias is primarily used in reference to malformation of the male external genitalia. </span></span></span></p>
<p> </p>
<h4>Key Event Description</h4>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hypospadias is a malformation of the penis where the urethral opening is displaced from the tip of the glans, usually on the ventral side on the phallus. Most cases of hypospadias are milder where the urethral opening still appears on the glans proper or on the most distal part of the shaft. In more severe cases, the opening may be more proximally placed on the shaft or even as low as the scrotum or the perineum. </span></span></p>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">In addition to the misplacement of the urethral opening, hypospadias is associated with an absence of ventral prepuce, an excess of dorsal preputial tissue, and in some cases a downward curvature of the penis (chordee). Patients with hypospadias may need surgical repairment depending on severity, with more proximal hypospadias patients in most need of surgeries to achieve optimal functional and cosmetic results (Baskin, 2000; Baskin & Ebbers, 2006; Mattiske & Pask, 2021). </span>The incidence of hypospadias varies greatly between countries, from 1:100 to 1:500 of newborn boys <span style="color:black">(Skakkebaek et al., 2016), and the </span>global prevalence seems to be increasing <span style="color:black">(Paulozzi, 1999; Springer et al., 2016; Yu et al., 2019).</span></span></span></p>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The external genitalia arise from the biphasic genital tubercle during fetal development. Androgens (testosterone and dihydrotestosterone) drive formation of the male external genitalia. In humans, the urethra develops by fusion of two endoderm-derived urethral folds. Disruption of genital tubercle differentiation results in an incomplete urethra, i.e. hypospadias. <span style="color:black">(Baskin, 2000; Baskin & Ebbers, 2006)</span>.</span></span></p>
<p style="text-align:justify"> </p>
<h4>How it is Measured or Detected</h4>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In humans, hypospadias is diagnosed clinically by physical examination of the infant and is at first recognized by the absence of ventral prepuce and concurrent excess dorsal prepuce <span style="color:black">(Baskin, 2000)</span>. Hypospadias may be classified according to the location of the urethral meatus: Glandular, subcoronal, midshaft, penoscrotal, scrotal, and perineal <span style="color:black">(Baskin & Ebbers, 2006)</span><strong>.</strong></span></span></p>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In mice and rats, macroscopic assessment of hypospadias may be performed postnatally, and several OECD test guidelines require macroscopic examination of genital abnormalities in <em>in vivo</em> toxicity studies (TG 414, 416, 421/422, 443). The guidelines do not define hypospadias or how to identify them. Fetal and neonatal identification of hypospadias may require microscopic examination for proper evaluation of the pathology. This can be done by scanning electron microscopy <span style="color:black">(Uda et al., 2004), or by histological assessment in which the presence of the urethral opening in proximal, transverse sections (for example co-occuring with the os penis or corpus cavernosum), indicates hypospadias (Mahawong et al., 2014; Sinclair et al., 2017; Vilela et al., 2007).</span> In a semiquantitative, histologic approach, the number of transverse sections of the penis with internalization of the urethra was related to the total length of the penis, achieving a percentage of urethral internalization. In this study, ≤89% of urethral internalization was defined as indicative of mild hypospadias <span style="color:black">(Stewart et al., 2018). </span></span></span></p>
<h4>Regulatory Significance of the AO</h4>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In the OECD guidelines for developmental and reproductive toxicology, several test endpoints include examination of structural abnormalities with special attention to the organs of the reproductive system. These are: Test No. 414 ‘Prenatal Developmental Toxicity Study’ <span style="color:black">(OECD, 2018a); Test No. 416 ‘Two-Generation Reproduction Toxicity’ (OECD, 2001) and Tests No. 421/422 ‘Reproduction/Developmental Toxicity Screening Test’ (OECD, 2016a, 2016b). In Test No. 443 ‘Extended One-Generation Reproductive Toxicity Study’ (OECD, 2018b), hypospadias is specifically mentioned as a genital abnormality to note. </span></span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Baskin, L. S. (2000). Hypospadias and urethral development. <em>The Journal of Urology</em>, <em>163</em>(3), 951–956.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Baskin, L. S., & Ebbers, M. B. (2006). Hypospadias: Anatomy, etiology, and technique. <em>Journal of Pediatric Surgery</em>, <em>41</em>(3), 463–472. https://doi.org/10.1016/j.jpedsurg.2005.11.059</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gredler, M. L., Larkins, C. E., Leal, F., Lewis, A. K., Herrera, A. M., Perriton, C. L., Sanger, T. J., & Cohn, M. J. (2014). Evolution of External Genitalia: Insights from Reptilian Development. <em>Sexual Development</em>, <em>8</em>(5), 311–326. https://doi.org/10.1159/000365771</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Mahawong, P., Sinclair, A., Li, Y., Schlomer, B., Rodriguez, E., Ferretti, M. M., Liu, B., Baskin, L. S., & Cunha, G. R. (2014). Prenatal diethylstilbestrol induces malformation of the external genitalia of male and female mice and persistent second-generation developmental abnormalities of the external genitalia in two mouse strains. <em>Differentiation</em>, <em>88</em>(2–3), 51–69. https://doi.org/10.1016/j.diff.2014.09.005</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Mattiske, D. M., & Pask, A. J. (2021). Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. <em>Current Research in Toxicology</em>, <em>2</em>, 179–191. https://doi.org/10.1016/j.crtox.2021.03.004</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD. (2001). Test No. 416: Two-Generation Reproduction Toxicity. In <em>OECD Guidelines for the Testing of Chemicals, Section 4</em>. OECD Publishing. https://doi.org/10.1787/9789264070868-en</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD. (2018). Test No. 414: Prenatal Developmental Toxicity Study. In <em>OECD Guidelines for the Testing of Chemicals, Section 4</em>. OECD Publishing. https://doi.org/10.1787/9789264070820-en</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD. (2025a). Test No. 421: Reproduction/Developmental Toxicity Screening Test. In <em>OECD Guidelines for the Testing of Chemicals, Section 4</em>. OECD Publishing. https://doi.org/doi.org/10.1787/9789264264380-en</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD. (2025b). Test No. 422: Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test. In <em>OECD Guidelines for the Testing of Chemicals, Section 4</em>. OECD Publising. https://doi.org/doi.org/10.1787/9789264264403-en</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD. (2025c). Test No. 443: Extended One-Generation Reproductive Toxicity Study. In <em>OECD Guidelines for the Testing of Chemicals, Section 4</em>. OECD Publishing. https://doi.org/doi.org/10.1787/9789264185371-en</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Paulozzi, L. J. (1999). International Trends in Rates of Hypospadias and Cryptorchidism. <em>Environmental Health Perspectives</em>, <em>107</em>(4), 297–302. https://doi.org/10.1289/ehp.99107297</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Sinclair, A. W., Cao, M., Pask, A., Baskin, L., & Cunha, G. R. (2017). Flutamide-induced hypospadias in rats: A critical assessment. <em>Differentiation</em>, <em>94</em>, 37–57. https://doi.org/10.1016/j.diff.2016.12.001</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Skakkebaek, N. E., Rajpert-De Meyts, E., Buck Louis, G. M., Toppari, J., Andersson, A.-M., Eisenberg, M. L., Jensen, T. K., Jørgensen, N., Swan, S. H., Sapra, K. J., Ziebe, S., Priskorn, L., & Juul, A. (2016). Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. <em>Physiological Reviews</em>, <em>96</em>(1), 55–97. https://doi.org/10.1152/physrev.00017.2015.-It</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Springer, A., van den Heijkant, M., & Baumann, S. (2016). Worldwide prevalence of hypospadias. <em>Journal of Pediatric Urology</em>, <em>12</em>(3), 152.e1-152.e7. https://doi.org/10.1016/j.jpurol.2015.12.002</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Stewart, M. K., Mattiske, D. M., & Pask, A. J. (2018). In utero exposure to both high- and low-dose diethylstilbestrol disrupts mouse genital tubercle development. <em>Biology of Reproduction</em>, <em>99</em>(6), 1184–1193. https://doi.org/10.1093/biolre/ioy142</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Uda, A., Kojima, Y., Hayashi, Y., Mizuno, K., Asai, N., & Kohri, K. (2004). Morphological features of external genitalia in hypospadiac rat model: 3-dimensional analysis. <em>The Journal of Urology</em>, <em>171</em>(3), 1362–1366. https://doi.org/10.1097/01.JU.0000100140.42618.54</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Vilela, M. L. B., Willingham, E., Buckley, J., Liu, B. C., Agras, K., Shiroyanagi, Y., & Baskin, L. S. (2007). Endocrine Disruptors and Hypospadias: Role of Genistein and the Fungicide Vinclozolin. <em>Urology</em>, <em>70</em>(3), 618–621. https://doi.org/10.1016/j.urology.2007.05.004</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yu, X., Nassar, N., Mastroiacovo, P., Canfield, M., Groisman, B., Bermejo-Sánchez, E., Ritvanen, A., Kiuru-Kuhlefelt, S., Benavides, A., Sipek, A., Pierini, A., Bianchi, F., Källén, K., Gatt, M., Morgan, M., Tucker, D., Canessa, M. A., Gajardo, R., Mutchinick, O. M., … Agopian, A. J. (2019). Hypospadias Prevalence and Trends in International Birth Defect Surveillance Systems, 1980–2010. <em>European Urology</em>, <em>76</em>(4), 482–490. https://doi.org/10.1016/j.eururo.2019.06.027</span></span></p>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">This KE is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across mammalian taxa. It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<h4>Key Event Relationship Description</h4>
<p><span style="font-size:11pt"><span style="font-size:12.0pt"><span style="background-color:white"><span style="color:#212529">This key event relationship (KER) links inhibition of 5α-reductase activity to decreased dihydrotestosterone (DHT) levels. </span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">There are three isozymes of 5α-reductase: type 1, 2, and 3.<span style="color:black"> 5α-reductase type 2 is mainly involved in the synthesis of 5α-DHT from testosterone (T) <span style="font-size:11.0pt">(Robitaille & Langlois, 2020)</span>, although 5α-reductase type 1 can also facilitate this reaction, but with lower affinity for T (Nikolaou et al., 2021). The type 1 isoform is also involved in the alternative (‘backdoor’) pathway for DHT formation, facilitating the conversion of progesterone or 17OH-progesterone to dihydroprogesterone or 5α-pregnan-17α-ol-3,20-dione, respectively, whereafter several subsequent reactions will ultimately lead to the formation of DHT <span style="font-size:11.0pt">(Miller & Auchus, 2019)</span>. The quantitative importance of the alternative pathway remains unclear (Alemany, 2022). The type 1 and type 2 isoforms of 5α-reductase are the primary focus of this KER. </span></span></span></p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">The direct conversion of T to 5α-DHT mainly takes place in the target tissue <span style="color:black"><span style="font-size:11.0pt">(Robitaille & Langlois, 2020)</span></span>. In mammals, the type 1 isoform is found in the scalp and other peripheral tissues <span style="color:black"><span style="font-size:11.0pt">(Miller & Auchus, 2011)</span></span>, such as liver, skin, prostate <span style="color:black">(Azzouni et al., 2012)</span>, bone, ovaries, and adipose tissue <span style="color:black">(Nikolaou et al., 2021)</span>. The type 2 isoform is expressed mainly in male reproductive tissues <span style="color:black"><span style="font-size:11.0pt">(Miller & Auchus, 2011)</span></span>, but also in liver, scalp and skin <span style="color:black">(Nikolaou et al., 2021). The expression level of both isoforms depend on the developmental stage and the tissue.</span></span></span></p>
<h4>Evidence Supporting this KER</h4>
<strong>Biological Plausibility</strong>
<p><span style="font-size:11pt"><span style="font-size:12.0pt"><span style="color:black">The biological plausibility of this KER is considered high. </span></span></span></p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt"><span style="color:black">5α-reductase can catalyze the conversion of T to DHT. The substrates for 5α-reductases are 3-oxo (3-keto), Δ<sup>4,5</sup> C19/C21 steroids such as testosterone and progesterone. The enzymatic reaction leads to an irreversible breakage of the double bond between carbon 4 and 5 and subsequent insertion of a hydride anion at carbon 5 and insertion of a proton at carbon 4. The reaction is aided by the cofactor NADPH (Azzouni et al., 2012). By inhibiting this enzyme, the described catalyzed reaction will be inhibited leading to a decrease in DHT levels.</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">In both humans and rodents, DHT is important for the <em>in utero</em> differentiation and growth of the prostate and male external genitalia. Besides its critical role during fetal development, DHT also induces growth of facial and body hair during puberty in humans <span style="color:black">(Azzouni et al., 2012)</span><em>.</em> </span></span></p>
<strong>Empirical Evidence</strong>
