<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Emilie Elmelund; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Marie Holmer; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Johanna Zilliacus; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Anna Beronius; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Sofie Christiansen; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Eleni Bampari; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Terje Svingen; National Food Institute, Technical University of Denmark, Lyngby, DK-2800, Denmark</span></span></span></span></p>
<td>Under development: Not open for comment. Do not cite</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="abstract">
<h2>Abstract</h2>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">This AOP links decreased intratesticular testosterone levels during fetal development with nipple/areola retention (NR) in male rodent offspring. NR, measured around 2 weeks postpartum, is a marker for disrupted masculinization of male offspring, with data primarily from laboratory mice and rats. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Testosterone is one of the two main steroid sex hormones essential for male reproductive development. Testosterone is primarily, but not exclusively, produced in the testes and then secreted into the circulation. In peripheral reproductive tissues, testosterone is either converted to dihydrotestosterone (DHT) or directly activates the androgen receptor (AR). AR is a nuclear receptor involved in the transcriptional regulation of various target genes during development and adulthood across species. AR signaling is necessary for normal masculinization of the developing fetus, and AR action in male rodents signals the nipple anlagen to regress, leaving males with no nipples.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">This AOP delineates the evidence that decreasing testicular testosterone production lowers circulating testosterone levels and consequently AR activation, thereby causing retention of nipples in male rodents. In this AOP, the first KE is not considered an MIE, as testicular testosterone production can be obstructed by various mechanisms (Miller & Auchus, 2011). Moreover, the AOP does not discriminate whether the reduction in AR activation is due to a direct lack of testosterone binding AR or due to decreased conversion of testosterone to DHT, as there is not sufficient information on this distinction. Downstream of a reduction in AR activation, the molecular mechanisms of NR are unclear, highlighting a knowledge gap in this AOP and potential for further development. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">The confidence in KER-3486 (‘Decrease, circulating testosterone levels’ leads to ‘Increase, nipple retention’) is moderate due to the limited empirical evidence available. The confidence in each of the remaining KERs comprising the AOP is judged as high, with both high biological plausibility and high confidence in empirical evidence. The mechanistic link between KE-286 (‘altered, transcription of genes by AR’) and AO-1786 (‘increase, nipple retention’) is not established, but given the high confidence in the KERs, the overall confidence in the AOP is judged as high.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">The AOP supports the regulatory application of NR as a measure of endocrine disruption relevant for human health and the use of NR as an indicator of anti-androgenicity in environmentally relevant species. </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Even though NR cannot be directly translated to a human endpoint, the AOP is considered human relevant since NR is a clear readout of reduced androgen action and fetal masculinization during development and is considered an ‘adverse outcome’ in OECD test guidelines (TG 443, TG 421, TG 422).</span></span> <span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">The AOP also holds utility for informing on anti-androgenicity more generally, as this modality is highly relevant across mammalian species.</span></span></span></span></p>
<p style="text-align:left"> </p>
</div>
<div id="background">
<h3>Background</h3>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">This AOP is a part of an AOP network for reduced AR activation leading to increased NR in male offspring. The other AOPs in this network are AOP-344 (‘Androgen receptor antagonism leading to increased nipple retention (NR) in male (rodent) offspring’) and AOP 576 (‘5α-reductase inhibition leading to increased nipple retention (NR) in male (rodent) offspring’). The purpose of the AOP network is to organize the well-established evidence for anti-androgenic mechanisms-of-action leading to increased NR. It can be used in the identification and assessment of endocrine disruptors and to inform predictive toxicology, identification of knowledge gaps for investigation and method development. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">This work received funding from the European Food and Safety Authority (EFSA) under Grant agreement no. GP/EFSA/PREV/2022/01.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">The upstream part of the AOP has a broad applicability domain, but the downstream KERs 3487 (‘Decrease, intratesticular testosterone levels leads to increase, nipple retention’), 3486 (‘Decrease, circulating testosterone levels leads to increase, nipple retention’), and 3348 (‘Decrease AR activation leads to increase, nipple retention’) are considered only directly applicable to male rodents (current evidence stems primarily from laboratory rats and mice) during fetal life, restricting the taxonomic applicability of the AOP. Although NR has primarily been investigated in rats and mice, it is biologically plausible that the AOP is applicable to other rodent species. The process of retention of nipples by disruption of androgen programming happens in the fetal life stage, but the AO is detected postnatally. In the males of these species, the nipple anlagen are programmed during fetal development by androgens to regress, leading to no visible nipples in males postnatally, while female rats and mice exhibit nipples. </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">This AOP only contains empirical evidence for the applicability to male rats, but the AOP is considered equally applicable to male mice as these also normally exhibit nipple regression stimulated by androgens. Moreover, the AOP is relevant for other taxa, including humans, as NR in male rodents indicates a reduction in fetal masculinization. NR is therefore included as a mandatory endpoint in multiple OECD Test Guideline studies for developmental and reproductive toxicity and is considered applicable as an adverse outcome to set NOAELs and LOAELs of substances in human health risk assessments</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Uncertainties and inconsistencies</span></span></strong></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">MODERATE:</span></span></strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif"> Testis is the primary organ in males for testosterone synthesis and is required for serum testosterone. Studies with exposure to phthalates show reduced ITT levels and increased nipple retention. </span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Biological plausibility provides strong support for the essentiality of this event, as the testes are the primary testosterone producing organs in male mammals and testosterone is a ligand of the AR and a main driver for normal regression of nipple anlagen in male offspring <span style="color:black">(Goldman et al., 1976)</span>. </span></span></strong></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Indirect evidence of impact of decreased ITT (KE-2298) on decreased circulating T (KE-1690)</span></span></strong></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">• Castrated males have significantly reduced serum T. Although at different life stage, it is highly likely same relationship exists in fetal males, with loss of testosterone from testis resulting in loss of circulating testosterone.</span></span></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Indirect evidence of impact of decreased ITT (KE-2298) on increased nipple retention (AO-1786):</span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">• Numerous rat studies evidence a relationship between reduced intratesticular testosterone levels caused by exposure to phthalates and increased nipple retention in male offspring (see empirical evidence table in KER-3487).</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">MODERATE:</span></span></strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif"> CT is substrate for DHT production, also locally, and numerous studies have shown strong relationships between reduced CT and increased nipple retention. </span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Biological plausibility provides strong support for the essentiality of this event. Testosterone is an AR ligand and a main driver for regression of nipple anlagen in male offspring (Goldman et al., 1976), as well as a substrate for local production of DHT <span style="color:black">(Imperato-McGinley J et al., 1986)</span>.</span></span></strong></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Indirect evidence of the impact of</span></span></strong> <strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">decreased CT (KE-1690) on AR activity in vitro:</span></span></strong></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">• Increasing concentrations of testosterone lead to increasing AR activation in vitro <span style="color:black">(U. S. EPA, 2018)</span> (see also KER-2131).</span></span></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Indirect evidence of impact of decreased CT (KE-1690) on increased nipple retention (AO-1786):</span></span></strong></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">• Exposure to the phthalates DEHP and DBP during prenatal development in rats results in reduced fetal testosterone levels and increased nipple retention in male offspring. Literature review on the relationship has judged the link to be strongly evidenced (See empirical evidence in KER-3348).</span></span></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Indirect evidence of the impact of decreased CT (KE-1690) on increased nipple retention (AO-1786):</span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">• Nipple formation is inhibited in female rat fetuses exposed to testosterone during gestation <span style="color:black">(Goldman et al., 1976)</span>.</span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Inconsistencies in indirect evidence of impact on the AO:</span></span></strong></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">• Some inconsistencies were observed in the empirical evidence regarding increased nipple retention in male pups after in utero exposure to DEHP. However, all inconsistencies could be explained by differences in exposure doses and statistical power (See empirical evidence in KER-3348)</span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">KE-1614</span></span></strong></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Decreased, AR activation</span></span></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">HIGH:</span></span></strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif"> There is experimental evidence from mutant mice insensitive to androgens showing that the AR is essential for nipple retention in male offspring. There is also evidence from exposure studies in animals that substances antagonizing AR induce nipple retention in male pups.</span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Biological plausibility provides strong support for the essentiality of this event, as AR activation is critical for normal regression of nipple anlagen in male embryos. </span></span></strong></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Indirect evidence of the impact of decreased AR activation (KE-1614) on altered gene transcription by AR (KE-286):</span></span></strong></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">• Exposure to known anti-androgenic chemicals induces a changed gene expression pattern, e.g. in neonatal pig ovaries <span style="color:black">(Knapczyk-Stwora et al., 2019)</span>. </span></span></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Direct evidence of the impact of decreased AR activation (KE-1614) on altered gene transcription by AR (KE-286):</span></span></strong></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">• Male AR KO mice have altered gene expression pattern in a broad range of organs (refer to KER-2124).</span></span></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Indirect evidence of impact of decreased AR activation (KE-1614) on increased nipple retention (AO-1786):</span></span></strong></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">• Rat in vivo exposure to vinclozolin, procymidone and flutamide, which are known AR antagonists, leads to increased nipple retention in offspring (see KER-3348).</span></span></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Direct evidence of impact of decreased AR activation (KE-1614) on increased nipple retention (AO-1786):</span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">• Male <em>Tfm</em> mutant mice, which are insensitive to androgens and </span></span><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">believed to be so due to a nonfunctional androgen receptor, present with retained nipples <span style="color:black">(Kratochwil & Schwartz, 1976)</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">KE-286</span></span></strong></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Altered, trans. of genes by AR</span></span></span></span></p>
<p style="text-align:justify"> </p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">LOW:</span></span></strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif"> Strongest support for essentiality comes from biological plausibility. However, exact transcriptional effects and causality remain to be fully characterized. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">Biological plausibility provides support for the essentiality of this event. AR is a nuclear receptor and transcription factor regulating transcription of genes, and androgens, acting through AR, are essential for normal regression of nipple anlagen in male fetuses. </span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">There are currently no AR-responsive genes proven to be causally involved in nipple retention, and it is known that AR </span></span><span style="font-size:10.0pt"><span style="font-family:"Calibri",sans-serif">can also signal through non-genomic actions <span style="color:black">(Leung & Sadar, 2017)</span>.</span></span></span></span></p>
<p style="text-align:center"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Low (biological plausibility)</span></span></span></span></p>
</td>
</tr>
</tbody>
</table>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">*Low level of evidence (some support for essentiality), ** Intermediate level of evidence (evidence for impact on one or more downstream KEs), ***High level of evidence (evidence for impact on AO).</span></span></span></span></p>
<h3>Weight of Evidence Summary</h3>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Confidence in KER-3486 is considered moderate due to the limited empirical evidence available. The confidence in each of the remaining KERs comprising the AOP is judged as high, with both high biological plausibility and high confidence in empirical evidence. The mechanistic link between KE-286 (‘altered, transcription of genes by AR’) and AO-1786 (‘increase, nipple retention’) is not established, but given the high confidence in the KERs, the overall confidence in the AOP is judged as <strong>high</strong>. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">It is well established that testes are the primary testosterone-producing organs in male mammals. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">In vivo</span></span></em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"> studies have shown that exposure to substances that lower intratesticular testosterone also lowers circulating testosterone levels (Svingen et al., 2025).</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">It is well established that testosterone activates the AR. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Direct evidence for this KER is not possible since KE 1614 can currently not be measured and is considered an <em>in vivo</em> effect. Indirect evidence using proxy read-outs of AR activation, either <em>in vitro</em> or <em>in vivo</em> strongly supports the relationship </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Draskau et al., 2024)</span></span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">KER-2124</span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Decrease, AR activation leads to altered, transcription of genes by AR</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">It is well established that the AR regulates gene transcription.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">In vivo</span></span></em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"> animal studies and human genomic profiling show tissue-specific changes to gene expression upon disruption of AR </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Draskau et al., 2024)</span></span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">.</span></span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">It is well established that testicular testosterone is one of the primary androgens responsible for the regression of nipple anlagen in male rodent fetuses</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">In vivo</span></span></em><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"> animal studies support that reductions in fetal testicular testosterone can cause NR in male offspring. Temporal concordance is generally supported, while dose concordance is more weakly suggested. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">It is well established that testosterone is one of the primary androgens responsible for the regression of nipple anlagen in male rodent fetuses </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Two <em>in vivo</em> rat toxicity studies support the relationship and temporal concordance of the KER. Dose concordance is not informed.</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">KER-3348</span></span></strong></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Decrease, AR activation leads to increase, nipple retention</span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">It is well established that activation of AR regression of nipple anlagen in males. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">The empirical evidence includes numerous<em> in vivo</em> toxicity studies showing that decreased AR activation leads to increased NR in male offspring, with few inconsistencies. Empirical evidence combined with theoretical considerations provide some support for dose, temporal, and incidence concordance for the KER, although this evidence is weak and indirect.</span></span></span></span></p>
</td>
</tr>
</tbody>
</table>
<h3>Quantitative Consideration</h3>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">The quantitative understanding of this AOP is judged as low. </span></span></span></span></p>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">A model for phthalate-induced malformations has been developed which aims to predict the degree of NR related to a phthalate’s reduction in <em>ex vivo</em> testosterone production. The model predicted that a 40% reduction in testosterone levels would induce NR in male rats, with increasing number of nipples as testosterone levels decrease </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Gray et al., 2024)</span></span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">.</span></span></span></span></p>
<h2>Considerations for Potential Applications of the AOP (optional)</h2>
<p style="text-align:left"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">The AOP supports the regulatory application of NR as a measure of endocrine disruption relevant for human health and the use of NR as an indicator of anti-androgenicity in environmentally relevant species.<br />
NR is a mandatory endpoint in multiple OECD test guidelines, including TG 443 (extended one-generation reproductive toxicity study) and TGs 421/422 (reproductive toxicity screening studies) (OECD 2025a; OECD 2025b; OECD 2025c). NR can contribute to establishing a No Observed Adverse Effect Level (NOAEL), as outlined in OECD guidance documents No. 43 and 151 (OECD 2008; OECD 2013). The ability to derive a NOAEL for increased NR in male rodent offspring, which can serve as a point of departure for determining human safety thresholds, underscores the regulatory significance of this AOP.<br />
The AOP also holds utility for informing on anti-androgenicity more generally, as this modality is highly relevant across mammalian species (Schwartz et al., 2021).</span></span> </span></span></p>
<p style="text-align:left"> </p>
</div>
<div id="references">