<p>The empirical evidence for this KER is considered high</p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">Several inhibitors of 5α-reductases have been developed for pharmacological uses. Inhibition of the enzymatic conversion of radiolabeled substrate has been illustrated (Table 1) and data display dose-concordance, with increasing concentrations of inhibitor leading to lower 5α-reductase product formation. </span><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">These studies at large rely on conversion of radiolabeled substrate and hence serve as an indirect measurement.</span></span></span></p>
<p><span style="font-size:11pt"><em><span style="font-size:12.0pt">Table 1: Dose concordance from selected in vitro test systems</span></em></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt">Cells stably transfected human 5α-reductase type 1 and 2 used to measure conversion of [<sup>14</sup>C]labeled steroids</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt">Cell homogenates from transfected cells with human and rat 5α-reductase (unknown isoform) used to measure conversion of radiolabeled testosterone</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt">Stably transfected with human 5α-reductase type 1 and 2</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt">Human 5α-reductase type 1 and 2 used to measure conversion of radiolabeled substrate of both isoforms</span></span></span></p>
<p> <span style="font-size:11pt"><span style="font-size:12.0pt">These in vitro studies clearly show effects on the enzymatic reaction induced by 5α-reductases in a concentration dependent manner <span style="color:black"><span style="font-size:11.0pt">(Andersson & Russell, 1990; Thigpens et al., 1993; Yamana et al., 2010)</span></span>.</span></span></p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">In the intact organism, when 5α-reductase type 2 activity is lacking through e.g. inhibitor treatment or knockout, this will results in decreased 5α-DHT locally in the tissues, but also in blood <span style="color:black"><span style="font-size:11.0pt">(Robitaille & Langlois, 2020)</span></span>. This has been demonstrated in humans, rats, monkeys, and mice (Robitaille et al. 2020). </span></span></p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">Finasteride is a specific inhibitor of 5α-reductase type 2 <span style="color:black"><span style="font-size:11.0pt">(Russell & Wilson, 1994)</span></span>. Men with androgenic alopecia were treated with increasing concentrations of finasteride and presented with decreased DHT levels in biopsies from scalp, as well as a decrease in serum DHT levels with dose dependency being most apparent in serum, up to about 70% decrease <span style="color:black">(Drake et al., 1999). Likewise, men treated with dutasteride exhibited a clear dose dependent decrease in serum DHT after 24 weeks treatment with a maximum efficacy of about 98% (Clark et al., 2004).</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">The phenotype of males with deficiency in 5α-reductases are typically born with ambiguous external genitalia. They also present with small prostate, minimal facial hair and acne, or temporal hair loss. Comparison of affected individuals to non-affected individuals in regard to T/DHT ratio, conversion of infused radioactive T, and ratios of urinary metabolites of 5α-reductase and 5β-reductase concluded that these phenotypic characteristics were due to 5α-reductase defects that resulted in less conversion of T to DHT (Okeigwe et al. 2014). Mutations in the 5α-reductase gene can result in boys being born with moderate to severe undervirilization phenotypes (Elzenaty 2022).</span></span></p>
<h4>Quantitative Understanding of the Linkage</h4>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">Inhibitors of 5α-reductase are important for the prevention and treatment of many diseases. There are several compounds that have been developed for pharmaceutical purposes and they can target the different isoforms with different affinity. Examples of inhibitors are finasteride and dutasteride. Finasteride mainly has specificity for the type 2 isoform, whereas dutasteride inhibits both type 1 and 2 isoforms <span style="color:black"><span style="font-size:11.0pt">(Miller & Auchus, 2011)</span></span>.</span></span></p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">These differences in isoform specificity reflects in the effects on DHT serum levels, hence the broader specificity of dutasteride leads to > 90% decrease in patients with benign prostatic hyperplasia, in comparison to 70% with finasteride administration <span style="color:black">(Nikolaou et al., 2021)</span>. </span></span></p>
<strong>Response-response relationship</strong>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">Enzyme inhibition can occur in different ways e.g. both competitive and noncompetitive. The inhibition model depends on the specific inhibitor and hence a generic quantitative response-response relationship is difficult to derive.</span></span></p>
<strong>Time-scale</strong>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">An inhibition of 5α-reductases would lead to an immediate change in DHT levels at the molecular level. However, the time-scale for systemic effects on hormone levels are challenging to estimate.</span></span></p>
<strong>Known Feedforward/Feedback loops influencing this KER</strong>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">Androgens can regulate gene expression of 5α-reductases <span style="font-size:11.0pt">(Andersson et al., 1989; Berman & Russell, 1993)</span>. </span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Alemany, M. (2022). The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. In <em>International Journal of Molecular Sciences</em> (Vol. 23, Issue 19). MDPI. https://doi.org/10.3390/ijms231911952</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Andersson, S., Bishop, R. W., & Russell$, D. W. (1989). <em>THE JOURNAL OF BIOLOGICAL CHEMISTRY Expression Cloning and Regulation of Steroid 5cw-Reductase, an Enzyme Essential for Male Sexual Differentiation*</em> (Vol. 264, Issue 27).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Andersson, S., & Russell, D. W. (1990). Structural and biochemical properties of cloned and expressed human and rat steroid 5a-reductases. <em>Proc. Natl. Acad. Sci. USA</em>, <em>87</em>, 3640–3644. https://www.pnas.org</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Azzouni, F., Godoy, A., Li, Y., & Mohler, J. (2012). The 5 alpha-reductase isozyme family: A review of basic biology and their role in human diseases. In <em>Advances in Urology</em>. https://doi.org/10.1155/2012/530121</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Berman, D. M., & Russell, D. W. (1993). Cell-type-specific expression of rat steroid 5a-reductase isozymes (sexual development/androgens/prostate/stroma/epithelium). In <em>Proc. Natl. Acad. Sci. USA</em> (Vol. 90). https://www.pnas.org</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Clark, R. V., Hermann, D. J., Cunningham, G. R., Wilson, T. H., Morrill, B. B., & Hobbs, S. (2004). Marked Suppression of Dihydrotestosterone in Men with Benign Prostatic Hyperplasia by Dutasteride, a Dual 5α-Reductase Inhibitor. <em>Journal of Clinical Endocrinology and Metabolism</em>, <em>89</em>(5), 2179–2184. https://doi.org/10.1210/jc.2003-030330</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Drake, L., Hordinsky, M., Fiedler, V., Swinehart, J., Unger, W. P., Cotterill, P. C., Thiboutot, D. M., Lowe, N., Jacobson, C., Whiting, D., Stieglitz, S., Kraus, S. J., Griffin, E. I., Weiss, D., Carrington, P., Gencheff, C., Cole, G. W., Pariser, D. M., Epstein, E. S., … City, O. (1999). <em>The effects of finasteride on scalp skin and serum androgen levels in men with androgenetic alopecia</em>.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Miller, W. L., & Auchus, R. J. (2011). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. <em>Endocrine Reviews</em>, <em>32</em>(1), 81–151. https://doi.org/10.1210/er.2010-0013</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Miller, W. L., & Auchus, R. J. (2019). The “backdoor pathway” of androgen synthesis in human male sexual development. <em>PLoS Biology</em>, <em>17</em>(4). https://doi.org/10.1371/journal.pbio.3000198</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Nikolaou, N., Hodson, L., & Tomlinson, J. W. (2021). The role of 5-reduction in physiology and metabolic disease: evidence from cellular, pre-clinical and human studies. In <em>Journal of Steroid Biochemistry and Molecular Biology</em> (Vol. 207). Elsevier Ltd. https://doi.org/10.1016/j.jsbmb.2021.105808</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Peng, H. M., Valentin-Goyco, J., Im, S. C., Han, B., Liu, J., Qiao, J., & Auchus, R. J. (2020). Expression in escherichia coli, purification, and functional reconstitution of human steroid 5α-reductases. <em>Endocrinology (United States)</em>, <em>161</em>(8), 1–11. https://doi.org/10.1210/ENDOCR/BQAA117</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Robitaille, J., & Langlois, V. S. (2020). Consequences of steroid-5α-reductase deficiency and inhibition in vertebrates. In <em>General and Comparative Endocrinology</em> (Vol. 290). Academic Press Inc. https://doi.org/10.1016/j.ygcen.2020.113400</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Russell, D. W., & Wilson, J. D. (1994). <em>STEROID Sa-REDUCTASE: TWO GENES/TWO ENZYMES</em>. www.annualreviews.org</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Thigpens, A. E., Cala, K. M., & Russell, D. W. (1993). Characterization of Chinese Hamster Ovary Cell Lines Expressing Human Steroid 5a-Reductase Isozymes. <em>The Journal of Biological Chemistry</em>, <em>268</em>(23), 17404–17412.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yamana, K., Fernand, L., Luu-The, V., & Luu-The, V. (2010). Human type 3 5α-reductase is expressed in peripheral tissues at higher levels than types 1 and 2 and its activity is potently inhibited by finasteride and dutasteride. <em>Hormone Molecular Biology and Clinical Investigation</em>, <em>2</em>(3), 293–299. https://doi.org/10.1515/HMBCI.2010.035</span></span></p>
</div>
<div>
<h4><a href="/relationships/1935">Relationship: 1935: Decrease, DHT level leads to Decrease, AR activation</a></h4>
<td><a href="/aops/288">Inhibition of 17α-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to birth reproductive defects (cryptorchidism) in male (mammals)</a></td>
<td>adjacent</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td><a href="/aops/305">5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring</a></td>
<td>adjacent</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td><a href="/aops/571">5α-reductase inhibition leading to hypospadias in male (mammalian) offspring</a></td>
<td>adjacent</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td><a href="/aops/576">5α-reductase inhibition leading to increased nipple retention (NR) in male (rodent) offspring</a></td>
<td>adjacent</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>
</div>
<h4>Evidence Supporting Applicability of this Relationship</h4>
<p><span style="font-size:11pt">KER1935 is assessed applicable to mammals, as DHT and AR activation are known to be related in mammals. <span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<p><span style="font-size:11pt">KER1935 is considered applicable to developmental and adult life stages, as DHT-mediated AR activation is relevant from the AR is expressed.</span></p>
<h4>Key Event Relationship Description</h4>
<p><span style="font-size:11.0pt">Dihydrotestosterone (DHT) is a primary ligand for the Androgen receptor (AR), a nuclear receptor and transcription factor. DHT is an endogenous sex hormone that is synthesized from e.g. testosterone by the enzyme 5α-reductase in different tissues and organs </span><span style="font-size:11.0pt">(<a href="#_ENREF_1" title="Davey, 2016 #250">Davey & Grossmann, 2016</a>; <a href="#_ENREF_3" title="Marks, 2004 #283">Marks, 2004</a>)</span><span style="font-size:11.0pt">. In the absence of ligand (e.g. DHT) the AR is localized in the cytoplasm in complex with molecular chaperones. Upon ligand binding, AR is activated, translocated into the nucleus, and dimerizes to carry out its ‘genomic function’ </span><span style="font-size:11.0pt">(<a href="#_ENREF_1" title="Davey, 2016 #250">Davey & Grossmann, 2016</a>)</span><span style="font-size:11.0pt">. Hence, AR transcriptional function is directly dependent on the presence of ligands, with DHT being a more potent AR activator than testosterone (<a href="#_ENREF_2" title="Grino, 1990 #284">Grino et al, 1990</a>). Reduced levels of DHT may thus lead to reduced AR activation. Besides its genomic actions, the AR can also mediate rapid, non-genomic second messenger signaling (Davey and Grossmann, 2016). Decreased DHT levels that lead to reduced AR activation can thus entail downstream effects on both genomic and non-genomic signaling. </span></p>
<h4>Evidence Supporting this KER</h4>
<strong>Biological Plausibility</strong>
<p><span style="font-size:11pt">The biological plausibility of KER1935 is considered high.</span></p>
<p><span style="font-size:11pt">The activation of AR is dependent on binding of ligands (though a few cases of ligand-independent AR activation has been shown, see <em>uncertainties and inconsistencies</em>), primarily testosterone and DHT in mammals (Davey and Grossmann, 2016; Schuppe et al., 2020). Without ligand activation, the AR will remain in the cytoplasm associated with heat-shock and other chaperones and not be able to carry out its canonical (‘genomic’) function. Upon androgen binding, the AR undergoes a conformational change, chaperones dissociate, and a nuclear localization signal is exposed. The androgen/AR complex can now translocate to the nucleus, dimerize and bind AR response elements to regulate target gene expression (Davey and Grossmann, 2016; Eder et al., 2001). <span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">AR transcriptional activity and specificity is regulated by co-activators and co-repressors in a cell-specific manner </span><span style="font-family:"Verdana",sans-serif">(Heinlein and Chang, 2002)</span><span style="font-family:"Verdana",sans-serif">.</span></span></span></p>
<p><span style="font-size:11pt">The requirement for androgens binding to the AR for transcriptional activity has been extensively studied and proven and is generally considered textbook knowledge. The OECD test guideline no. 458 uses DHT as the reference chemical for testing androgen receptor activation <em>in vitro</em> (OECD, 2020). In the absence of DHT during development caused by 5α-reductase deficiency (i.e. still in the presence of testosterone) male fetuses fail to masculinize properly. This is evidenced by, for instance, individuals with congenital 5α-reductase deficiency conditions (Costa et al., 2012); conditions not limited to humans (Robitaille and Langlois, 2020), testifying to the importance of specifically DHT for AR activation and subsequent masculinization of certain reproductive tissues. </span></p>
<p><span style="font-size:11pt">Binding of testosterone or DHT has differential effects in different tissues. E.g. in the developing mammalian male; testosterone is required for development of the internal sex organs (epididymis, vas deferens and the seminal vesicles), whereas DHT is crucial for development of the external sex organs (Keller et al., 1996; Robitaille and Langlois, 2020). </span></p>
<strong>Empirical Evidence</strong>
<p><span style="font-size:11pt">The empirical support for KER1935 is considered high.</span></p>
<li><span style="font-size:11pt">Increasing concentrations of DHT lead to increasing AR activation <em>in vitro</em> in AR reporter gene assays (OECD, 2020; Williams et al., 2017).</span></li>
</ul>
<p>Indirect (supporting) evidence:</p>
<ul>
<li><span style="font-size:11pt">In cell lines where proliferation can be induced by androgens (such as prostate cancer cells) proliferation can be used as a readout for AR-activation. Finasteride, a 5α-reductase inhibitor, dose-dependently decreases AR-mediated prostate cancer cell line proliferation (Bologna et al., 1995). 0.001 µM finasteride decreased the growth rate with 44%, 0.1 µM decreased the growth rate with 80%. </span></li>
<li><span style="font-size:11pt">Specific events of masculinization during development are dependent on AR activation by DHT, including the development and length of the perineum which can be measured as the anogenital distance (AGD, (Schwartz et al., 2019)). E.g. a dose-dependent effect of rat <em>in utero</em> exposure to the 5α-reductase inhibitor finasteride was observed on the length of the AGD, where 0.01 mg/kg bw/day finasteride reduced the AGD measured at pup day 1 by 8%, whereas 1 mg/kg bw/day reduced the AGD by 23% (Bowman et al., 2003).</span></li>
<li><span style="font-size:11pt">Male individuals with congenital 5α-reductase deficiency (absence of DHT) fail to masculinize properly (Costa et al., 2012). </span></li>
<li><span style="font-size:11pt">A major driver of prostate cancer growth is AR activation (Davey and Grossmann, 2016; Huggins and Hodges, 1941). Androgen deprivation is used as treatment including 5α-reductase inhibitors to reduce DHT levels (Aggarwal et al., 2010).</span></li>
</ul>
<strong>Uncertainties and Inconsistencies</strong>
<p><span style="font-size:11pt">Ligand-independent actions of the AR have been identified. To what extent and of which biological consequences is not well defined (Bennesch and Picard, 2015). </span></p>
<p><span style="font-size:11pt">It should be noted, that in tissues, that are not DHT-dependent but rather respond to T, a decrease in DHT level may not influence AR activation significantly in that specific tissue. </span></p>
<h4>Quantitative Understanding of the Linkage</h4>
<strong>Response-response relationship</strong>
<p style="text-align:justify"><span style="font-size:11pt">There is a positive dose-response relationship between increasing concentrations of DHT and AR activation (Dalton et al., 1998; OECD, 2020). However, there is not enough data, or overview of the data, to define a quantitative linkage <em>in vivo</em>, and such a relationship will differ between biological systems (species, tissue, cell type).</span></p>
<strong>Time-scale</strong>
<p><span style="font-size:11pt">Upon DHT binding to the AR, a conformational change that brings the amino (N) and carboxy (C) termini into close proximity occurs with a t<sub>1/2</sub> of approximately 3.5 minutes, around 6 minutes later the AR dimerizes as shown in transfected HeLa cells (Schaufele et al., 2005). Addition of 5 nM DHT to the culture medium of ‘AR-resistant’ transfected prostatic cancer cells resulted in a rapid (from 15 minutes, maximal at 30 minutes) nuclear translocation of the AR with minimal residual cytosolic expression (Nightingale et al., 2003). AR and promoter interactions occur within 15 minutes of ligand binding, and RNA polymerase II and coactivator recruitment are then proposed to occur transiently with cycles of approximately 90 minutes (Kang et al., 2002).</span></p>
<td><span style="font-size:11.0pt">AR expression changes with aging</span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Tissue-specific alterations in AR activity with aging</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Supakar et al., 1993; Wu et al., 2009)</span></span></span></td>
</tr>
<tr>
<td>Genotype</td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Number of CAG repeats in the first exon of AR</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Decreased AR activation with increased number of CAGs</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Chamberlain et al., 1994; Tut et al., 1997)</span></span></td>
</tr>
<tr>
<td>Androgen deficiency syndrome</td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Low circulating testosterone levels due to primary (testicular) or secondary (pituitary-hypothalamic) hypogonadism</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Reduced levels of circulating testosterone, precurser of DHT</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Bhasin et al., 2010)</span></span></span></td>
</tr>
<tr>
<td>Castration</td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Removal of testicles</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Reduced levels of circulating testosterone, precurser of DHT</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Krotkiewski et al., 1980)</span></span></span></td>
</tr>
</tbody>
</table>
</div>
<strong>Known Feedforward/Feedback loops influencing this KER</strong>
<p><span style="font-size:11pt">Androgens have been shown to upregulate and downregulate AR expression as well as 5α-reductase expression, but for 5α-reductase, each isoform in each tissue is differently regulated by androgens and can display sexual dimorphism (Lee and Chang, 2003; Robitaille and Langlois, 2020). <span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">The quantitative impact of such adaptive expression changes is unknown.</span></span></span></p>
<h4>References</h4>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Aggarwal, S., Thareja, S., Verma, A., Bhardwaj, T.R., Kumar, M., 2010. An overview on 5α-reductase inhibitors. Steroids 75, 109–153. https://doi.org/10.1016/j.steroids.2009.10.005</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Bennesch, M.A., Picard, D., 2015. Minireview: Tipping the Balance: Ligand-Independent Activation of Steroid Receptors. Mol. Endocrinol. 29, 349–363. https://doi.org/10.1210/ME.2014-1315</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Bhasin, S., Cunningham, G.R., Hayes, F.J., Matsumoto, A.M., Snyder, P.J., Swerdloff, R.S., Montori, V.M., 2010. Testosterone Therapy in Men with Androgen Deficiency Syndromes: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 95, 2536–2559. https://doi.org/10.1210/JC.2009-2354</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Bologna, M., Muzi, P., Biordi, L., Festuccia, C., Vicentini, C., 1995. Finasteride dose-dependently reduces the proliferation rate of the LnCap human prostatic cancer cell line in vitro. Urology 45, 282–290. https://doi.org/10.1016/0090-4295(95)80019-0</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Bowman, C.J., Barlow, N.J., Turner, K.J., Wallace, D.G., Foster, P.M.D., 2003. Effects of in Utero Exposure to Finasteride on Androgen-Dependent Reproductive Development in the Male Rat. Toxicol. Sci. 74, 393–406. https://doi.org/10.1093/TOXSCI/KFG128</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Chamberlain, N.L., Driver, E.D., Miesfeld, R.L., 1994. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 22, 3181. https://doi.org/10.1093/NAR/22.15.3181</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Costa, E.F., Domenice, S., Sircili, M., Inacio, M., Mendonca, B., 2012. DSD due to 5α-reductase 2 deficiency - From diagnosis to long term outcome. Semin. Reprod. Med. 30, 427–431. https://doi.org/10.1055/S-0032-1324727/ID/JR00766-20/BIB</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Davey, R.A., Grossmann, M., 2016. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin. Biochem. Rev. 37, 3–15.</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Eder, I.E., Culig, Z., Putz, T., Nessler-Menardi, C., Bartsch, G., Klocker, H., 2001. Molecular Biology of the Androgen Receptor: From Molecular Understanding to the Clinic. Eur. Urol. 40, 241–251. https://doi.org/10.1159/000049782</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Grino, P.B., Griffin, J.E., Wilson, J.D., 1990. Testosterone at High Concentrations Interacts with the Human Androgen Receptor Similarly to Dihydrotestosterone. Endocrinology 126, 1165–1172. https://doi.org/10.1210/endo-126-2-1165</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Huggins, C., Hodges, C. V., 1941. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1, 293–297.</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kang, Z., Pirskanen, A., Jänne, O.A., Palvimo, J.J., 2002. Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex. J. Biol. Chem. 277, 48366–48371. https://doi.org/10.1074/jbc.M209074200</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Keller, E.T., Ershler, W.B., Chang, C., 1996. The androgen receptor: a mediator of diverse responses. Front. Biosci. (Landmark Ed) 1, 59–71. https://doi.org/10.2741/A116</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Krotkiewski, M., Kral, J.G., Karlsson, J., 1980. Effects of castration and testosterone substitution on body composition and muscle metabolism in rats. Acta Physiol. Scand. 109, 233–237. https://doi.org/10.1111/J.1748-1716.1980.TB06592.X</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Lee, D.K., Chang, C., 2003. Expression and Degradation of Androgen Receptor: Mechanism and Clinical Implication. J. Clin. Endocrinol. Metab. 88, 4043–4054. https://doi.org/10.1210/JC.2003-030261</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Marks, L.S., 2004. 5Alpha-Reductase: History and Clinical Importance. Rev. Urol. 6 Suppl 9, S11-21.</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Nightingale, J., Chaudhary, K.S., Abel, P.D., Stubbs, A.P., Romanska, H.M., Mitchell, S.E., Stamp, G.W.H., Lalani, E.N., 2003. Ligand Activation of the Androgen Receptor Downregulates E-Cadherin-Mediated Cell Adhesion and Promotes Apoptosis of Prostatic Cancer Cells. Neoplasia 5, 347. https://doi.org/10.1016/S1476-5586(03)80028-3</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD, 2020. Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals, OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264264366-en</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Robitaille, J., Langlois, V.S., 2020. Consequences of steroid-5α-reductase deficiency and inhibition in vertebrates. Gen. Comp. Endocrinol. 290. https://doi.org/10.1016/j.ygcen.2020.113400</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schaufele, F., Carbonell, X., Guerbadot, M., Borngraeber, S., Chapman, M.S., Ma, A.A.K., Miner, J.N., Diamond, M.I., 2005. The structural basis of androgen receptor activation: Intramolecular and intermolecular amino-carboxy interactions. Proc. Natl. Acad. Sci. U. S. A. 102, 9802–9807. https://doi.org/10.1073/pnas.0408819102</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schuppe, E.R., Miles, M.C., Fuxjager, M.J., 2020. Evolution of the androgen receptor: Perspectives from human health to dancing birds. Mol. Cell. Endocrinol. 499, 110577. https://doi.org/10.1016/J.MCE.2019.110577</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schwartz, C.L., Christiansen, S., Vinggaard, A.M., Axelstad, M., Hass, U., Svingen, T., 2019. Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch. Toxicol. 93, 253–272. https://doi.org/10.1007/s00204-018-2350-5</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Supakar, P.C., Song, C.S., Jung, M.H., Slomczynska, M.A., Kim, J.M., Vellanoweth, R.L., Chatterjee, B., Roy, A.K., 1993. A novel regulatory element associated with age-dependent expression of the rat androgen receptor gene. J. Biol. Chem. 268, 26400–26408. https://doi.org/10.1016/S0021-9258(19)74328-2</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Tut, T.G., Ghadessy, F.J., Trifiro, M.A., Pinsky, L., Yong, E.L., 1997. Long Polyglutamine Tracts in the Androgen Receptor Are Associated with Reduced Trans-Activation, Impaired Sperm Production, and Male Infertility. J. Clin. Endocrinol. Metab. 82, 3777–3782. https://doi.org/10.1210/JCEM.82.11.4385</span></span></p>
<p style="margin-left:32px"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Williams, A.J., Grulke, C.M., Edwards, J., McEachran, A.D., Mansouri, K., Baker, N.C., Patlewicz, G., Shah, I., Wambaugh, J.F., Judson, R.S., Richard, A.M., 2017. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J. Cheminform. 9, 61. https://doi.org/10.1186/s13321-017-0247-6</span></span></p>
<p style="margin-left:32px"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Wu, D., Lin, G., Gore, A.C., 2009. Age-related Changes in Hypothalamic Androgen Receptor and Estrogen Receptor </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">α</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"> in Male Rats. J. Comp. </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Neurol. 512, 688. https://doi.org/10.1002/CNE.21925</span></span></p>
</div>
<div>