<h2>References</h2>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Chamberlain, N. L., Driver, E. D., & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. <em>Nucleic Acids Research</em>, <em>22</em>(15), 3181–3186. https://doi.org/10.1093/nar/22.15.3181</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Coviello, A. D., Bremner, W. J., Matsumoto, A. M., Herbst, K. L., Amory, J. K., Anawalt, B. D., Yan, X., Brown, T. R., Wright, W. W., Zirkin, B. R., & Jarow, J. P. (2004). Intratesticular Testosterone Concentrations Comparable With Serum Levels Are Not Sufficient to Maintain Normal Sperm Production in Men Receiving a Hormonal Contraceptive Regimen. <em>Journal of Andrology</em>, <em>25</em>(6), 931–938. https://doi.org/10.1002/j.1939-4640.2004.tb03164.x</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Draskau, M. K., Rosenmai, A. K., Bouftas, N., Johansson, H. K. L., Panagiotou, E. M., Holmer, M. L., Elmelund, E., Zilliacus, J., Beronius, A., Damdimopoulou, P., van Duursen, M., & Svingen, T. (2024). AOP Report: An Upstream Network for Reduced Androgen Signaling Leading to Altered Gene Expression of Androgen Receptor–Responsive Genes in Target Tissues. <em>Environmental Toxicology and Chemistry</em>, <em>43</em>(11), 2329–2337. https://doi.org/10.1002/etc.5972</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Gray, L. E. J., Lambright, C. S., Evans, N., Ford, J., & Conley, J. M. (2024). Using targeted fetal rat testis genomic and endocrine alterations to predict the effects of a phthalate mixture on the male reproductive tract. <em>Current Research in Toxicology</em>, <em>7</em>, 100180. https://doi.org/10.1016/j.crtox.2024.100180</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Goldman AS, Shapiro B, & Neumann F. (1976). Role of testosterone and its metabolites in the differentiation of the mammary gland in rats. <em>Endocrinology</em>, <em>99</em>(6), 1490–1495. https://doi.org/10.1210/endo-99-6-1490</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Holmer, M. L., Zilliacus, J., Draskau, M. K., Hlisníková, H., Beronius, A., & Svingen, T. (2024). Methodology for developing data-rich Key Event Relationships for Adverse Outcome Pathways exemplified by linking decreased androgen receptor activity with decreased anogenital distance. <em>Reproductive Toxicology</em>, <em>128</em>, 108662. https://doi.org/10.1016/j.reprotox.2024.108662</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Imperato-McGinley J, Binienda Z, Gedney J, & Vaughan ED Jr. (1986). Nipple differentiation in fetal male rats treated with an inhibitor of the enzyme 5 alpha-reductase: definition of a selective role for dihydrotestosterone. <em>Endocrinology</em>, <em>118</em>(1), 132–137. https://doi.org/10.1210/endo-118-1-132</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Knapczyk-Stwora, K., Nynca, A., Ciereszko, R. E., Paukszto, L., Jastrzebski, J. P., Czaja, E., Witek, P., Koziorowski, M., & Slomczynska, M. (2019). Flutamide-induced alterations in transcriptional profiling of neonatal porcine ovaries. <em>Journal of Animal Science and Biotechnology</em>, <em>10</em>(1), 35. https://doi.org/10.1186/s40104-019-0340-y</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Kratochwil, K., & Schwartz, P. (1976). Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue for testosterone. <em>Proceedings of the National Academy of Sciences</em>, <em>73</em>(11), 4041–4044. https://doi.org/10.1073/pnas.73.11.4041</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Leung, J. K., & Sadar, M. D. (2017). </span></span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. <em>Frontiers in Endocrinology</em>, <em>8</em>. </span></span></span><a href="https://doi.org/10.3389/fendo.2017.00002" style="color:#0563c1; text-decoration:underline"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">https://doi.org/10.3389/fendo.2017.00002</span></span></a></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Miller, W. L., & Auchus, R. J. (2011). </span></span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocrine Reviews, 32(1), 81–151. </span></span></span><a href="https://doi.org/10.1210/er.2010-0013" style="color:#0563c1; text-decoration:underline"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">https://doi.org/10.1210/er.2010-0013</span></span></a> </span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">OECD (2008), Guidance Document on Mammalian Reproductive Toxicity Testing and Assessment, OECD Series on Testing and Assessment, No. 43, OECD Publishing, Paris, https://doi.org/10.1787/d2631d22-en.</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">OECD (2013), Guidance Document Supporting OECD Test Guideline 443 on the Extended One-Generational Reproductive Toxicity Test, OECD Series on Testing and Assessment, No. 151, OECD Publishing, Paris, ENV/JM/MONO(2013)10</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Pedersen, E. B., Christiansen, S., & Svingen, T. (2022). </span></span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">AOP key event relationship report: Linking androgen receptor antagonism with nipple retention. In <em>Current Research in Toxicology</em> (Vol. 3). Elsevier B.V. https://doi.org/10.1016/j.crtox.2022.100085</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Schwartz, C. L., Christiansen, S., Hass, U., Ramhøj, L., Axelstad, M., Löbl, N. M., & Svingen, T. (2021). On the Use and Interpretation of Areola/Nipple Retention as a Biomarker for Anti-androgenic Effects in Rat Toxicity Studies. In <em>Frontiers in Toxicology</em> (Vol. 3). Frontiers Media S.A. https://doi.org/10.3389/ftox.2021.730752</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Svingen, T., Villeneuve, D. L., Knapen, D., Panagiotou, E. M., Draskau, M. K., Damdimopoulou, P., & O’Brien, J. M. (2021). A Pragmatic Approach to Adverse Outcome Pathway Development and Evaluation. <em>Toxicological Sciences</em>, <em>184</em>(2), 183–190. </span></span></span><a href="https://doi.org/10.1093/toxsci/kfab113" style="color:#0563c1; text-decoration:underline"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">https://doi.org/10.1093/toxsci/kfab113</span></span></a></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Svingen T, Elmelund E, Holmer ML, Bindel AO, Holbech H, Draskau MK. AOP report: Adverse Outcome Pathway Network for Developmental Androgen Signalling-Inhibition Leading to Short Anogenital Distance in Male Offspring. Environ Toxicol Chem. 2025 Sep 1:vgaf221. doi: 10.1093/etojnl/vgaf221. Epub ahead of print. PMID: 40888748.</span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Tut, T. G., Ghadessy, F. J., Trifiro, M. A., Pinsky, L., & Yong, E. L. (1997). Long Polyglutamine Tracts in the Androgen Receptor Are Associated with Reduced <em>Trans</em> -Activation, Impaired Sperm Production, and Male Infertility 1. <em>The Journal of Clinical Endocrinology & Metabolism</em>, <em>82</em>(11), 3777–3782. https://doi.org/10.1210/jcem.82.11.4385</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">U. S. EPA. (2018, October). <em>ToxCast & Tox21 AR agonism of testosterone</em>. https://www.epa.gov/comptox-tools/exploring-toxcast-data</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Wolf, C., Lambright, C., Mann, P., Price, M., Cooper, R. L., Ostby, J., & Earl Gray, L. J. (1999). Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p-DDE, and ketoconazole) and toxic substances (dibutyl-and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. <em>Toxicology and Industrial Health</em>, <em>15</em>, 94–118. www.stockton-press.co.uk</span></span></span></span></span></p>
<p style="text-align:justify"><span style="font-size:12pt"><span style="font-family:"Times New Roman",serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">You L, Casanova M, Archibeque-Engle S, Sar M, Fan LQ, & Heck HA. (1998). Impaired male sexual development in perinatal Sprague-Dawley and Long-Evans hooded rats exposed in utero and lactationally to p,p’-DDE. <em>Toxicological Sciences : An Official Journal of the Society of Toxicology</em>, <em>45</em>(2), 162–173. https://doi.org/10.1093/toxsci/45.2.162</span></span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">This key event (KE) is applicable to all male vertebrates with testis that produce testosterone. </span></span></p>
<h4>Key Event Description</h4>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="background-color:white"><span style="color:black">This KE refers to decreased testosterone biosynthesis in the testis (male); i.e. intratesticular testosterone levels. It is therefore considered distinct from KEs describing circulating testosterone levels, or levels in any other tissue or organ of vertebrate animals. It is also distinct from indirect cell-based assays measuring effects on testosterone synthesis, including in vitro Leydig cells. </span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="background-color:white"><span style="color:black">In males, the testis is the primary site of testosterone biosynthesis via the steroidogenesis pathway – an enzymatic pathway converting cholesterol into all the downstream steroid hormones (Miller and Auchus 2010). In mammals, the Leydig cells are considered the primary site of steroidogenesis in the testis. Although generally correct, there is evidence to suggest the involvement of Sertoli cells during fetal stages in e.g. mouse and human testis, but with Leydig cells being sufficient in adult life (O’Donnell et al 2022). </span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="background-color:white"><span style="color:black">Testicular testosterone synthesis is primarily regulated by the hypothalamic-pituitary-gonadal (HPG) axis, with Gonadotropin-releasing hormone (GnRH) from the hypothalamus controlling the secretion of Luteinizing hormone (LH) from the pituitary that ultimately binds to the LH receptors on Leydig cells to stimulate steroidogenesis. Notably, the timing of HPG axis activation during development varies between species. In humans, human chorionic gonadotropin (hCG) act similarly to LH and appear to be critical in stimulating testosterone synthesis in the fetal testis (Huhtaniemi 2025), whereas in the mouse testosterone synthesis in the fetal testis appears to be independent of pituitary gonadotropins even though LH is detectable during late gestation O’Shaughnessy et al 1998). Irrespective of testosterone being stimulated by gonadotropins or occurring de novo, however, it is essential for masculinization of the developing fetus, initiation of puberty, and maintain reproductive, and other, functions in adulthood. </span></span></span></span></p>
<p><span style="font-size:11.0pt"><span style="background-color:white"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Notably, intratesticular testosterone concentration is significantly higher than serum testosterone levels, typically ranging from 30- to 200-fold greater in mammals, including humans (Turner et al 1984; McLachlan et al 2002; Coviello et al 2004). </span></span></span></span></p>
<h4>How it is Measured or Detected</h4>