<h4><a href="/relationships/2124">Relationship: 2124: Decrease, AR activation leads to Altered, Transcription of genes by the AR</a></h4>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">This KER is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across mammalian taxa. It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<h4>Key Event Relationship Description</h4>
<p style="text-align:justify"><span style="font-size:12pt">The androgen receptor (AR) is a ligand-dependent nuclear transcription factor that upon activation translocates to the nucleus, dimerizes, and binds androgen response elements (AREs) to modulate transcription of target genes <span style="color:black">(Lamont and Tindall, 2010, Roy et al. 2001)</span>. Decreased activation of the AR affects its transcription factor activity, therefore leading to altered AR-target gene expression. This KER refers to decreased AR activation and altered gene expression occurring in complex systems, such as <em>in vivo</em> and the specific effect on transcription of AR target genes will depend on species, life stage, tissue, cell type etc. </span></p>
<h4>Evidence Supporting this KER</h4>
<strong>Biological Plausibility</strong>
<p style="text-align:justify"><span style="font-size:12pt">The biological plausibility for this KER is considered high</span></p>
<p style="text-align:justify"><span style="font-size:12pt">The AR is a ligand-activated transcription factor part of the steroid hormone nuclear receptor family. Non-activated AR is found in the cytoplasm as a multiprotein complex with heat-shock proteins, immunophilins and, other chaperones <span style="color:black">(Roy et al. 2001)</span>. Upon activation through ligand binding, the AR dissociates from the protein complex, translocates to the nucleus and homodimerizes. Facilitated by co-regulators, AR can bind to DNA regions containing AREs and initiate transcription of target genes, that thus will be different in e.g. different tissues, life-stages, species etc. </span></p>
<p style="text-align:justify"><span style="font-size:12pt">Through mapping of AREs and ChIP sequencing studies, several AR target genes have been identified, mainly studied in prostate cells <span style="color:black">(Jin, Kim, and Yu 2013)</span>. Different co-regulators and ligands lead to altered expression of different sets of genes <span style="color:black">(Jin et al. 2013; Kanno et al. 2022)</span>. Alternative splicing of the AR can lead to different AR variants that also affects which genes are transcribed <span style="color:black">(Jin et al. 2013)</span>.</span></p>
<p style="text-align:justify"><span style="font-size:12pt">Apart from this canonical signaling pathway, the AR can suppress gene expression, indirectly regulate miRNA transcription, and have non-genomic effects by rapid activation of second messenger pathways in either presence or absence of a ligand <span style="color:black">(Jin et al. 2013)</span>.</span></p>
<strong>Empirical Evidence</strong>
<p style="text-align:justify"><span style="font-size:12pt">The empirical evidence for this KER is considered high</span></p>
<p style="text-align:justify"><span style="font-size:12pt">In humans, altered gene expression profiling in individuals with androgen insensitivity syndrome (AIS) can provide supporting empirical evidence <span style="color:black">(Holterhus et al. 2003; Peng et al. 2021)</span>. In rodent AR knockout (KO) models, gene expression profiling studies and gene-targeted approaches have provided information on differentially expressed genes in several organ systems including male and female reproductive, endocrine, muscular, cardiovascular and nervous systems <span style="color:black">(Denolet et al. 2006; Fan et al. 2005; Holterhus et al. 2003; Ikeda et al. 2005; Karlsson et al. 2016; MacLean et al. 2008; Rana et al. 2011; Russell et al. 2012; Shiina et al. 2006; Wang et al. 2006; Welsh et al. 2012; Willems et al. 2010; Yu et al. 2008, 2012; Zhang et al. 2006; Zhou et al. 2011)</span>.</span></p>
<p style="text-align:justify"><span style="font-size:12pt">Exposure to known antiandrogens has been shown to alter transcriptional profiles, for example of neonatal pig ovaries <span style="color:black">(Knapczyk-Stwora et al. 2019)</span>. </span></p>
<p style="text-align:justify"><span style="font-size:12pt">Dose concordance has also been observed for instance in zebrafish embryos; a dose of 50 µg/L of the AR antagonist flutamide resulted in 674 differentially expressed genes at 96 h post fertilization whereas 500 µg/L flutamide resulted in 2871 differentially expressed genes (Ayobahan et al., 2023). </span></p>
<strong>Uncertainties and Inconsistencies</strong>
<p style="text-align:justify"><span style="font-size:12pt">AR action has been reported to occur also without ligand binding. However, not much is known about the extent and biological implications of such non-canonical, ligand-independent AR activation <span style="color:black">(Bennesch and Picard 2015)</span>.</span></p>
<h4>Quantitative Understanding of the Linkage</h4>
<strong>Response-response relationship</strong>
<p style="text-align:justify"><span style="font-size:12pt">There is not enough data to define a quantitative relationship between AR activation and alteration of AR target gene transcription, and such a relationship will differ between biological systems (species, tissue, cell type, life stage etc).</span></p>
<strong>Time-scale</strong>
<p style="text-align:justify"><span style="font-size:12pt">AR and promoter interactions occur within 15 minutes of ligand binding, RNA polymerase II and coactivator recruitment are proposed to occur transiently with cycles of approximately 90 minutes in LNCaP cells <span style="color:black">(Kang et al. 2002)</span>. RNA polymerase II elongation rates in mammalian cells have been shown to range between 1.3 and 4.3 kb/min <span style="color:black">(Maiuri et al. 2011)</span>. Therefore, depending on the cell type and the half-life of the AR target gene transcripts, changes are to be expected within hours. </span></p>
<td><span style="font-size:12.0pt"><span style="font-family:"Calibri",sans-serif">AR expression in aging male rats</span></span></td>
<td><span style="font-size:12.0pt"><span style="font-family:"Calibri",sans-serif">Tissue-specific alterations in AR activity with aging</span></span></td>
<td><span style="font-size:12.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Supakar et al. 1993; Wu, Lin, and Gore 2009)</span></span></span></td>
</tr>
<tr>
<td>Genotype</td>
<td><span style="font-size:12.0pt"><span style="font-family:"Calibri",sans-serif">Number of CAG repeats in the first exon of AR</span></span></td>
<td><span style="font-size:12.0pt"><span style="font-family:"Calibri",sans-serif">Decreased AR activation with increased number of CAGs</span></span></td>
<td>
<p style="text-align:center"><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">(Tut et al. 1997; Chamberlain et al. 1994)</span></span></span></p>
</td>
</tr>
</tbody>
</table>
</div>
<strong>Known Feedforward/Feedback loops influencing this KER</strong>
<p style="text-align:justify"><span style="font-size:12pt">AR has been hypothesized to auto-regulate its mRNA and protein levels <span style="color:black">(Mora and Mahesh 1999)</span>.</span></p>
<h4>References</h4>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Ayobahan, S. U., Alvincz, J., Reinwald, H., Strompen, J., Salinas, G., Schäfers, C., et al. (2023). Comprehensive identification of gene expression fingerprints and biomarkers of sexual endocrine disruption in zebrafish embryo. Ecotoxicol. Environ. Saf. 250, 114514. doi:10.1016/J.ECOENV.2023.114514.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Bennesch, Marcela A., and Didier Picard. 2015. “Minireview: Tipping the Balance: Ligand-Independent Activation of Steroid Receptors.” <em>Molecular Endocrinology</em> 29(3):349–63.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Chamberlain, Nancy L., Erika D. Driverand, and Roger L. Miesfeldi. 1994. <em>The Length and Location of CAG Trinucleotide Repeats in the Androgen Receptor N-Terminal Domain Affect Transactivation Function</em>. Vol. 22.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Denolet, Evi, Karel De Gendt, Joke Allemeersch, Kristof Engelen, Kathleen Marchal, Paul Van Hummelen, Karen A. L. Tan, Richard M. Sharpe, Philippa T. K. Saunders, Johannes V. Swinnen, and Guido Verhoeven. 2006. “The Effect of a Sertoli Cell-Selective Knockout of the Androgen Receptor on Testicular Gene Expression in Prepubertal Mice.” <em>Molecular Endocrinology</em> 20(2):321–34. doi: 10.1210/me.2005-0113.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Fan, Wuqiang, Toshihiko Yanase, Masatoshi Nomura, Taijiro Okabe, Kiminobu Goto, Takashi Sato, Hirotaka Kawano, Shigeaki Kato, and Hajime Nawata. 2005. <em>Androgen Receptor Null Male Mice Develop Late-Onset Obesity Caused by Decreased Energy Expenditure and Lipolytic Activity but Show Normal Insulin Sensitivity With High Adiponectin Secretion</em>. Vol. 54.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Holterhus, Paul-Martin, Olaf Hiort, Janos Demeter, Patrick O. Brown, and James D. Brooks. 2003. <em>Differential Gene-Expression Patterns in Genital Fibroblasts of Normal Males and 46,XY Females with Androgen Insensitivity Syndrome: Evidence for Early Programming Involving the Androgen Receptor</em>. Vol. 4.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Jin, Hong Jian, Jung Kim, and Jindan Yu. 2013. “Androgen Receptor Genomic Regulation.” <em>Translational Andrology and Urology</em> 2(3):158–77.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Kang, Zhigang, Asta Pirskanen, Olli A. Jänne, and Jorma J. Palvimo. 2002. “Involvement of Proteasome in the Dynamic Assembly of the Androgen Receptor Transcription Complex.” <em>Journal of Biological Chemistry</em> 277(50):48366–71. doi: 10.1074/jbc.M209074200.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Kanno, Yuichiro, Nao Saito, Ryota Saito, Tomohiro Kosuge, Ryota Shizu, Tomofumi Yatsu, Takuomi Hosaka, Kiyomitsu Nemoto, Keisuke Kato, and Kouichi Yoshinari. 2022. “Differential DNA-Binding and Cofactor Recruitment Are Possible Determinants of the Synthetic Steroid YK11-Dependent Gene Expression by Androgen Receptor in Breast Cancer MDA-MB 453 Cells.” <em>Experimental Cell Research</em> 419(2). doi: 10.1016/j.yexcr.2022.113333.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Karlsson, Sara A., Erik Studer, Petronella Kettunen, and Lars Westberg. 2016. “Neural Androgen Receptors Modulate Gene Expression and Social Recognition but Not Social Investigation.” <em>Frontiers in Behavioral Neuroscience</em> 10(MAR). doi: 10.3389/fnbeh.2016.00041.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Knapczyk-Stwora, Katarzyna, Anna Nynca, Renata E. Ciereszko, Lukasz Paukszto, Jan P. Jastrzebski, Elzbieta Czaja, Patrycja Witek, Marek Koziorowski, and Maria Slomczynska. 2019. “Flutamide-Induced Alterations in Transcriptional Profiling of Neonatal Porcine Ovaries.” <em>Journal of Animal Science and Biotechnology</em> 10(1):1–15. doi: 10.1186/s40104-019-0340-y.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Lamont, K. R., and Tindall, D. J. (2010). Androgen Regulation of Gene Expression. Adv. Cancer Res. 107, 137–162. doi:10.1016/S0065-230X(10)07005-3.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">MacLean, Helen E., W. S. Maria Chiu, Amanda J. Notini, Anna-Maree Axell, Rachel A. Davey, Julie F. McManus, Cathy Ma, David R. Plant, Gordon S. Lynch, and Jeffrey D. Zajac. 2008. “ Impaired Skeletal Muscle Development and Function in Male, but Not Female, Genomic Androgen Receptor Knockout Mice .” <em>The FASEB Journal</em> 22(8):2676–89. doi: 10.1096/fj.08-105726.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Maiuri, Paolo, Anna Knezevich, Alex De Marco, Davide Mazza, Anna Kula, Jim G. McNally, and Alessandro Marcello. 2011. “Fast Transcription Rates of RNA Polymerase II in Human Cells.” <em>EMBO Reports</em> 12(12):1280–85. doi: 10.1038/embor.2011.196.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Mora, Gloria R., and Virendra B. Mahesh. 1999. <em>Autoregulation of the Androgen Receptor at the Translational Level: Testosterone Induces Accumulation of Androgen Receptor MRNA in the Rat Ventral Prostate Polyribosomes</em>.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Peng, Yajie, Hui Zhu, Bing Han, Yue Xu, Xuemeng Liu, Huaidong Song, and Jie Qiao. 2021. “Identification of Potential Genes in Pathogenesis and Diagnostic Value Analysis of Partial Androgen Insensitivity Syndrome Using Bioinformatics Analysis.” <em>Frontiers in Endocrinology</em> 12. doi: 10.3389/fendo.2021.731107.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Rana, Kesha, Barbara C. Fam, Michele V Clarke, Tammy P. S. Pang, Jeffrey D. Zajac, and Helen E. Maclean. 2011. “Increased Adiposity in DNA Binding-Dependent Androgen Receptor Knockout Male Mice Associated with Decreased Voluntary Activity and Not Insulin Resistance.” <em>Am J Physiol Endocrinol Me-Tab</em> 301:767–78. doi: 10.1152/ajpendo.00584.2010.-In.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Roy, Arun K., Rakesh K. Tyagi, Chung S. Song, Yan Lavrovsky, Soon C. Ahn, Tae Sung Oh, and Bandana Chatterjee. 2001. “Androgen Receptor: Structural Domains and Functional Dynamics after Ligand-Receptor Interaction.” Pp. 44–57 in <em>Annals of the New York Academy of Sciences</em>. Vol. 949. New York Academy of Sciences.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Russell, Patricia K., Michele V. Clarke, Jarrod P. Skinner, Tammy P. S. Pang, Jeffrey D. Zajac, and Rachel A. Davey. 2012. “Identification of Gene Pathways Altered by Deletion of the Androgen Receptor Specifically in Mineralizing Osteoblasts and Osteocytes in Mice.” <em>Journal of Molecular Endocrinology</em> 49(1):1–10. doi: 10.1530/JME-12-0014.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Shiina, Hiroko, Takahiro Matsumoto, Takashi Sato, Katsuhide Igarashi, Junko Miyamoto, Sayuri Takemasa, Matomo Sakari, Ichiro Takada, Takashi Nakamura, Daniel Metzger, Pierre Chambon, Jun Kanno, Hiroyuki Yoshikawa, and Shigeaki Kato. 2006. <em>Premature Ovarian Failure in Androgen Receptor-Deficient Mice</em>. Vol. 103.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Supakar, P. C., C. S. Song, M. H. Jung, M. A. Slomczynska, J. M. Kim, R. L. Vellanoweth, B. Chatterjee, and A. K. Roy. 1993. “A Novel Regulatory Element Associated with Age-Dependent Expression of the Rat Androgen Receptor Gene.” <em>Journal of Biological Chemistry</em> 268(35):26400–408. doi: 10.1016/s0021-9258(19)74328-2.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Tut, Thein G., Farid J. Ghadessy, M. A. Trifiro, L. Pinsky, and E. L. Yong. 1997. <em>Long Polyglutamine Tracts in the Androgen Receptor Are Associated with Reduced Trans-Activation, Impaired Sperm Production, and Male Infertility*</em>. Vol. 82.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Wang, Ruey Sheng, Shuyuan Yeh, Lu Min Chen, Hung Yun Lin, Caixia Zhang, Jing Ni, Cheng Chia Wu, P. Anthony Di Sant’Agnese, Karen L. DeMesy-Bentley, Chii Ruey Tzeng, and Chawnshang Chang. 2006. “Androgen Receptor in Sertoli Cell Is Essential for Germ Cell Nursery and Junctional Complex Formation in Mouse Testes.” <em>Endocrinology</em> 147(12):5624–33. doi: 10.1210/en.2006-0138.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Welsh, M., L. Moffat, K. Belling, L. R. de França, T. M. Segatelli, P. T. K. Saunders, R. M. Sharpe, and L. B. Smith. 2012. “Androgen Receptor Signalling in Peritubular Myoid Cells Is Essential for Normal Differentiation and Function of Adult Leydig Cells.” <em>International Journal of Andrology</em> 35(1):25–40. doi: 10.1111/j.1365-2605.2011.01150.x.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Willems, Ariane, Sergio R. Batlouni, Arantza Esnal, Johannes V. Swinnen, Philippa T. K. Saunders, Richard M. Sharpe, Luiz R. França, Karel de Gendt, and Guido Verhoeven. 2010. “Selective Ablation of the Androgen Receptor in Mouse Sertoli Cells Affects Sertoli Cell Maturation, Barrier Formation and Cytoskeletal Development.” <em>PLoS ONE</em> 5(11). doi: 10.1371/journal.pone.0014168.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Wu, D. I., Grace Lin, and Andrea C. Gore. 2009. “Age-Related Changes in Hypothalamic Androgen Receptor and Estrogen Receptor in Male Rats.” <em>The Journal of Comparative Neurology</em> 512:688–701. doi: 10.1002/cne.21925.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Yu, I. Chen, Hung Yun Lin, Ning Chun Liu, Ruey Shen Wang, Janet D. Sparks, Shuyuan Yeh, and Chawnshang Chang. 2008. “Hyperleptinemia without Obesity in Male Mice Lacking Androgen Receptor in Adipose Tissue.” <em>Endocrinology</em> 149(5):2361–68. doi: 10.1210/en.2007-0516.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Yu, Shengqiang, Chiuan Ren Yeh, Yuanjie Niu, Hong Chiang Chang, Yu Chieh Tsai, Harold L. Moses, Chih Rong Shyr, Chawnshang Chang, and Shuyuan Yeh. 2012. “Altered Prostate Epithelial Development in Mice Lacking the Androgen Receptor in Stromal Fibroblasts.” <em>Prostate</em> 72(4):437–49. doi: 10.1002/pros.21445.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Zhang, Caixia, Shuyuan Yeh, Yen-Ta Chen, Cheng-Chia Wu, Kuang-Hsiang Chuang, Hung-Yun Lin, Ruey-Sheng Wang, Yu-Jia Chang, Chamindrani Mendis-Handagama, Liquan Hu, Henry Lardy, Chawnshang Chang, and † † George. 2006. <em>Oligozoospermia with Normal Fertility in Male Mice Lacking the Androgen Receptor in Testis Peritubular Myoid Cells</em>.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Zhou, Wei, Gensheng Wang, Christopher L. Small, Zhilin Liu, Connie C. Weng, Lizhong Yang, Michael D. Griswold, and Marvin L. Meistrich. 2011. “Erratum: Gene Expression Alterations by Conditional Knockout of Androgen Receptor in Adult Sertoli Cells of Utp14bjsd/Jsd (Jsd) Mice (Biology of Reproduction (2010) 83, (759-766) DOI: 10.1095/Biolreprod.110.085472).” <em>Biology of Reproduction</em> 84(2):400–408.</span></span></p>
</div>
<h3>List of Non Adjacent Key Event Relationships</h3>
<div>
<h4><a href="/relationships/2828">Relationship: 2828: Decrease, AR activation leads to Hypospadias</a></h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In mammals, androgens are one of the primary drivers of penis differentiation. Hypospadias has been observed in several mammals, but most frequently reported in laboratory rodents and in humans (Chang et al., 2020; S. Wang & Zheng, 2025). <em>In vivo</em> studies in rats and mice show that <em>in utero </em>exposure to anti-androgenic chemicals can cause hypospadias in male offspring (see table 3). Many human case studies report boys born with hypospadias and associated deficiency in steroid hormone synthesis, 5α-reductase activity, or androgen receptor (AR) activity (see table 4). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The biologically plausible domain of applicability may extend beyond the empirical domain because androgen-controlled development of male external genitalia is evolutionary conserved in most mammals and, to some extent, also in other vertebrate classes (Gredler et al., 2014). Hypospadias can in principle occur in all animals that form a genital tubercle and have been observed in many domestic animal species including dog (Sonne et al., 2008; Switonski et al., 2018), cat (Nowacka-Woszuk et al., 2014), cattle (Murakami, 2008), sheep (Smith et al., 2012), and horse (De Lorenzi et al., 2010) as well as in wildlife species such as polar bear (Stamper et al., 1999), giraffe (Meuffels et al., 2020), and Tamar Wallaby (Leihy et al., 2011). The observed hypospadias in these animals is not, per se, linked to anti-androgenic exposure, which has only been sparsely investigated in other species than mice, rats, and humans. One study in monkeys did show hypospadias upon oral exposure to finasteride (Prahalada et al., 1997), and bicalutamide exposure induced hypospadias in guinea pigs (S. Wang et al., 2018). A study in rabbits exposed to procymidone did not find hypospadias in males (Inawaka et al., 2010). Another study in hyenas did also not find hypospadias in males after exposure to the anti-androgen finasteride (Drea et al., 1998), but it should be noted that the hyenas have a remarkable sexual development where penile growth occur in both females and males before androgen synthesis is initiated (Cunha et al., 2014) (the studies in hyena and rabbit were identified in our evidence collection but were judged as ‘unreliable’ and therefore not included as empirical evidence).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The androgen receptor is expressed in the fetal genital tubercle of both females and males (Amato & Yao, 2021; Baskin et al., 2020), but hypospadias is primarily a term used for a malformation of the penis (Baskin & Ebbers, 2006), limiting the applicability of this KER to males.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Differentiation of the penis occurs during fetal life in the masculinization programming window (MPW) (GD 16-20 in rats, around gestational weeks 8-14 in humans), when androgen production is high (Welsh et al., 2008; C. Wolf et al., 2000a). In rats, exposure to anti-androgenic chemicals outside of, or in the late part of the MPW does not cause hypospadias or only to a low degree (Clark et al., 1993; van den Driesche et al., 2017; C. Wolf et al., 2000a), while exposure in the earlier (or full) MPW causes a higher frequency of hypospadias (depending on dose and chemical) (table 3). In humans, hypospadias can be diagnosed at birth (X. Yu et al., 2019), while in rodents, some parts of penis development occur postnatally (Schlomer et al., 2013; Sinclair et al., 2017). In these species, hypospadias may be observed at birth but is optimally diagnosed and severity classified weeks later. Given that disruptions to androgen programming takes place in fetal life, even though the AO is best detected postnatally, the life stage applicability is defined as fetal life. </span></span></p>
<h4>Key Event Relationship Description</h4>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">This non-adjacent KER describes a fetal decrease in androgen receptor (AR) activation in the genital tubercle causing hypospadias in male offspring, postnatally. During fetal development, androgens induce differentiation of the bipotential genital tubercle to a penis, including closure of the urethra. Androgens signal through AR and reduced fetal AR activation can therefore disrupt penis differentiation and lead to the genital malformation hypospadias. Reduced AR activation may happen both through reduced ligand availability (testosterone or dihydrotestosterone (DHT)) and by direct antagonism of AR (Amato et al., 2022; Mattiske & Pask, 2021). </span></span></p>
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The upstream KE ‘decrease, androgen receptor activation’ (KE 1614) refers to the <em>in vivo</em> event of overall reduction in AR activation. In this case, it therefore refers to a reduction in AR activation in the genital tubercle. Currently, decreased AR activation in mammals is only directly measured <em>in vitro</em> and not <em>in vivo</em>. Instead, indirect assessment of this KE may come from assays measuring AR antagonism, 5α-reductase activity (the enzyme converting testosterone to DHT), or decreased androgen levels (Draskau et al., 2024). </span></span></p>
<h4>Evidence Supporting this KER</h4>
<strong>Biological Plausibility</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The biological plausibility for this KER is judged as <strong>high</strong>. This is largely based on canonical knowledge on normal reproductive development.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The penis originates from a sexually bipotential structure, the genital tubercle, which may differentiate to either a penis or a clitoris, depending on internal cues during fetal development. In males, the fetal testes produce large amounts of testosterone, which can subsequently be converted to the more potent androgen DHT by 5α-reductase in peripheral tissues. Testosterone and DHT both signal through AR in target tissues to initiate masculinization (Amato et al., 2022; Murashima et al., 2015). The critical developmental window for androgen programming of masculinization has been identified in rats as GD16-20, and is proposed to be gestational weeks 8-14 in humans (Sharpe, 2020; Welsh et al., 2008). As part of the masculinization process orchestrated by androgens, the genital tubercle differentiates to a penis, which at this point expresses AR in both humans and rodents (Amato & Yao, 2021; Baskin et al., 2020). This includes androgen-mediated elongation of the tubercle, formation of the prepuce, and tubular internalization of urethra, which is closed at the distal tip of the glans penis (Amato et al., 2022). Failure of full closure of the urethra can result in hypospadias, in which the urethra terminates at the ventral side of the penis instead of at the tip (Baskin & Ebbers, 2006; Cohn, 2011). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The dependency of androgens for penile development has been demonstrated in mice with conditional or full knockout of <em>Ar,</em> which results in partly or full sex-reversal of males, including a female-like urethral opening (Willingham et al., 2006; Yucel et al., 2004; Zheng et al., 2015). Similarly, female rats and mice exposed <em>in utero</em> to testosterone present with varying degrees of intersexuality, including, in some cases, a penis (Greene & Ivy, 1937; Zheng et al., 2015). </span></span></p>
<strong>Empirical Evidence</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The empirical evidence for this KER is generally judged <strong>high. </strong>This includes evidence from <em>in vivo</em> animal studies and evidence from studies in humans. The upstream KE ‘Decreased AR activity’ refers to an <em>in vivo</em> effect, for which no methods for measurement of this <em>in vivo</em> in mammals currently exist. The effects on the upstream KE were therefore indirectly informed as described in each section. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Effects on the upstream KE were indirectly informed by including animal studies with stressors that are known to reduce AR activity through antagonizing the AR, lowering testosterone production, or inhibiting 5α-reductase. Six stressors, with established anti-androgenic effects, were included (more detailed evaluation of these chemicals can be found in KER-2820 (Holmer et al., 2024)). Table 3 summarizes the empirical evidence and confidence level for each chemical. Details on included evidence is presented in Table 1 in Appendix 2, </span></span><a href="https://aopwiki.org/system/dragonfly/production/2025/09/18/9prbqyba2x_Appendix_2_KER_2828.pdf">9prbqyba2x_Appendix_2_KER_2828.pdf</a><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">. In summary, all six substances were shown to cause hypospadias in male offspring, and the confidence level for all substances was judged as strong, as conflicting results could be explained (see the section ‘Uncertainties and inconsistencies’). Thus, antagonism or AR, inhibition of 5α-reductase, or reduction in testosterone synthesis, all lead to hypospadias. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong>Table 3 Summary of empirical evidence for the KER – animal studies</strong>. See Table 1 in Appendix 2 ( </span></span><a href="https://aopwiki.org/system/dragonfly/production/2025/09/18/9prbqyba2x_Appendix_2_KER_2828.pdf">9prbqyba2x_Appendix_2_KER_2828.pdf</a>) <span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">for details. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><em><span style="font-size:9.0pt">In utero</span></em><span style="font-size:9.0pt"> exposure causes hypospadias in rat and mouse</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:9.0pt">Has been shown to reduce fetal intratesticular testosterone and serum testosterone <em>in vivo</em>, but exact mechanism is unknown </span><span style="font-size:9.0pt">(Foster, 2006)</span><span style="font-size:9.0pt">.