<p><span style="font-size:10.5pt"><span style="background-color:white"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Testosterone levels can be quantified in testis tissue (ex vivo, in vivo). Methods include traditional immunoassays such as ELISA and RIA, advanced techniques like LC-MS/MS, and liquid scintillation spectrometry following radiolabeling (Shiraishi et al., 2008).</span></span></span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Coviello, A.D., Bremner, W.J., Matsumoto, A.M., Herbst, K.L., Amory, J.K., Anawalt, B.D., Yan, X., Brown, T.R., Wright, W.W., Zirkin, B.R. and Jarow, J.P. (2004). Intratesticular Testosterone Concentrations Comparable With Serum Levels Are Not Sufficient to Maintain Normal Sperm Production in Men Receiving a Hormonal Contraceptive Regimen. J Androl, 25:931-938. <a href="https://doi.org/10.1002/j.1939-4640.2004.tb03164.x" style="color:blue; text-decoration:underline">https://doi.org/10.1002/j.1939-4640.2004.tb03164.x</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Huhtaniemi, I.T. (2025). Luteinizing hormone receptor knockout mouse: What has it taught us? Andrology, In Press. <a href="https://doi.org/10.1111/andr.70000" style="color:blue; text-decoration:underline">https://doi.org/10.1111/andr.70000</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">McLachlan, R.I., O’Donnell, L., Stanton, P.G., Balourdos, G., Frydenberg, M., de Kretser, D.M. and Robertson, D.M. (2002). Effects of testosterone plus medroxyprogesterone acetate on semen quality, reproductive hormones, and germ cell populations in normal young men. J Clin Endocriol Metab, 87:546-556. <a href="https://doi.org/10.1210/jcem.87.2.8231" style="color:blue; text-decoration:underline">https://doi.org/10.1210/jcem.87.2.8231</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Miller, W.L. and Auchus, R.J. (2010). The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr Rev, 32(1):81-151. <a href="https://doi.org/10.1210/er.2010-0013" style="color:blue; text-decoration:underline">https://doi.org/10.1210/er.2010-0013</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">O’Donnell, L., Whiley, P.A.F., and Loveland, K.L. (2022). Activin A and Sertoli Cells: Key to Fetal Testis Steroidogenesis. Front Endocrinol, 13:898876. <a href="https://doi.org/10.3389/fendo.2022.898876" style="color:blue; text-decoration:underline">https://doi.org/10.3389/fendo.2022.898876</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">O’Shaughnessy, P.J., Baker, P., Sohnius, U., Haavisto, A.M., Charlton, H.M. and Huhtaniemi, I. (1998). Fetal development of Leydig cell activity in the mouse is independent of pituitary gonadotroph function. Endocrinology, 139:1141-1146. <a href="https://doi.org/10.1210/endo.139.3.5788" style="color:blue; text-decoration:underline">https://doi.org/10.1210/endo.139.3.5788</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Shiraishi, S., Lee, P. W. N., Leung, A., Goh, V. H. H., Swerdloff, R. S., & Wang, C. (2008). Simultaneous Measurement of Serum Testosterone and Dihydrotestosterone by Liquid Chromatography–Tandem Mass Spectrometry. Clinical Chemistry, 54(11), 1855–1863. <a href="https://doi.org/10.1373/clinchem.2008.103846" style="color:blue; text-decoration:underline">https://doi.org/10.1373/clinchem.2008.103846</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Turner, T.T., Jones, C.E., Howards, S.S., Ewing, L.L., Zegeye, B. and Gunsalus, G.L. (1984). On the androgen microenvironment of maturing spermatozoa. Endocrinology, 115:1925-1932. <a href="https://doi.org/10.1210/endo-115-5-1925" style="color:blue; text-decoration:underline">https://doi.org/10.1210/endo-115-5-1925</a> </span></span></p>
<td><a href="/aops/307">Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/526">Aop:526 - Decreased, Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII) leads to Impaired, Spermatogenesis</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/124">Aop:124 - HMG-CoA reductase inhibition leading to decreased fertility</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/18">Aop:18 - PPARα activation in utero leading to impaired fertility in males</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/51">Aop:51 - PPARα activation leading to impaired fertility in adult male rodents </a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/496">Aop:496 - Androgen receptor agonism leading to reproduction dysfunction (in zebrafish)</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/64">Aop:64 - Glucocorticoid Receptor (GR) Mediated Adult Leydig Cell Dysfunction Leading to Decreased Male Fertility</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/120">Aop:120 - Inhibition of 5α-reductase leading to Leydig cell tumors (in rat)</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/288">Aop:288 - Inhibition of 17α-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to birth reproductive defects (cryptorchidism) in male (mammals)</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/570">Aop:570 - Decreased testosterone synthesis leading to hypospadias in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/575">Aop:575 - Decreased testosterone synthesis leading to increased nipple retention (NR) in male (rodent) offspring</a></td>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">This key event (KE) is applicable to all mammals, as the synthesis and role of testosterone are evolutionarily conserved (Vitousek et al., 2018). Both sexes produce and require testosterone, which plays critical roles throughout life, from development to adulthood; albeit there are differences in lief stages when testosterone exert specific effects and function (Luetjens & Weinbauer, 2012; Naamneh Elzenaty et al., 2022). Accordingly, this KE applies to both males and females across all life stages, but life stage should be considered when embedding in AOPs. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Notably, the key enzymes involved in testosterone production first appeared in the common ancestor of amphioxus and vertebrates (Baker, 2011). This suggests that the KE has a broader domain of applicability, encompassing non-mammalian vertebrates. AOP developers are encouraged to integrate additional knowledge to expand its relevance beyond mammals to other vertebrates.</span></span></p>
<h4>Key Event Description</h4>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="background-color:white"><span style="color:black">Testosterone is an endogenous steroid hormone that acts by binding the androgen receptor (AR) in androgen-responsive tissues (Murashima et al., 2015). As with all steroid hormones, testosterone is produced through steroidogenesis, an enzymatic pathway converting cholesterol into all the downstream steroid hormones. Briefly, androstenedione or androstenediol is converted to testosterone by the enzymes 17β-hydroxysteroid dehydrogenase (HSD) or 3β-HSD, respectively. Testosterone can then be converted to the more potent androgen, dihydrotestosterone (DHT) by 5α-reductase, or aromatized by CYP19A1 (Aromatase) into estrogens. Testosterone secreted in blood circulation can be found free or bound to SHBG or albumin (Trost & Mulhall, 2016). </span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="background-color:white"><span style="color:black">Testosterone is produced mainly by the testes (in males), ovaries (in females) and to a lesser degree in the adrenal glands. The output of testosterone from different tissues varies with life stages. During fetal development testosterone is crucial for the differentiation of male reproductive tissues and the overall male phenotype. In adulthood, testosterone synthesis is controlled by the Hypothalamus-Pituitary-Gonadal (HPG) axis. GnRH is released from the hypothalamus inducing LH pulses secreted by the anterior pituitary. This LH surge leads to increased testosterone production, both in testes (males) and ovaries (females). If testosterone reaches low levels, this axis is once again stimulated to increase testosterone synthesis. This feedback loop is essential for maintenance of appropriate testosterone levels (Chandrashekar & Bartke, 1998; Ellis et al., 1983; Rey, 2021).</span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="background-color:white"><span style="color:black">By disrupting e.g. steroidogenesis or the HPG-axis, testosterone synthesis or homeostasis may be disrupted and can lead to less testosterone being synthesized and released into circulation. </span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><u><span style="background-color:white"><span style="color:black">General role in biology</span></span></u></span></span></p>
<p style="text-align:justify"><span style="font-size:11.0pt"><span style="background-color:white"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Androgens are essential hormones responsible for the development of the male phenotype during fetal life and for sexual maturation at puberty. In adulthood, androgens remain essential for the maintenance of male reproductive function and behavior but is also essential for female fertility. Apart from their effects on reproduction, androgens affect a wide variety of non-reproductive tissues such as skin, bone, muscle, and brain (Heemers et al 2006). Androgens, principally testosterone and DHT, exert most of their effects by interacting with the AR (Murashima et al 2015). </span></span></span></span></p>
<h4>How it is Measured or Detected</h4>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="font-size:10.5pt"><span style="background-color:white"><span style="color:black">Testosterone levels can be quantified in serum (in vivo), cell culture medium (in vitro), or tissue (ex vivo, in vitro). Methods include traditional immunoassays such as ELISA and RIA, advanced techniques like LC-MS/MS, and liquid scintillation spectrometry following radiolabeling (Shiraishi et al., 2008).</span></span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="font-size:10.5pt"><span style="background-color:white"><span style="color:black">The H295R Steroidogenesis Assay (OECD TG 456) is (currently; anno 2025) primarily used to measure estradiol and testosterone production. This validated OECD test guideline uses adrenal H295R cells, with hormone levels measured in the cell culture medium (OECD, 2011). H295R adrenocortical carcinoma cells express the key enzymes and hormones of the steroidogenic pathway, enabling broad analysis of steroidogenesis disruption by quantifying hormones in the medium using LC-MS/MS. Initially designed to assess testosterone and estradiol levels, the assay now extends to additional steroid hormones, such as progesterone and pregnenolone. The U.S. EPA’s ToxCast program further advanced this method, enabling high-throughput measurement of 11 steroidogenesis-related hormones (Haggard et al., 2018). While the H295R assay indirectly reflects disruptions in overall steroidogenesis (e.g., changes in testosterone levels), it does not provide mechanistic insights.</span></span></span></span></span></p>