</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><em><span style="font-size:9.0pt">In utero</span></em><span style="font-size:9.0pt"> exposure causes hypospadias in rat and mouse</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:9.0pt">Has been shown to reduce fetal intratesticular testosterone and serum testosterone <em>in vivo</em>, but exact mechanism is unknown </span><span style="font-size:9.0pt">(Parks et al., 2000)</span><span style="font-size:9.0pt">.</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><u>Supporting human evidence</u></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Effects on the upstream KE were indirectly informed by including studies in humans with a condition (genetic or other) that would reduce or disrupt either 1) function of AR, 2) conversion of testosterone to DHT by disrupting 5α-reductase activity, or 3) production of androgen hormones. Studies measuring low testosterone levels with no underlying cause were also included (see evidence collection strategy). Table 4 lists the studies, in which these conditions were linked to hypospadias in males. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong>Table 4 Supporting evidence for the KER – human studies. </strong>The table lists human studies reporting hypospadias in association with an upstream defect in AR activity, grouped according to the precise effect, and how it was diagnosed (mutation, <em>in vitro</em> activity, or blood hormone and metabolite profile). SRD5A2: 5α-reductase 2; HSD17B3: 17β-hydroxysteroid dehydrogenase 3; HSD3B2: 3β-hydroxysteroid dehydrogenase 2; CYP17A1: 17α-hydroxylase. See table 2 in Appendix 2 (</span></span><a href="https://aopwiki.org/system/dragonfly/production/2025/09/18/9prbqyba2x_Appendix_2_KER_2828.pdf">9prbqyba2x_Appendix_2_KER_2828.pdf</a>) <span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">for all included references. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:9.0pt">Low testosterone due to gonadal dysgenesis or hypogonadism</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Six case-control studies were extracted, all of which found a correlation between lower testosterone levels (basal or hCG-stimulated) and hypospadias (Austin et al., 2002; Okuyama et al., 1981; Raboch et al., 1976; Ratan et al., 2012; Svensson et al., 1979; Yadav et al., 2011). In two of these studies, the correlation was age-dependent (Austin et al., 2002; Raboch et al., 1976)</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">One epidemiologic study was extracted, which investigated the association between phthalate exposure and hypospadias risk. Western Australian women exposed through their occupation to phthalates were more likely to have sons with hypospadias (Nassar et al., 2010). It should be noted that there are reported species differences in the effects of phthalates (including DEHP and DBP) on fetal testosterone production between humans, mice, and rats, and the direct translatability of the <em>in vivo</em> evidence is uncertain (Sharpe, 2020). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Direct information about dose concordance is not available because AR activity currently cannot be measured <em>in vivo</em>. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Indirect information on dose concordance can be obtained from empirical evidence. <em>In utero</em> exposure of rats to DBP caused a dose-dependent decrease in serum testosterone levels at PND70 with LOAEL 250 mg/kg bw/day. Hypospadias was observed at this stage with LOAEL 500 mg/kg bw/day (Jiang et al., 2007). It should be noted that fetal testosterone levels were not measured.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Direct information about temporal concordance is not available because AR activity currently cannot be measured <em>in vivo</em>. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Indirect information on temporal concordance can be obtained from empirical evidence. In two studies, in which rats were exposed <em>in utero</em> to 750 mg/kg bw/day DBP, intratesticular testosterone levels were reduced in fetal testes, while hypospadias was identified in adult males. Plasma levels of testosterone were also measured in adults, and testosterone levels in exposed males were not significantly different from control males (van den Driesche et al., 2017, 2020). This has also been shown in a study with 500 mg/kg bw/day DBP (Drake et al., 2009). These studies indicate temporal concordance. Another study with DBP-induced hypospadias in rats saw a dose-dependent reduction in serum testosterone levels at PND70 after <em>in utero</em> exposure to as low as 250 mg/kg bw/day from GD14-18 (Jiang et al., 2007), though fetal testosterone levels were not measured in this study.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Direct information about dose concordance is not available because AR activity currently cannot be measured <em>in vivo</em>. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Indirect information on incidence concordance can be obtained from empirical evidence. In the dose-response study with DBP, the incidence of hypospadias was 6.8% for 500 mg/kg bw/day DBP and 41.3% for 750 mg/kg bw/day. When separating hypospadias males from exposed males without hypospadias, plasma testosterone levels were decreased in both groups, indicating that DBP reduced testosterone levels at higher incidence than hypospadias (Jiang et al., 2007). The same was seen in another study with DBP, in which serum testosterone levels at PND7 were reduced in both hypospadiac and non-malformed males exposed to 750 mg/kg bw/day DBP from GD14-18 (Jiang et al., 2016).</span></span></p>
<strong>Uncertainties and Inconsistencies</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The <em>in vivo</em> studies do not directly inform about the upstream KE, ‘decreased AR activity’. The direct concordance between the KEs can therefore not be determined from the evidence. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">For flutamide, two studies reported 100% hypospadias frequencies at doses of 6.25 and 10 mg/kg bw/day (Goto et al., 2004; McIntyre et al., 2001), while another study found a frequency of 56.9% when giving 20 mg/kg bw/day (Kita et al., 2016). This might be explained by a longer exposure window in the first two studies and uncertainties in assessment of hypospadias. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">For DBP, there were discrepancies in whether 250 mg/kg bw/day was LOAEL (Mylchreest et al., 1998, 1999) or NOAEL (Jiang et al., 2007) for DBP. This conflict was explained by differences in exposure windows, supported by the observation that the frequency of hypospadias at 250 mg/kg bw/day was reported as very low (Mylchreest et al., 1998, 1999). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">One study with vinclozolin (Ostby J et al., 1999) and one with procymidone (Hass et al., 2012) did not find hypospadias after <em>in utero</em> exposure. In both cases, this was likely due to too low doses tested.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In most of the human studies of steroidogenesis deficiency, serum or plasma levels of testosterone were reduced at baseline and/or upon hCG stimulation (Al-Sinani et al., 2015; Ammini et al., 1997; Cara et al., 1985; Chen, Huang, et al., 2021; Dean et al., 1984; Galli-Tsinopoulou et al., 2018; Imperato-McGinley et al., 1979; Kaufman et al., 1983; Mendonca et al., 1987, 2000; Neocleous et al., 2012; New, 1970; Pang et al., 1983; Perrone et al., 1985; Rabbani et al., 2012; Sherbet et al., 2003), but in a few studies, testosterone levels were normal (Donadille et al., 2018; Kon et al., 2015; Luna et al., 2021). In these cases, the effect of these deficiencies on tissue AR activity is uncertain. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">For <em>AR </em>CAG repeat length, a case-control study did not find an association with hypospadias (Radpour R et al., 2007), but this could be because the hypospadias cases included had other etiologies. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Lastly, as there are currently no universal guidelines for identification and scoring of hypospadias in rodents, there are large variations in methods of assessment, and minor cases of hypospadias may be overlooked in some studies and included in others. This poses an uncertainty in the frequency reports in the scientific evidence. </span></span></p>
<h4>Quantitative Understanding of the Linkage</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The quantitative understanding of the relationship is low. As there are currently no direct measurement methods of the upstream KE (reduced AR activity) in mammals, quantification of the relationship is difficult to assess. </span></span></p>
<strong>Response-response relationship</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">A model for phthalates has been developed, aiming to predict the frequency of hypospadias in male offspring based on reductions in <em>ex vivo</em> testosterone production, an indirect indication of AR activity. In this model, hypospadias was induced from around a 60% reduction in testosterone levels. The model does not consider hypospadias severity and is only for phthalate chemicals (Earl Gray et al., 2024). </span></span></p>
<strong>Time-scale</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The time-scale of this KER depends on the species but is likely days to weeks. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">AR activation happens within minutes, from ligand binding to nuclear translocation and promotor activation (Nightingale et al., 2003; Schaufele et al., 2005), while transcriptional and translational effects are observed minutes to hours later (Kang et al., 2002). AR programming of the genital tubercle occurs during fetal development in the Masculinization Programming Window (Sharpe, 2020). The time-scale for morphological effects in the tissue then depends on the species. In humans, penis development is completed prior to birth and hypospadias can be observed at birth. In rodents, penis development is not fully completed until weeks after birth, but hypospadias can often be observed earlier than this (table 3). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Extended CAG repeat length in <em>AR</em> is associated with reduced AR activity</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">(Chamberlain et al., 1994)</span></span></p>
</td>
</tr>
</tbody>
</table>
<strong>Known Feedforward/Feedback loops influencing this KER</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">There are no known feedforward/feedback loops influencing this KER. </span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Al-Sinani, A., Mula-Abed, W., Al-Kindi, M., Al-Kusaibi, G., Al-Azkawi, H., & Nahavandi, N. (2015). A Novel Mutation Causing 17-β-Hydroxysteroid Dehydrogenase Type 3 Deficiency in an Omani Child: First Case Report and Review of Literature. <em>Oman Medical Journal</em>, <em>30</em>(2), 129–134. https://doi.org/10.5001/omj.2015.27</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Amato, C. M., & Yao, H. H.-C. (2021). Developmental and sexual dimorphic atlas of the prenatal mouse external genitalia at the single-cell level. <em>Proceedings of the National Academy of Sciences of the United States of America</em>, <em>118</em>(25). https://doi.org/10.1073/pnas.2103856118</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Amato, C. M., Yao, H. H.-C., & Zhao, F. (2022). One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. <em>Frontiers in Endocrinology</em>, <em>13</em>, 910964. https://doi.org/10.3389/fendo.2022.910964</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Ammini, A., Sharma, D., Gupta, R., Mohapatra, I., Kucheria, K., Kriplani, A., Takkar, D., Mitra, D., & Vijayaraghavan, M. (1997). Familial male pseudohermaphroditism. <em>Indian Journal of Pediatrics</em>, <em>64</em>(3), 419–423. https://doi.org/10.1007/BF02845218</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Austin, P., Siow, Y., Fallat, M., Cain, M., Rink, R., & Casale, A. (2002). The relationship between müllerian inhibiting substance and androgens in boys with hypospadias. <em>The Journal of Urology</em>, <em>168</em>(4), 1784–1788; discussion 1788. https://doi.org/10.1097/01.ju.0000023680.64155.5c</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Baskin, L., Cao, M., Sinclair, A., Li, Y., Overland, M., Isaacson, D., & Cunha, G. R. (2020). Androgen and estrogen receptor expression in the developing human penis and clitoris. <em>Differentiation; Research in Biological Diversity</em>, <em>111</em>, 41–59. https://doi.org/10.1016/j.diff.2019.08.005</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Baskin, L., & Ebbers, M. (2006). Hypospadias: Anatomy, etiology, and technique. <em>Journal of Pediatric Surgery</em>, <em>41</em>(3), 463–472. https://doi.org/10.1016/j.jpedsurg.2005.11.059</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Cara, J., Jr Moshang, T., Bongiovanni, A., & Marx, B. (1985). Elevated 17-hydroxyprogesterone and testosterone in a newborn with 3-beta-hydroxysteroid dehydrogenase deficiency. <em>The New England Journal of Medicine</em>, <em>313</em>(10), 618–621. https://doi.org/10.1056/NEJM198509053131007</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Chamberlain, N. L., Driver, E. D., & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. <em>Nucleic Acids Research</em>, <em>22</em>(15), 3181–3186. https://doi.org/10.1093/nar/22.15.3181</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Chang, J., Wang, S., & Zheng, Z. (2020). Etiology of Hypospadias: A Comparative Review of Genetic Factors and Developmental Processes Between Human and Animal Models. <em>Research and Reports in Urology</em>, <em>Volume 12</em>, 673–686. https://doi.org/10.2147/RRU.S276141</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Chen, L., Huang, H., Zhang, H., Zhu, G., & Zhu, M. (2021). Three cases of 3β-hydroxysteroid dehydrogenase deficiency: Clinical analysis. <em>Advances in Clinical and Experimental Medicine : Official Organ Wroclaw Medical University</em>, <em>30</em>(3), 289–299. https://doi.org/10.17219/acem/131220</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Clark, R., Anderson, C., Prahalada, S., Robertson, R., Lochry, E., Leonard, Y., Stevens, J., & Hoberman, A. (1993). Critical developmental periods for effects on male rat genitalia induced by finasteride, a 5 alpha-reductase inhibitor. <em>Toxicology and Applied Pharmacology</em>, <em>119</em>(1), 34–40. https://doi.org/10.1006/taap.1993.1041</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Cohn, M. J. (2011). Development of the external genitalia: Conserved and divergent mechanisms of appendage patterning. <em>Developmental Dynamics</em>, <em>240</em>(5), 1108–1115. https://doi.org/10.1002/dvdy.22631</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Cunha, G. R., Risbridger, G., Wang, H., Place, N. J., Grumbach, M., Cunha, T. J., Weldele, M., Conley, A. J., Barcellos, D., Agarwal, S., Bhargava, A., Drea, C., Hammond, G. L., Siiteri, P., Coscia, E. M., McPhaul, M. J., Baskin, L. S., & Glickman, S. E. (2014). Development of the external genitalia: Perspectives from the spotted hyena (Crocuta crocuta). <em>Differentiation</em>, <em>87</em>(1–2), 4–22. https://doi.org/10.1016/j.diff.2013.12.003</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">De Lorenzi, L., Genualdo, V., Iannuzzi, A., Di Meo, G. P., Perucatti, A., Mancuso, R., Russo, M., Di Berardino, D., Parma, P., & Iannuzzi, L. (2010). Cytogenetic and Genetic Studies in a Hypospadic Horse (Equus caballus, 2n = 64). <em>Sexual Development</em>, <em>4</em>(6), 352–357. https://doi.org/10.1159/000319527</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Dean, H., Shackleton, C., & Winter, J. (1984). Diagnosis and natural history of 17-hydroxylase deficiency in a newborn male. <em>The Journal of Clinical Endocrinology and Metabolism</em>, <em>59</em>(3), 513–520. https://doi.org/10.1210/jcem-59-3-513</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Donadille, B., Houang, M., Netchine, I., Siffroi, J., & Christin-Maitre, S. (2018). Human 3beta-hydroxysteroid dehydrogenase deficiency associated with normal spermatic numeration despite a severe enzyme deficit. <em>Endocrine Connections</em>, <em>7</em>(3), 395–402. https://doi.org/10.1530/EC-17-0306</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Drake, A., van den Driesche, S., Scott, H., Hutchison, G., Seckl, J., & Sharpe, R. (2009). Glucocorticoids amplify dibutyl phthalate-induced disruption of testosterone production and male reproductive development. <em>Endocrinology</em>, <em>150</em>(11), 5055–5064. https://doi.org/10.1210/en.2009-0700</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Draskau, M. K., Rosenmai, A. K., Bouftas, N., Johansson, H. K. L., Panagiotou, E. M., Holmer, M. L., Elmelund, E., Zilliacus, J., Beronius, A., Damdimopolou, P., van Duursen, M., & Svingen, T. (2024). AOP Report: An Upstream Network for Reduced Androgen Signaling Leading to Altered Gene Expression of Androgen Receptor-Responsive Genes in Target Tissues. <em>Environmental Toxicology and Chemistry</em>. https://doi.org/10.1002/etc.5972</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Drea, C., Weldele, M., Forger, N., Coscia, E., Frank, L., Licht, P., & Glickman, S. (1998). Androgens and masculinization of genitalia in the spotted hyaena (Crocuta crocuta). 2. Effects of prenatal anti-androgens. <em>Journal of Reproduction and Fertility</em>, <em>113</em>(1), 117–127. https://doi.org/10.1530/jrf.0.1130117</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Earl Gray, L. J., Lambright, C., Evans, N., Ford, J., & Conley, M. (2024). Using targeted fetal rat testis genomic and endocrine alterations to predict the effects of a phthalate mixture on the male reproductive tract. <em>Current Research in Toxicology</em>, <em>7</em>, 100180. https://doi.org/10.1016/j.crtox.2024.100180</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Foster, P. M. D. (2006). Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. <em>International Journal of Andrology</em>, <em>29</em>(1), 140–147. https://doi.org/10.1111/j.1365-2605.2005.00563.x</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Galli-Tsinopoulou, A., Serbis, A., KotanidouP, E., Litou, E., Dokousli, V., Mouzaki, K., Fanis, P., Neocleous, V., & Skordis, N. (2018). 46,XY Disorder of Sex Development due to 17-Beta Hydroxysteroid Dehydrogenase Type 3 Deficiency in an Infant of Greek Origin. <em>Journal of Clinical Research in Pediatric Endocrinology</em>, <em>10</em>(1), 74–78. https://doi.org/10.4274/jcrpe.4829</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Goto, K., Koizumi, K., Takaori, H., Fujii, Y., Furuyama, Y., Saika, O., Suzuki, H., Saito, K., & Suzuki, K. (2004). Effects of flutamide on sex maturation and behavior of offspring born to female rats treated during late pregnancy. <em>The Journal of Toxicological Sciences</em>, <em>29</em>(5), 517–534. https://doi.org/10.2131/jts.29.517</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gredler, M. L., Larkins, C. E., Leal, F., Lewis, A. K., Herrera, A. M., Perriton, C. L., Sanger, T. J., & Cohn, M. J. (2014). Evolution of External Genitalia: Insights from Reptilian Development. <em>Sexual Development</em>, <em>8</em>(5), 311–326. https://doi.org/10.1159/000365771</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Greene, R. R., & Ivy, A. C. (1937). THE EXPERIMENTAL PRODUCTION OF INTERSEXUALITY IN THE FEMALE RAT WITH TESTOSTERONE. <em>Science (New York, N.Y.)</em>, <em>86</em>(2226), 200–201. https://doi.org/10.1126/science.86.2226.200-a</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hass, U., Boberg, J., Christiansen, S., Jacobsen, P., Vinggaard, A., Taxvig, C., Poulsen, M., Herrmann, S., Jensen, B., Petersen, A., Clemmensen, L., & Axelstad, M. (2012). Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. <em>Reproductive Toxicology (Elmsford, N.Y.)</em>, <em>34</em>(2), 261–274. https://doi.org/10.1016/j.reprotox.2012.05.090</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Holmer, M. L., Zilliacus, J., Draskau, M. K., Hlisníková, H., Beronius, A., & Svingen, T. (2024). Methodology for developing data-rich Key Event Relationships for Adverse Outcome Pathways exemplified by linking decreased androgen receptor activity with decreased anogenital distance. <em>Reproductive Toxicology</em>, <em>128</em>, 108662. https://doi.org/10.1016/j.reprotox.2024.108662</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Imperato-McGinley, J., Peterson, R., Stoller, R., & Goodwin, W. (1979). Male pseudohermaphroditism secondary to 17 beta-hydroxysteroid dehydrogenase deficiency: Gender role change with puberty. <em>The Journal of Clinical Endocrinology and Metabolism</em>, <em>49</em>(3), 391–395. https://doi.org/10.1210/jcem-49-3-391</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Inawaka, K., Kishimoto, N., Higuchi, H., & Kawamura, S. (2010). Maternal exposure to procymidone has no effects on fetal external genitalia development in male rabbit fetuses in a modified developmental toxicity study. <em>JOURNAL OF TOXICOLOGICAL SCIENCES</em>, <em>35</em>(3), 299–307. https://doi.org/10.2131/jts.35.299</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Jiang, J., Ma, L., Yuan, L., Wang, X., & Zhang, W. (2007). Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP). <em>Toxicology</em>, <em>232</em>(3), 286–293. https://doi.org/10.1016/j.tox.2007.01.018</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Jiang, J., Zhong, C., Zhu, Y., XuL, D., Wood, K., Sun, W., Li, E., Liu, Z., Zhao, W., Ruan, Y., & Xia, S. (2016). Prenatal exposure to di-n-butyl phthalate (DBP) differentially alters androgen cascade in undeformed versus hypospadiac male rat offspring. <em>Reproductive Toxicology (Elmsford, N.Y.)</em>, <em>61</em>, 75–81. https://doi.org/10.1016/j.reprotox.2016.02.016</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kang, H.-Y., Huang, K.-E., Chang, S. Y., Ma, W.-L., Lin, W.-J., & Chang, C. (2002). Differential Modulation of Androgen Receptor-mediated Transactivation by Smad3 and Tumor Suppressor Smad4. <em>Journal of Biological Chemistry</em>, <em>277</em>(46), 43749–43756. https://doi.org/10.1074/jbc.M205603200</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kaufman, F., Costin, G., Goebelsmann, U., Stanczyk, F., & Zachmann, M. (1983). Male pseudohermaphroditism due to 17,20-desmolase deficiency. <em>The Journal of Clinical Endocrinology and Metabolism</em>, <em>57</em>(1), 32–36. https://doi.org/10.1210/jcem-57-1-32</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kelce, W. R., Lambright, C. R., Gray, L. E., & Roberts, K. P. (1997). Vinclozolin andp,p′-DDE Alter Androgen-Dependent Gene Expression:In VivoConfirmation of an Androgen Receptor-Mediated Mechanism. <em>Toxicology and Applied Pharmacology</em>, <em>142</em>(1), 192–200. https://doi.org/10.1006/taap.1996.7966</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kelce, W. R., Monosson, E., Gamcsik, M. P., Laws, S. C., & Gray, L. E. (1994). Environmental Hormone Disruptors: Evidence That Vinclozolin Developmental Toxicity Is Mediated by Antiandrogenic Metabolites. <em>Toxicology and Applied Pharmacology</em>, <em>126</em>(2), 276–285. https://doi.org/10.1006/taap.1994.1117</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kita, D., Meyer, K., Venturelli, A., Adams, R., Machado, D., Morais, R., Swan, S., Gennings, C., & Martino-Andrade, A. (2016). Manipulation of pre and postnatal androgen environments and anogenital distance in rats. <em>TOXICOLOGY</em>, <em>368</em>, 152–161. https://doi.org/10.1016/j.tox.2016.08.021</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kon, M., Suzuki, E., Dung, V., Hasegawa, Y., Mitsui, T., Muroyas, K., Ueoka, K., Igarashi, N., Nagasaki, K., Oto, Y., Hamajima, T., Yoshino, K., Igarashi, M., Kato-Fukui, Y., Nakabayashi, K., Hayashi, K., Hata, K., Matsubara, Y., Moriya, K., … Fukami, M. (2015). Molecular basis of non-syndromic hypospadias: Systematic mutation screening and genome-wide copy-number analysis of 62 patients. <em>HUMAN REPRODUCTION</em>, <em>30</em>(3), 499–506. https://doi.org/10.1093/humrep/deu364</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Leihy, M. W., Shaw, G., Wilson, J. D., & Renfree, M. B. (2011). Development of the Penile Urethra in the Tammar Wallaby. <em>Sexual Development</em>, <em>5</em>(5), 241–249. https://doi.org/10.1159/000334053</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Luna, S., Wegner, D., Gale, S., Yang, P., Hollander, A., St Dennis-Feezle, L., Nabhan, Z., Ory, D., Cole, F., & Wambach, J. (2021). Whole exome sequencing and functional characterization increase diagnostic yield in siblings with a 46, XY difference of sexual development (DSD). <em>The Journal of Steroid Biochemistry and Molecular Biology</em>, <em>212</em>, 105908. https://doi.org/10.1016/j.jsbmb.2021.105908</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Mattiske, D. M., & Pask, A. J. (2021). Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. <em>Current Research in Toxicology</em>, <em>2</em>, 179–191. https://doi.org/10.1016/j.crtox.2021.03.004</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">McIntyre, B., Barlow, N., & Foster, P. (2001). Androgen-mediated development in male rat offspring exposed to flutamide in utero: Permanence and correlation of early postnatal changes in anogenital distance and nipple retention with malformations in androgen-dependent tissues. <em>Toxicological Sciences : An Official Journal of the Society of Toxicology</em>, <em>62</em>(2), 236–249. https://doi.org/10.1093/toxsci/62.2.236</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Mendonca, B., Bloise, W., Arnhold, I., Batista, M., Toledo, S., Drummond, M., Nicolau, W., & Mattar, E. (1987). Male pseudohermaphroditism due to nonsalt-losing 3 beta-hydroxysteroid dehydrogenase deficiency: Gender role change and absence of gynecomastia at puberty. <em>Journal of Steroid Biochemistry</em>, <em>28</em>(6), 669–675. https://doi.org/10.1016/0022-4731(87)90396-7</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Mendonca, B., Inacio, M., Arnhold, I., Costa, E., Bloise, W., Martin, R., Denes, F., Silva, F., Andersson, S., Lindqvist, A., & Wilson, J. (2000). Male pseudohermaphroditism due to 17 beta-hydroxysteroid dehydrogenase 3 deficiency. Diagnosis, psychological evaluation, and management. <em>Medicine</em>, <em>79</em>(5), 299–309. https://doi.org/10.1097/00005792-200009000-00003</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Meuffels, J., Luther-Binoir, I., Daffue, W., Deacon, F., & Mitchell, E. P. (2020). Testicular disorder of sexual development with cryptorchidism, penile hypoplasia and hypospadias in a giraffe (Giraffa camelopardalis giraffa). <em>JOURNAL OF THE SOUTH AFRICAN VETERINARY ASSOCIATION</em>, <em>91</em>. https://doi.org/10.4102/jsava.v91i0.1971</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Murakami, T. (2008). Anatomical Examination of Hypospadias in Cattle. <em>Journal of the Japan Veterinary Medical Association</em>, <em>61</em>(12), 931–935. https://doi.org/10.12935/jvma1951.61.931</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Murashima, A., Kishigami, S., Thomson, A., & Yamada, G. (2015). Androgens and mammalian male reproductive tract development. <em>Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms</em>, <em>1849</em>(2), 163–170. https://doi.org/10.1016/j.bbagrm.2014.05.020</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Mylchreest, E., Cattley, R., & Foster, P. (1998). Male reproductive tract malformations in rats following gestational and lactational exposure to Di(n-butyl) phthalate: An antiandrogenic mechanism? <em>Toxicological Sciences : An Official Journal of the Society of Toxicology</em>, <em>43</em>(1), 47–60. https://doi.org/10.1006/toxs.1998.2436</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Mylchreest, E., Sar, M., Cattley, R., & Foster, P. (1999). Disruption of androgen-regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. <em>Toxicology and Applied Pharmacology</em>, <em>156</em>(2), 81–95. https://doi.org/10.1006/taap.1999.8643</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Nassar, N., Abeywardana, P., Barker, A., & Bower, C. (2010). Parental occupational exposure to potential endocrine disrupting chemicals and risk of hypospadias in infants. <em>Occupational and Environmental Medicine</em>, <em>67</em>(9), 585–589. https://doi.org/10.1136/oem.2009.048272</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Neocleous, V., Sismani, C., Shammas, C., Efstathiou, E., Alexandrou, A., Ioannides, M., Argyrou, M., Patsalis, P., Phylactou, L., & Skordis, N. (2012). Duplication of exons 3-10 of the HSD17B3 gene: A novel type of genetic defect underlying 17 beta-HSD-3 deficiency. <em>GENE</em>, <em>499</em>(2), 250–255. https://doi.org/10.1016/j.gene.2012.03.031</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">New, M. (1970). Male pseudohermaphroditism due to 17 alpha-hydroxylase deficiency. <em>The Journal of Clinical Investigation</em>, <em>49</em>(10), 1930–1941. https://doi.org/10.1172/JCI106412</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Nightingale, J., Chaudhary, K. S., Abel, P. D., Stubbs, A. P., Romanska, H. M., Mitchell, S. E., Stamp, G. W. H., & Lalani, E.