<p><span style="font-size:10.5pt"><span style="background-color:white"><span style="font-family:"Calibri",sans-serif"><span style="color:black">Testosterone can be measured by immunoassays and by isotope-dilution gas chromatography-mass spectrometry in serum (Taieb et al., 2003; Paduch et al., 2014). Testosterone levels may also be measured by: Fish Lifecycle Toxicity Test (FLCTT) (US EPA OPPTS 850.1500), Male pubertal assay (PP Male Assay) (US EPA OPPTS 890.1500), OECD TG 441: Hershberger Bioassay in Rats (H Assay).</span></span></span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Baker, M.E. (2011). Insights from the structure of estrogen receptor into the evolution of estrogens: implications for endocrine disruption. Biochem Pharmacol, 82(1), 1-8. <a href="https://doi.org/10.1016/j.bcp.2011.03.008" style="color:blue; text-decoration:underline">https://doi.org/10.1016/j.bcp.2011.03.008</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Chandrashekar, V., & Bartke, A. (1998). The Role of Growth Hormone in the Control of Gonadotropin Secretion in Adult Male Rats*. Endocrinology, 139(3), 1067–1074. <a href="https://doi.org/10.1210/endo.139.3.5816" style="color:blue; text-decoration:underline">https://doi.org/10.1210/endo.139.3.5816</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Ellis, G. B., Desjardins, C., & Fraser, H. M. (1983). Control of Pulsatile LH Release in Male Rats. Neuroendocrinology, 37(3), 177–183. <a href="https://doi.org/10.1159/000123540" style="color:blue; text-decoration:underline">https://doi.org/10.1159/000123540</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Haggard, D. E., Karmaus, A. L., Martin, M. T., Judson, R. S., Setzer, R. W., & Paul Friedman, K. (2018). High-Throughput H295R Steroidogenesis Assay: Utility as an Alternative and a Statistical Approach to Characterize Effects on Steroidogenesis. Toxicological Sciences, 162(2), 509–534. <a href="https://doi.org/10.1093/toxsci/kfx274" style="color:blue; text-decoration:underline">https://doi.org/10.1093/toxsci/kfx274</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Heemers, H. V, Verhoeven, G., & Swinnen, J. V. (2006). Androgen activation of the sterol regulatory element-binding protein pathway: Current insights. Molecular Endocrinology (Baltimore, Md.), 20(10), 2265–77. doi:10.1210/me.2005-0479 </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Luetjens, C. M., & Weinbauer, G. F. (2012). Testosterone: biosynthesis, transport, metabolism and (non-genomic) actions. In Testosterone (pp. 15–32). Cambridge University Press. <a href="https://doi.org/10.1017/CBO9781139003353.003" style="color:blue; text-decoration:underline">https://doi.org/10.1017/CBO9781139003353.003</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Murashima, A., Kishigami, S., Thomson, A., & Yamada, G. (2015). Androgens and mammalian male reproductive tract development. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1849(2), 163–170. <a href="https://doi.org/10.1016/j.bbagrm.2014.05.020" style="color:blue; text-decoration:underline">https://doi.org/10.1016/j.bbagrm.2014.05.020</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Naamneh Elzenaty, R., du Toit, T., & Flück, C. E. (2022). Basics of androgen synthesis and action. Best Practice & Research Clinical Endocrinology & Metabolism, 36(4), 101665. <a href="https://doi.org/10.1016/j.beem.2022.101665" style="color:blue; text-decoration:underline">https://doi.org/10.1016/j.beem.2022.101665</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Paduch, D. A., Brannigan, R. E., Fuchs, E. F., Kim, E. D., Marmar, J. L., & Sandlow, J. I. (2014). The laboratory diagnosis of testosterone deficiency. Urology, 83(5), 980–8. <a href="https://doi.org/10.1016/j.urology.2013.12.024" style="color:blue; text-decoration:underline">https://doi.org/10.1016/j.urology.2013.12.024</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Rey, R. A. (2021). The Role of Androgen Signaling in Male Sexual Development at Puberty. Endocrinology, 162(2). <a href="https://doi.org/10.1210/endocr/bqaa215" style="color:blue; text-decoration:underline">https://doi.org/10.1210/endocr/bqaa215</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Shiraishi, S., Lee, P. W. N., Leung, A., Goh, V. H. H., Swerdloff, R. S., & Wang, C. (2008). Simultaneous Measurement of Serum Testosterone and Dihydrotestosterone by Liquid Chromatography–Tandem Mass Spectrometry. Clinical Chemistry, 54(11), 1855–1863. <a href="https://doi.org/10.1373/clinchem.2008.103846" style="color:blue; text-decoration:underline">https://doi.org/10.1373/clinchem.2008.103846</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Taieb, J., Mathian, B., Millot, F., Patricot, M.-C., Mathieu, E., Queyrel, N., … Boudou, P. (2003). Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography-mass spectrometry in sera from 116 men, women, and children. Clinical Chemistry, 49(8), 1381–95.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Trost, L. W., & Mulhall, J. P. (2016). Challenges in Testosterone Measurement, Data Interpretation, and Methodological Appraisal of Interventional Trials. The Journal of Sexual Medicine, 13(7), 1029–1046. <a href="https://doi.org/10.1016/j.jsxm.2016.04.068" style="color:blue; text-decoration:underline">https://doi.org/10.1016/j.jsxm.2016.04.068</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">Vitousek, M. N., Johnson, M. A., Donald, J. W., Francis, C. D., Fuxjager, M. J., Goymann, W., Hau, M., Husak, J. F., Kircher, B. K., Knapp, R., Martin, L. B., Miller, E. T., Schoenle, L. A., Uehling, J. J., & Williams, T. D. (2018). HormoneBase, a population-level database of steroid hormone levels across vertebrates. Scientific Data, 5(1), 180097. <a href="https://doi.org/10.1038/sdata.2018.97" style="color:blue; text-decoration:underline">https://doi.org/10.1038/sdata.2018.97</a> </span></span></p>
<td><a href="/aops/288">Aop:288 - Inhibition of 17α-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to birth reproductive defects (cryptorchidism) in male (mammals)</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/305">Aop:305 - 5α-reductase inhibition leading to short anogenital distance (AGD) in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/306">Aop:306 - Androgen receptor (AR) antagonism leading to short anogenital distance (AGD) in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/307">Aop:307 - Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/344">Aop:344 - Androgen receptor (AR) antagonism leading to nipple retention (NR) in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/372">Aop:372 - Androgen receptor antagonism leading to testicular cancer </a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/477">Aop:477 - Androgen receptor (AR) antagonism leading to hypospadias in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/345">Aop:345 - Androgen receptor (AR) antagonism leading to decreased fertility in females</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/111">Aop:111 - Decrease in androgen receptor activity leading to Leydig cell tumors (in rat)</a></td>
<td>MolecularInitiatingEvent</td>
</tr>
<tr>
<td><a href="/aops/570">Aop:570 - Decreased testosterone synthesis leading to hypospadias in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/571">Aop:571 - 5α-reductase inhibition leading to hypospadias in male (mammalian) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/575">Aop:575 - Decreased testosterone synthesis leading to increased nipple retention (NR) in male (rodent) offspring</a></td>
<td>KeyEvent</td>
</tr>
<tr>
<td><a href="/aops/576">Aop:576 - 5α-reductase inhibition leading to increased nipple retention (NR) in male (rodent) offspring</a></td>
<p><span style="font-size:11pt">This KE is considered broadly applicable across mammalian taxa as all mammals express the AR in numerous cells and tissues where it regulates gene transcription required for developmental processes and functions. <span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<h4>Key Event Description</h4>
<p><span style="font-size:11pt">This KE refers to decreased activation of the androgen receptor (AR) as occurring in complex biological systems such as tissues and organs in vivo. It is thus considered distinct from KEs describing either blocking of AR or decreased androgen synthesis.</span></p>
<p style="text-align:justify"><span style="font-size:11pt">The AR is a nuclear transcription factor with canonical AR activation regulated by the binding of the androgens such as testosterone or dihydrotestosterone (DHT). Thus, AR activity can be decreased by reduced levels of steroidal ligands (testosterone, DHT) or the presence of compounds interfering with ligand binding to the receptor <span style="color:black">(Davey & Grossmann, 2016; Gao et al., 2005)</span>.</span></p>
<p style="text-align:justify"><span style="font-size:11pt">In the inactive state, AR is sequestered in the cytoplasm of cells by molecular chaperones. In the classical (genomic) AR signaling pathway, AR activation causes dissociation of the chaperones, AR dimerization and translocation to the nucleus to modulate gene expression. AR binds to the androgen response element (ARE) <span style="color:black">(Davey & Grossmann, 2016; Gao et al., 2005)</span>. <span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Notably, for transcriptional regulation the AR is closely associated with other co-factors that may differ between cells, tissues and life stages. In this way, the functional consequence of AR activation is cell- and tissue-specific. This dependency on co-factors such as the SRC proteins also means that stressors affecting recruitment of co-activators to AR can result in decreased AR activity (Heinlein & Chang, 2002).</span></span></span></p>
<p style="text-align:justify"><span style="font-size:11pt">In the inactive state, AR is sequestered in the cytoplasm of cells by molecular chaperones. In the classical (genomic) AR signaling pathway, AR activation causes dissociation of the chaperones, AR dimerization and translocation to the nucleus to modulate gene expression. AR binds to the androgen response element (ARE) <span style="color:black">(Davey & Grossmann, 2016; Gao et al., 2005)</span>. <span style="font-family:Arial,Helvetica,sans-serif">Notably, for transcriptional regulation the AR is closely associated with other co-factors that may differ between cells, tissues and life stages. In this way, the functional consequence of AR activation is cell- and tissue-specific. This dependency on co-factors such as the SRC proteins also means that stressors affecting recruitment of co-activators to AR can result in decreased AR activity (Heinlein & Chang, 2002), as shown for the pyrethroid cypermethrin (Wang et al., 2016).</span></span></p>
<p style="text-align:justify"><span style="font-size:11pt">Ligand-bound AR may also associate with cytoplasmic and membrane-bound proteins to initiate cytoplasmic signaling pathways with other functions than the nuclear pathway. Non-genomic AR signaling includes association with Src kinase to activate MAPK/ERK signaling and activation of the PI3K/Akt pathway. Decreased AR activity may therefore be a decrease in the genomic and/or non-genomic AR signaling pathways <span style="color:black">(Leung & Sadar, 2017)</span>.</span></p>
<h4>How it is Measured or Detected</h4>
<p><span style="font-size:11pt">This KE specifically focuses on decreased <em>in vivo</em> activation, with most methods that can be used to measure AR activity carried out <em>in vitro</em>. They provide indirect information about the KE and are described in lower tier MIE/KEs (see for example MIE/KE-26 for AR antagonism, KE-1690 for decreased T levels and KE-1613 for decreased dihydrotestosterone levels). </span><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Assays may in the future be developed to measure AR activation in mammalian organisms. </span></span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Davey, R. A., & Grossmann, M. (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. <em>The Clinical Biochemist. Reviews</em>, <em>37</em>(1), 3–15.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gao, W., Bohl, C. E., & Dalton, J. T. (2005). Chemistry and structural biology of androgen receptor. <em>Chemical Reviews</em>, <em>105</em>(9), 3352–3370. https://doi.org/10.1021/cr020456u</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Heinlein, C. A., & Chang, C. (2002). Androgen Receptor (AR) Coregulators: An Overview. https://academic.oup.com/edrv/article/23/2/175/2424160</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Leung, J. K., & Sadar, M. D. (2017). Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. <em>Frontiers in Endocrinology</em>, <em>8</em>. <a href="https://doi.org/10.3389/fendo.2017.00002" style="color:#0563c1; text-decoration:underline">https://doi.org/10.3389/fendo.2017.00002</a></span></span></p>
<p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:12px">Wang Q, Zhou JL, Wang H, Ju Q, Ding Z, Zhou XL, Ge X, Shi QM, Pan C, Zhang JP, Zhang MR, Yu HM, Xu LC. (2016). Inhibition effect of cypermethrin mediated by co-regulators SRC-1 and SMRT in interleukin-6-induced androgen receptor activation. <em>Chemosphere</em>. 158:24-9. doi: 10.1016/j.chemosphere.2016.05.053</span></span></p>
<table>
<tbody>
<tr>
<td colspan="1" rowspan="1">
<p> </p>
</td>
<td colspan="1" rowspan="1">
<p> </p>
</td>
</tr>
</tbody>
</table>
<h4><a href="/events/286">Event: 286: Altered, Transcription of genes by the androgen receptor</a></h4>
<h5>Short Name: Altered, Transcription of genes by the AR</h5>
<p>Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the transactivation domain show more divergence, which may affect AR-mediated gene regulation across species (Davey and Grossmann 2016). Despite certain inter-species differences, AR function mediated through gene expression is highly conserved, with mutation studies from both humans and rodents showing strong correlation for AR-dependent development and function (Walters et al. 2010). </p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">This KE is considered broadly applicable across mammalian taxa, sex and developmental stages, as all mammals express the AR in numerous cells and tissues where it regulates gene transcription required for developmental processes and function. </span><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">It is, however, acknowledged that this KE most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<h4>Key Event Description</h4>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">This KE refers to transcription of genes by the androgen receptor (AR) as occurring in complex biological systems such as tissues and organs <em>in vivo</em>. </span><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Rather than measuring individual genes, this KE aims to capture patterns of effects at transcriptome level in specific target cells/tissues. In other words, it can be replaced by specific KEs for individual adverse outcomes as information becomes available, for example the transcriptional toxicity response in prostate tissue for AO: prostate cancer, perineum tissue for AO: reduced AGD, etc. AR regulates many genes that differ between tissues and life stages and, importantly, different gene transcripts within individual cells can go in either direction since AR can act as both transcriptional activator and suppressor. Thus, the ‘directionality’ of the KE cannot be either reduced or increased, but instead describe an altered transcriptome. </span></span></span></p>
<p><u>The Androgen Receptor and its function</u></p>
<p><span style="font-size:12.0pt">The AR belongs to the steroid hormone nuclear receptor family. It is a ligand-activated transcription factor with three domains: the N-terminal domain, the DNA-binding domain, and the ligand-binding domain with the latter being the most evolutionary conserved (Davey and Grossmann 2016). </span>Androgens <span style="font-size:12.0pt">(such as dihydrotestosterone and testosterone) are AR ligands and </span>act by binding to the AR in androgen-responsive tissues (Davey and Grossmann 2016). Human AR mutations and mouse knockout models have established a fundamental role for AR in masculinization and spermatogenesis (Maclean et al.; Walters et al. 2010; Rana et al. 2014). The AR is also expressed in many other tissues such as bone, muscles, ovaries and within the immune system (Rana et al. 2014).</p>
<p> </p>
<p><u>Altered transcription of genes by the AR as a Key Event</u></p>
<p>Upon activation by ligand-binding, the AR translocates from the cytoplasm to the cell nucleus, dimerizes, binds to androgen response elements in the DNA to modulate gene transcription (Davey and Grossmann 2016). The transcriptional targets vary between cells and tissues, as well as with developmental stages and is also dependent on available co-regulators (Bevan and Parker 1999; Heemers and Tindall 2007). <span style="font-size:12.0pt">It should also be mentioned that the AR can work in other ‘non-canonial’ ways such as non-genomic signaling, and ligand-independent activation (Davey & Grossmann, 2016; Estrada et al, 2003; Jin et al, 2013). </span></p>
<p>A large number of known, and proposed, target genes of AR canonical signaling have been identified by analysis of gene expression following treatments with AR agonists (Bolton et al. 2007; Ngan et al. 2009<span style="font-size:12.0pt">, Jin et al. 2013</span>).</p>
<h4>How it is Measured or Detected</h4>
<p>Altered transcription of genes by the AR can be measured by measuring the transcription level of known downstream target genes by RT-qPCR or other transcription analyses approaches, e.g. transcriptomics.</p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">Since this KE aims to capture AR-mediated transcriptional patterns of effect, downstream bioinformatics analyses will typically be required to identify and compare effect footprints. Clusters of genes can be statistically associated with, for example, biological process terms or gene ontology terms relevant for AR-mediated signaling. Large transcriptomics data repositories can be used to compare transcriptional patterns between chemicals, tissues, and species (e.g. TOXsIgN (Darde et al, 2018a; Darde et al, 2018b), comparisons can be made to identified sets of AR ‘biomarker’ genes (e.g. as done in (Rooney et al, 2018)), and various methods can be used e.g. connectivity mapping (Keenan et al, 2019).</span></span></span></p>
<h4>References</h4>
<p>Bevan C, Parker M (1999) The role of coactivators in steroid hormone action. Exp. Cell Res. 253:349–356</p>
<p>Bolton EC, So AY, Chaivorapol C, et al (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21:2005–2017. doi: 10.1101/gad.1564207</p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Calibri",sans-serif">Darde, T. A., Gaudriault, P., Beranger, R., Lancien, C., Caillarec-Joly, A., Sallou, O., et al. </span><span style="font-family:"Calibri",sans-serif">(2018a). TOXsIgN: a cross-species repository for toxicogenomic signatures. Bioinformatics 34, 2116–2122. doi:10.1093/bioinformatics/bty040.</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Calibri",sans-serif">Darde, T. A., Chalmel, F., and Svingen, T. (2018b). </span><span style="font-family:"Calibri",sans-serif">Exploiting advances in transcriptomics to improve on human-relevant toxicology. Curr. Opin. Toxicol. 11–12, 43–50. doi:10.1016/j.cotox.2019.02.001.</span></span></span></p>
<p>Davey RA, Grossmann M (2016) Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 37:3–15</p>
<p>Estrada M, Espinosa A, Müller M, Jaimovich E (2003) Testosterone Stimulates Intracellular Calcium Release and Mitogen-Activated Protein Kinases Via a G Protein-Coupled Receptor in Skeletal Muscle Cells. Endocrinology 144:3586–3597. doi: 10.1210/en.2002-0164</p>
<p>Heemers H V., Tindall DJ (2007) Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28:778–808</p>
<p><span style="font-size:11pt"><span style="font-size:12.0pt">Jin, Hong Jian, Jung Kim, and Jindan Yu. 2013. “Androgen Receptor Genomic Regulation.” Translational Andrology and Urology 2(3):158–77. doi: 10.3978/j.issn.2223-4683.2013.09.01</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Calibri",sans-serif">Keenan, A. B., Wojciechowicz, M. L., Wang, Z., Jagodnik, K. M., Jenkins, S. L., Lachmann, A., et al. (2019). Connectivity Mapping: Methods and Applications. Annu. Rev. Biomed. Data Sci. 2, 69–92. doi:10.1146/ANNUREV-BIODATASCI-072018-021211.</span></span></span></p>
<p>Maclean HE, Chu S, Warne GL, Zajact JD Related Individuals with Different Androgen Receptor Gene Deletions</p>
<p>MacLeod DJ, Sharpe RM, Welsh M, et al (2010) Androgen action in the masculinization programming window and development of male reproductive organs. In: International Journal of Andrology. Blackwell Publishing Ltd, pp 279–287</p>
<p>Ngan S, Stronach EA, Photiou A, et al (2009) Microarray coupled to quantitative RT&ndash;PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 28:2051–2063. doi: 10.1038/onc.2009.68<span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><a name="_Hlk148352925"></a></span></span></p>
<p>Rana K, Davey RA, Zajac JD (2014) Human androgen deficiency: Insights gained from androgen receptor knockout mouse models. Asian J. Androl. 16:169–177</p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Calibri",sans-serif">Rooney, J. P., Chorley, B., Kleinstreuer, N., and Corton, J. C. (2018). Identification of Androgen Receptor Modulators in a Prostate Cancer Cell Line Microarray Compendium. Toxicol. Sci. 166, 146–162. doi:10.1093/TOXSCI/KFY187.</span></span></span></p>
<p>Walters KA, Simanainen U, Handelsman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 16:543–558. doi: 10.1093/humupd/dmq003</p>
<p><span style="font-size:12.0pt"><span style="font-family:"Times New Roman",serif">The applicability domain of NR is limited to male laboratory strains of rats and mice from birth to juvenile age.</span></span></p>
<h4>Key Event Description</h4>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="font-size:12.0pt"><span style="font-family:"Times New Roman",serif">In common laboratory strains of rats and mice, females typically have 6 (rats) or 5 (mice) pairs of nipples along the bilateral milk lines. In contrast, male rats and mice do not have nipples. This is unlike e.g., humans where both sexes have 2 nipples <span style="color:black">(Schwartz et al., 2021)</span>.</span></span></span></span></p>