-N. (2003). Ligand Activation of the Androgen Receptor Downregulates E-Cadherin-Mediated Cell Adhesion and Promotes Apoptosis of Prostatic Cancer Cells. <em>Neoplasia</em>, <em>5</em>(4), 347–361. https://doi.org/10.1016/S1476-5586(03)80028-3</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Nowacka-Woszuk, J., Szczerbal, I., Salamon, S., Kociucka, B., Jackowiak, H., Prozorowska, E., Slaska, B., Rozanska, D., Orzelski, M., Ochota, M., Dzimira, S., Lipiec, M., Nizanski, W., & Switonski, M. (2014). Testicular disorder of sex development in four cats with a male karyotype (38,XY; SRY-positive). <em>Animal Reproduction Science</em>, <em>151</em>(1–2), 42–48. https://doi.org/10.1016/j.anireprosci.2014.10.001</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Okuyama, A., Namiki, M., Koide, T., Itatani, H., Nishimoto, N., Mizutani, S., Sonoda, T., Aono, T., & Matsumoto, K. (1981). Pituitary and gonadal function in prepubertal and pubertal boys with hypospadias. <em>Acta Endocrinologica</em>, <em>98</em>(3), 464–469. https://doi.org/10.1530/acta.0.0980464</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Ostby, J., Kelce, W. R., Lambright, C., Wolf, C. J., Mann, P., & Gray, L. E. (1999). The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. <em>Toxicology and Industrial Health</em>, <em>15</em>(1–2), 80–93. https://doi.org/10.1177/074823379901500108</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Ostby J, Monosson E, Kelce WR, & Gray, L. J. (1999). Environmental antiandrogens: Low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. <em>Toxicology and Industrial Health</em>, <em>15</em>(1), 48–64. https://doi.org/10.1177/074823379901500106</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Pang, S., Levine, L., Stoner, E., Opitz, J., Pollack, M., Dupont, B., & New, M. (1983). Nonsalt-losing congenital adrenal hyperplasia due to 3 beta-hydroxysteroid dehydrogenase deficiency with normal glomerulosa function. <em>The Journal of Clinical Endocrinology and Metabolism</em>, <em>56</em>(4), 808–818. https://doi.org/10.1210/jcem-56-4-808</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Parks, L. G., Ostby, J. S., Lambright, C. R., Abbott, B.D., Klinefelter, G. R., Barlow, N. J., & Gray LE Jr. (2000). The Plasticizer Diethylhexyl Phthalate Induces Malformations by Decreasing Fetal Testosterone Synthesis during Sexual Differentiation in the Male Rat. <em>Toxicological Sciences</em>, <em>58</em>(2), 339–349. https://doi.org/10.1093/toxsci/58.2.339</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Perrone, L., Criscuolo, T., Sinisi, A., Graziani, M., Manzo, T., Sicuranza, R., Bellastella, A., & Faggiano, M. (1985). Male pseudohermaphroditism due to 3 beta-hydroxysteroid dehydrogenase-isomerase deficiency associated with atrial septal defect. <em>Acta Endocrinologica</em>, <em>110</em>(4), 532–539. https://doi.org/10.1530/acta.0.1100532</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Prahalada, S., Tarantal, A., Harris, G., Ellsworth, K., Clarke, A., Skiles, G., MacKenzie, K., Kruk, L., Ablin, D., Cukierski, M., Peter, C., vanZwieten, M., & Hendrickx, A. (1997). Effects of finasteride, a type 2 5-alpha reductase inhibitor, on fetal development in the rhesus monkey (Macaca mulatta). <em>Teratology</em>, <em>55</em>(2), 119–131. https://doi.org/10.1002/(SICI)1096-9926(199702)55:2%253C119::AID-TERA1%253E3.0.CO;2-Z</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Rabbani, B., Mahdieh, N., Ashtiani, M. H., Setoodeh, A., & A Rabbani. (2012). In silico structural, functional and pathogenicity evaluation of a novel mutation: An overview of HSD3B2 gene mutations. <em>Gene</em>, <em>503</em>(2), 215–221. https://doi.org/10.1016/j.gene.2012.04.080</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Raboch, J., Pondelickova, J., & Starka, L. (1976). Plasma testosterone values in hypopspadiacs. <em>Andrologia</em>, <em>8</em>(3), 255–258. https://doi.org/10.1111/j.1439-0272.1976.tb02144.x</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Radpour R, Rezaee M, Tavasoly A, Solati S, & Saleki A. (2007). Association of long polyglycine tracts (GGN repeats) in exon 1 of the androgen receptor gene with cryptorchidism and penile hypospadias in Iranian patients. <em>Journal of Andrology</em>, <em>28</em>(1), 164–169. https://doi.org/10.2164/jandrol.106.000927</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Ratan, S., Aggarwal, S., Mishra, T., Saxena, A., Yadav, S., Pandey, R., Sharma, A., & Dhanwal, D. (2012). Children with isolated hypospadias have different hormonal profile compared to those with associated anomalies. <em>Journal of Pediatric Endocrinology & Metabolism : JPEM</em>, <em>25</em>(1), 111–119. https://doi.org/10.1515/jpem.2011.421</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Rittmaster, R. S., & Wood, A. J. J. (1994). Finasteride. <em>New England Journal of Medicine</em>, <em>330</em>(2), 120–125. https://doi.org/10.1056/NEJM199401133300208</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schaufele, F., Carbonell, X., Guerbadot, M., Borngraeber, S., Chapman, M. S., Ma, A. A. K., Miner, J. N., & Diamond, M. I. (2005). The structural basis of androgen receptor activation: Intramolecular and intermolecular amino–carboxy interactions. <em>Proceedings of the National Academy of Sciences</em>, <em>102</em>(28), 9802–9807. https://doi.org/10.1073/pnas.0408819102</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schlomer, B. J., Feretti, M., Rodriguez, E. J., Blaschko, S., Cunha, G., & Baskin, L. (2013). Sexual differentiation in the male and female mouse from days 0 to 21: A detailed and novel morphometric description. <em>The Journal of Urology</em>, <em>190</em>(4 Suppl), 1610–1617. https://doi.org/10.1016/j.juro.2013.02.3198</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Sharpe, R. M. (2020). Androgens and the masculinization programming window: Human-rodent differences. <em>Biochemical Society Transactions</em>, <em>48</em>(4), 1725–1735. https://doi.org/10.1042/BST20200200</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Sherbet, D., Tiosano, D., Kwist, K., Hochberg, Z., & RJ Auchus. (2003). CYP17 mutation E305G causes isolated 17,20-lyase deficiency by selectively altering substrate binding. <em>The Journal of Biological Chemistry</em>, <em>278</em>(49), 48563–48569. https://doi.org/10.1074/jbc.M307586200</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Simard, J., Luthy, I., Guay, J., Bélanger, A., & Labrie, F. (1986). Characteristics of interaction of the antiandrogen flutamide with the androgen receptor in various target tissues. <em>Molecular and Cellular Endocrinology</em>, <em>44</em>(3), 261–270. https://doi.org/10.1016/0303-7207(86)90132-2</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Sinclair, A., Cao, M., Pask, A., Baskin, L., & Cunha, G. (2017). Flutamide-induced hypospadias in rats: A critical assessment. <em>Differentiation; Research in Biological Diversity</em>, <em>94</em>, 37–57. https://doi.org/10.1016/j.diff.2016.12.001</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Smith, K., Brown, P., & Barr, F. (2012). A Survey of Congenital Reproductive Abnormalities in Rams in Abattoirs in South West England. <em>Reproduction in Domestic Animals</em>, <em>47</em>(5), 740–745. https://doi.org/10.1111/j.1439-0531.2011.01952.x</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Sonne, C., Dietz, R., Born, E. W., Leifsson, P. S., & Andersen, S. (2008). Is there a link between hypospadias and organochlorine exposure in East Greenland sledge dogs (Canis familiaris)? <em>Ecotoxicology and Environmental Safety</em>, <em>69</em>(3), 391–395. https://doi.org/10.1016/j.ecoenv.2007.09.008</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Stamper, M. A., Norton, T., Spodnick, G., Marti, J., & Loomis, M. (1999). Hypospadias in a polar bear (Ursus maritimus). <em>Journal of Zoo and Wildlife Medicine: Official Publication of the American Association of Zoo Veterinarians</em>, <em>30</em>(1), 141–144.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Svensson, J., Eneroth, P., Gustafsson, J., Ritzén, M., & Stenberg, A. (1979). Reduction of androstenedione by skin in vitro and serum levels of gonadotrophins and androgens in men with hypospadias. <em>The Journal of Endocrinology</em>, <em>82</em>(3), 395–401. https://doi.org/10.1677/joe.0.0820395</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Switonski, M., Dzimira, S., Aleksiewicz, R., Szczerbal, I., Nowacka-Woszuk, J., Krzeminska, P., Deska, T., & Nizanski, W. (2018). Hypospadias Is Not Rare in Dogs: Five New Cases, a Retrospective Study, and a Review of the Literature. <em>Sexual Development : Genetics, Molecular Biology, Evolution, Endocrinology, Embryology, and Pathology of Sex Determination and Differentiation</em>, <em>12</em>(5), 244–250. https://doi.org/10.1159/000490079</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">van den Driesche, S., Kilcoyne, K., Wagner, I., Rebourcet, D., Boyle, A., Mitchell, R., McKinnell, C., Macpherson, S., Donat, R., Shukla, C., Jorgensen, A., Meyts, E., Skakkebaek, N., & Sharpe, R. (2017). Experimentally induced testicular dysgenesis syndrome originates in the masculinization programming window. <em>JCI Insight</em>, <em>2</em>(6), e91204. https://doi.org/10.1172/jci.insight.91204</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">van den Driesche, S., Shoker, S., Inglis, F., Palermo, C., Langsch, A., & Otter, R. (2020). Systematic comparison of the male reproductive tract in fetal and adult Wistar rats exposed to DBP and DINP in utero during the masculinisation programming window. <em>Toxicology Letters</em>, <em>335</em>, 37–50. https://doi.org/10.1016/j.toxlet.2020.10.006</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wang, S., Shi, M., Zhu, D., Mathews, R., & Zheng, Z. (2018). External Genital Development, Urethra Formation, and Hypospadias Induction in Guinea Pig: A Double Zipper Model for Human Urethral Development. <em>Urology</em>, <em>113</em>, 179–186. https://doi.org/10.1016/j.urology.2017.11.002</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wang, S., & Zheng, Z. (2025). Differences in Formation of Prepuce and Urethral Groove During Penile Development Between Guinea Pigs and Mice Are Controlled by Differential Expression of Shh, Fgf10 and Fgfr2. <em>Cells</em>, <em>14</em>(5), 348. https://doi.org/10.3390/cells14050348</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Welsh, M., Saunders, P., Fisken, M., Scott, H., Hutchison, G., Smith, L., & Sharpe, R. (2008). Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. <em>The Journal of Clinical Investigation</em>, <em>118</em>(4), 1479–1490. https://doi.org/10.1172/JCI34241</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Willingham, E., Agras, K., Souza, A. J. de, Konijeti, R., Yucel, S., Rickie, W., Cunha, G., & Baskin, L. (2006). Steroid receptors and mammalian penile development: An unexpected role for progesterone receptor? <em>The Journal of Urology</em>, <em>176</em>(2), 728–733. https://doi.org/10.1016/j.juro.2006.03.078</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wolf, C., LeBlanc, G., Ostby, J., & Gray, L. J. (2000). Characterization of the period of sensitivity of fetal male sexual development to vinclozolin. <em>Toxicological Sciences : An Official Journal of the Society of Toxicology</em>, <em>55</em>(1), 152–161. https://doi.org/10.1093/toxsci/55.1.152</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yadav, C., Bajpai, M., Kumar, V., Datta, S., Gupta, P., Ahmed, R., & Banerjee, B. (2011). Polymorphisms in the P450 c17 (17-hydroxylase/17, 20-Lyase) gene: Association with estradiol and testosterone concentration in hypospadias. <em>Urology</em>, <em>78</em>(4), 902–907. https://doi.org/10.1016/j.urology.2011.04.021</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yu, X., Nassar, N., Mastroiacovo, P., Canfield, M., Groisman, B., Bermejo-Sánchez, E., Ritvanen, A., Kiuru-Kuhlefelt, S., Benavides, A., Sipek, A., Pierini, A., Bianchi, F., Källén, K., Gatt, M., Morgan, M., Tucker, D., Canessa, M. A., Gajardo, R., Mutchinick, O. M., … Agopian, A. J. (2019). Hypospadias Prevalence and Trends in International Birth Defect Surveillance Systems, 1980-2010. <em>European Urology</em>, <em>76</em>(4), 482–490. https://doi.org/10.1016/j.eururo.2019.06.027</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Yucel, S., Liu, W., Cordero, D., Donjacour, A., Cunha, G., & Baskin, L. (2004). Anatomical studies of the fibroblast growth factor-10 mutant, Sonic Hedge Hog mutant and androgen receptor mutant mouse genital tubercle. <em>Advances in Experimental Medicine and Biology</em>, <em>545</em>, 123–148. https://doi.org/10.1007/978-1-4419-8995-6_8</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Zheng, Z., Armfield, B., & Cohn, M. (2015). Timing of androgen receptor disruption and estrogen exposure underlies a spectrum of congenital penile anomalies. <em>Proceedings of the National Academy of Sciences of the United States of America</em>, <em>112</em>(52), E7194-203. https://doi.org/10.1073/pnas.1515981112</span></span></p>