<p><span style="font-size:12.0pt"><span style="font-family:"Times New Roman",serif">In laboratory rats, high levels of dihydrotestosterone (DHT) induce regression of the nipples in males (Imperato-McGinley & Gautier, 1986; Kratochwil, 1977; Kratochwil & Schwartz, 1976). Females, in the absence of this DHT surge, retain their nipples. This relationship has also been shown in numerous rat studies with perinatal exposure to anti-androgenic chemicals <span style="color:black">(Schwartz et al., 2021)</span></span></span>. <span style="font-size:12.0pt"><span style="font-family:"Times New Roman",serif">Hence, if juvenile male rats and mice possess nipples, it is considered a sign of perturbed androgen action early in life.</span></span></p>
<p><span style="font-size:12.0pt"><span style="font-family:"Times New Roman",serif">This KE was first published by Pedersen et al (2022). </span></span></p>
<h4>How it is Measured or Detected</h4>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="font-size:12.0pt"><span style="font-family:"Times New Roman",serif">Nipple retention (NR) is visually assessed, ideally on postnatal day (PND) 12/13 <span style="color:black">(OECD, 2018; Schwartz et al., 2021). However, PND 14 is also an accepted stage of examination (OECD, 2013)</span>. Depending on animal strain, the time when nipples become visible can vary, but the assessment of NR in males should be conducted when nipples are visible in their female littermates <span style="color:black">(OECD, 2013)</span>.</span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="font-size:12.0pt"><span style="font-family:"Times New Roman",serif">Nipples are detected as dark spots (or shadows) called areolae, which resemble precursors to a nipple rather than a fully developed nipple. The dark area may or may not display a nipple bud <span style="color:black">(Hass et al., 2007)</span>. Areolae typically emerge along the milk lines of the male pups corresponding to where female pups display nipples. Fur growth may challenge detection of areolae after PND 14/15. Therefore, the NR assessment should be conducted prior to excessive fur growth. Ideally, all pups in a study are assessed on the same postnatal day to minimize variation due to maturation level <span style="color:black">(OECD, 2013)</span>. </span></span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif"><span style="font-size:12.0pt"><span style="font-family:"Times New Roman",serif">NR is occasionally observed in controls. Hence, accurate assessment of NR in controls is needed to detect substance-induced effects on masculine development <span style="color:black">(Schwartz et al., 2021)</span>. It is recommended by the OECD guidance documents 43 and 151 to record NR as a quantitative number rather than a qualitative measure (present/absent or yes/no response). This allows for more nuanced analysis of results, e.g., high control values may be recognized <span style="color:black">(OECD, 2013, 2018)</span>. Studies reporting quantitative measures of NR are therefore considered stronger in terms of weight of evidence.</span></span></span></span></p>
<p><span style="font-size:12.0pt"><span style="font-family:"Times New Roman",serif">Reproducibility of NR results is challenged by the measure being a visual assessment prone to a degree of subjectivity. Thus, NR should be assessed and scored blinded to exposure groups and ideally be performed by the same person(s) within the same study.</span></span></p>
<h4>Regulatory Significance of the AO</h4>
<p><span style="font-size:12.0pt"><span style="font-family:"Times New Roman",serif">NR is recognized by the OECD as a relevant measure for anti-androgenic effects and is mandatory in the test guidelines Extended One Generation Reproductive Toxicity Study, TG 443 <span style="color:black">(OECD, 2018) </span>and the two screening studies for reproductive toxicity, TGs 421/422 <span style="color:black">(OECD, 2016a, 2016b)</span>. The endpoint is also described in the guidance documents 43 <span style="color:black">(OECD, 2008)</span> and 151 <span style="color:black">(OECD, 2013)</span>. Furthermore, NR data can be used in chemical risk assessment for setting the No Observed Adverse Effect Level (NOAEL) as stated in the OECD guidance document 151 <span style="color:black">(OECD, 2013)</span>: “<em>A statistically significant change in nipple retention should be evaluated similarly to an effect on AGD as both endpoints indicate an adverse effect of exposure and should be considered in setting a NOAEL</em>”.</span></span></p>
<h4>References</h4>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Hass, U., Scholze, M., Christiansen, S., Dalgaard, M., Vinggaard, A. M., Axelstad, M., Metzdorff, S. B., & Kortenkamp, A. (2007). Combined exposure to anti-androgens exacerbates disruption of sexual differentiation in the rat. <em>Environmental Health Perspectives</em>, <em>115</em>(suppl 1), 122–128.</span></span></p>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Imperato-McGinley, J., Binienda, Z., Gedney, J., & Vaughan, E. D. (1986). Nipple Differentiation in Fetal Male Rats Treated with an Inhibitor of the Enzyme 5α-Reductase: Definition of a Selective Role for Dihydrotestosterone. <em>Endocrinology</em>, <em>118</em>(1), 132–137.</span></span></p>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Kratochwil, K. (1977). Development and Loss of Androgen Responsiveness in the Embryonic Rudiment of the Mouse Mammary Gland. <em>DEVELOPMENTAL BIOLOGY</em>, <em>61</em>, 358–365.</span></span></p>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">OECD. (2008). Guidance document 43 on mammalian reproductive toxicity testing and assessment. <em>Environment, Health and Safety Publications</em>, <em>16</em>(43).</span></span></p>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">OECD. (2013). Guidance document supporting OECD test guideline 443 on the extended one-generation reproductive toxicity test. <em>Environment, Health and Safety Publications</em>, <em>10</em>(151).</span></span></p>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">OECD. (2016a). Test Guideline 421: Reproduction/Developmental Toxicity Screening Test. <em>OECD Guidelines for the Testing of Chemicals</em>, <em>421</em>. </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><a href="http://www.oecd.org/termsandconditions/" style="color:#0563c1; text-decoration:underline">http://www.oecd.org/termsandconditions/</a></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:"Calibri",sans-serif">OECD. (2016b). Test Guideline 422: Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test. <em>OECD Guidelines for the Testing of Chemicals</em>, <em>422</em>. <a href="http://www.oecd.org/termsandconditions/" style="color:#0563c1; text-decoration:underline">http://www.oecd.org/termsandconditions/</a> </span></span></p>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">OECD. (2018). Test Guideline 443: Extended one-generation reproductive toxicity study. <em>OECD Guidelines for the Testing of Chemicals</em>, <em>443</em>. </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><a href="http://www.oecd.org/termsandconditions/" style="color:#0563c1; text-decoration:underline">http://www.oecd.org/termsandconditions/</a></span></span></p>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Pedersen, E. B., Christiansen, S., & Svingen, T. (2022). AOP key event relationship report: Linking androgen receptor antagonism with nipple retention. Current Research in Toxicology, 3, 100085.</span></span></p>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Schwartz, C. L., Christiansen, S., Hass, U., Ramhøj, L., Axelstad, M., Löbl, N. M., & Svingen, T. (2021). On the Use and Interpretation of Areola/Nipple Retention as a Biomarker for Anti-androgenic Effects in Rat Toxicity Studies. <em>Frontiers in Toxicology</em>, <em>3</em>, 730752.</span></span></p>
<h2>Appendix 2</h2>
<h2>List of Key Event Relationships in the AOP</h2>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The KER is assessed applicable to mammals, as testicular testosterone synthesis is common for all mammals. It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">This KER is only applicable to males, as testes are only found in males.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">This KER is applicable to all life stages. Once formed, the testes produce and secrete testosterone during fetal development and throughout postnatal life, although testosterone levels do vary between life stages (Vesper et al., 2015).</span></span></p>
<h4>Key Event Relationship Description</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">This KE describes a decrease in intratesticular testosterone production leading to a decrease in circulating levels of testosterone. Intratesticular testosterone can be measured in whole testicular tissue samples by testing <em>ex vivo</em> testicular testosterone production, and circulating testosterone is measured in plasma or serum. In males, the testes produce and secrete the majority of the circulating testosterone, with only a small contribution from the adrenal gland (Naamneh Elzenaty et al., 2022). In mammals, intratesticular testosterone levels are 30- to 100-fold higher than serum testosterone levels </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Coviello et al., 2004; McLachlan et al., 2002; Turner et al., 1984)</span></span><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">. Reducing testicular testosterone will consequently lead to a reduction in circulating levels as well.</span></span></p>
<h4>Evidence Supporting this KER</h4>
<strong>Biological Plausibility</strong>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">The biological plausibility for this KER is considered high. The testes are the primary testosterone-producing organs in male mammals and the main contributors to the circulating testosterone levels in males </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Naamneh Elzenaty et al., 2022)</span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">. A decrease in intratesticular testosterone will therefore lead to a decrease in secretion of testosterone and consequently lower circulating levels of testosterone. </span></span></p>
<strong>Empirical Evidence</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The empirical evidence for this KER is overall judged as <strong>high</strong>.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><em>In vivo</em> toxicity studies in rats and mice have shown that exposure to substances that lowers intratesticular testosterone also lowers circulating testosterone levels. This includes <em>in utero</em> exposure and measurements in fetal males (Borch J et al., 2004; Vinggaard AM et al., 2005) as well as exposure and measurements postnatally in male rodents (Hou X et al., 2020; Ji et al., 2010; Jiang XP et al., 2017)</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Supporting this evidence are castration studies in male rats and monkeys, showing a marked reduction in circulating testosterone levels when removing the testes (Gomes & Jain, 1976; Perachio et al., 1977).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Lastly, in humans, males with hypogonadism or gonadal dysgenesis present with lower circulating testosterone levels (Hirose Y et al., 2007; Jones LW et al., 1970).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><em>In vivo </em>toxicity studies support dose concordance for this KER, as exemplified below.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In pre-pubertal/pubertal male rats, chlorocholine chloride exposure (postnatal day (PND) 23-60) in three doses reduced both intratesticular and serum testosterone levels at PND60 at all doses tested (Hou X et al., 2020).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Perinatal exposure (gestational day (GD) 10-birth) of male mice to diethylhexyl phthalate (DEHP) in three doses (100, 500, and 1000 mg/kg bw/day) reduced intratesticular testosterone at 500 and 1000 mg/kg bw/day at PND1, while only 1000 mg/kg bw/day reduced serum levels of testosterone, although this was measured later, at PND56 (Xie Q et al., 2024)</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><em>In utero</em> exposure (GD7-21) of male rats to DEHP in doses of 300 or 750 mg/kg bw/day reduced intratesticular testosterone levels at GD21, while only the high dose also reduced plasma testosterone levels (Borch J et al., 2004). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><em>In vivo</em> toxicity studies moderately support temporal concordance for this KER, as exemplified below.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Several studies show that a decrease in intratesticular and circulating testosterone can be measured at the same time point (Borch J et al., 2004; Hou X et al., 2020; Jiang XP et al., 2017; Vinggaard AM et al., 2005).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><em>In utero </em>exposure of male mice to DEHP from GD10 to birth reduced intratesticular testosterone levels at PND1 with LOAEL 500 mg/kg bw/day, and when measured at PND56, circulating testosterone levels were decreased, but with LOAEL 1000 mg/kg bw/day (Xie Q et al., 2024).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In Fisher JS et al., 2003, exposure of male rats from GD13-21 to 500 mg/kg bw/day dibutyl phthalate reduced intratesticular testosterone by ~90% (measured at GD19). When analyzing circulating testosterone levels at PND4, 10, 15, 25, and 90, only the testosterone levels on PND25 were decreased. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">One study report conflicting results on the temporal concordance of this KER (Caceres et al., 2023). Here, male rats were exposed for 20 weeks from PND60 to a mixture of the phytoestrogens genistein and daidzein (combined dose of either 29 or 290 mg/kg bw/day). Intratesticular testosterone was measured every 4 weeks, while serum levels of testosterone were measured every second week. While the mixture caused a reduction of serum testosterone after 2 weeks of exposure, a reduction in intratesticular testosterone was not measured until after 8 weeks. The discrepancy might be explained by the multiple mechanisms of action of the phytoestrogens, as they, besides affecting testicular testosterone synthesis, may also influence peripheral aromatization of testosterone to estrogens (van Duursen et al., 2011). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Incidence concordance can not be evaluated for this KER.</span></span></p>
<strong>Uncertainties and Inconsistencies</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">There are examples of <em>in vivo</em> studies, in which stressors exposure have caused a reduction in intratesticular testosterone levels without a reduction in circulating testosterone levels.</span></span></p>
<h4>Quantitative Understanding of the Linkage</h4>
<strong>Time-scale</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The time-scale for this KER is likely minutes or hours, as testosterone is secreted into the blood from the testes after synthesis. <em>In vivo</em>, a decrease in intratesticular and circulating testosterone can be measured at the same time, both in fetal and postnatal studies (Borch J et al., 2004; Hou X et al., 2020; Jiang XP et al., 2017; Vinggaard AM et al., 2005). <em>Ex vivo</em>, chemically-induced reduction in testicular production of testosterone can be measured in culture media after 3 hours incubation (earlier time points were not measured) (Wilson et al., 2009).</span></span></p>
<strong>Known Feedforward/Feedback loops influencing this KER</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Testosterone is a part of the hypothalamic-pituitary-gonadal (HPG) axis, which controls testosterone synthesis in puberty and adulthood. In this axis, gonatropin-releasing hormone (GnRH) is released from the hypothalamus and stimulates release of luteinizing hormone (LH) from the pituitary. LH acts on the testes to produce and secrete testosterone. Elevated circulating testosterone levels exerts negative feedback on the HPG axis (decreasing GnRH secretion) to keep testosterone levels in balance (Tilbrook & Clarke, 2001). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Importantly, there are species-specific differences in when the HPG axis is functional during development. In the mouse, fetal testosterone synthesis is independent of pituitary LH (O’Shaughnessy et al., 1998), whereas in humans, human chorionic gonadotropin (hCG) act similarly to LH and appear to be critical in stimulating testosterone synthesis in the fetal testis (Huhtaniemi, 2025). </span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Borch J, Ladefoged O, Hass U, & Vinggaard AM. (2004). Steroidogenesis in fetal male rats is reduced by DEHP and DINP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats. <em>Reproductive Toxicology (Elmsford, N.Y.)</em>, <em>18</em>(1), 53–61. https://doi.org/10.1016/j.reprotox.2003.10.011</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Caceres, S., Crespo, B., Alonso-Diez, A., De Andrés, P. J., Millan, P., Silván, G., Illera, M. J., & Illera, J. C. (2023). Long-Term Exposure to Isoflavones Alters the Hormonal Steroid Homeostasis-Impairing Reproductive Function in Adult Male Wistar Rats. <em>Nutrients</em>, <em>15</em>(5), 1261. https://doi.org/10.3390/nu15051261</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Coviello, A. D., Bremner, W. J., Matsumoto, A. M., Herbst, K. L., Amory, J. K., Anawalt, B. D., Yan, X., Brown, T. R., Wright, W. W., Zirkin, B. R., & Jarow, J. P. (2004). Intratesticular Testosterone Concentrations Comparable With Serum Levels Are Not Sufficient to Maintain Normal Sperm Production in Men Receiving a Hormonal Contraceptive Regimen. <em>Journal of Andrology</em>, <em>25</em>(6), 931–938. https://doi.org/10.1002/j.1939-4640.2004.tb03164.x</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Fisher JS, Macpherson S, Marchetti N, & Sharpe RM. (2003). Human “testicular dysgenesis syndrome”: A possible model using in-utero exposure of the rat to dibutyl phthalate. <em>Human Reproduction (Oxford, England)</em>, <em>18</em>(7), 1383–1394. https://doi.org/10.1093/humrep/deg273</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gomes, W. R., & Jain, S. K. (1976). Effect of unilateral and bilateral castration and cryptorchidism on serum gonadotrophins in the rat. <em>The Journal of Endocrinology</em>, <em>68</em>(02), 191–196. https://doi.org/10.1677/joe.0.0680191</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hirose Y, Sasa M, Bando Y, Hirose T, Morimoto T, Kurokawa Y, Nagao T, & Tangoku A. (2007). Bilateral male breast cancer with male potential hypogonadism. <em>World Journal of Surgical Oncology</em>, <em>5</em>, 60. https://doi.org/10.1186/1477-7819-5-60</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hou X, Hu H, Xiagedeer B, Wang P, Kang C, Zhang Q, Meng Q, & Hao W. (2020). Effects of chlorocholine chloride on pubertal development and reproductive functions in male rats. <em>Toxicology Letters</em>, <em>319</em>, 1–10. https://doi.org/10.1016/j.toxlet.2019.10.024</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Huhtaniemi, I. T. (2025). Luteinizing hormone receptor knockout mouse: What has it taught us? <em>Andrology</em>, andr.70000. https://doi.org/10.1111/andr.70000</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Ji, Y.-L., Wang, H., Liu, P., Wang, Q., Zhao, X.-F., Meng, X.-H., Yu, T., Zhang, H., Zhang, C., Zhang, Y., & Xu, D.-X. (2010). Pubertal cadmium exposure impairs testicular development and spermatogenesis via disrupting testicular testosterone synthesis in adult mice. <em>Reproductive Toxicology</em>, <em>29</em>(2), 176–183. https://doi.org/10.1016/j.reprotox.2009.10.014</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Jiang XP, Tang JY, Xu Z, Han P, Qin ZQ, Yang CD, Wang SQ, Tang M, Wang W, Qin C, Xu Y, Shen BX, Zhou WM, & Zhang W. (2017). Sulforaphane attenuates di-N-butylphthalate-induced reproductive damage in pubertal mice: Involvement of the Nrf2-antioxidant system. <em>Environmental Toxicology</em>, <em>32</em>(7), 1908–1917. https://doi.org/10.1002/tox.22413</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Jones LW, Isaacs H Jr, Edelbrock H, & Donnell GN. (1970). Reifenstein’s syndrome: Hereditary familial hypogonadism with hypospadias and gynecomastia. <em>The Journal of Urology</em>, <em>104</em>(4), 608–611. https://doi.org/10.1016/s0022-5347(17)61793-2</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">McLachlan, R. I., O’Donnell, L., Stanton, P. G., Balourdos, G., Frydenberg, M., de Kretser, D. M., & Robertson, D. M. (2002). Effects of Testosterone Plus Medroxyprogesterone Acetate on Semen Quality, Reproductive Hormones, and Germ Cell Populations in Normal Young Men. <em>The Journal of Clinical Endocrinology & Metabolism</em>, <em>87</em>(2), 546–556. https://doi.org/10.1210/jcem.87.2.8231</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Naamneh Elzenaty, R., Du Toit, T., & Flück, C. E. (2022). Basics of androgen synthesis and action. <em>Best Practice & Research Clinical Endocrinology & Metabolism</em>, <em>36</em>(4), 101665. https://doi.org/10.1016/j.beem.2022.101665</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">O’Shaughnessy, P. J., Baker, P., Sohnius, U., Haavisto, A.-M., Charlton, H. M., & Huhtaniemi, I. (1998). Fetal Development of Leydig Cell Activity in the Mouse Is Independent of Pituitary Gonadotroph Function*. <em>Endocrinology</em>, <em>139</em>(3), 1141–1146. https://doi.org/10.1210/endo.139.3.5788</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Perachio, A. A., Alexander, M., Marr, L. D., & Collins, D. C. (1977). Diurnal variations of serum testosterone levels in intact and gonadectomized male and female rhesus monkeys. <em>Steroids</em>, <em>29</em>(1), 21–33. https://doi.org/10.1016/0039-128X(77)90106-4</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Tilbrook, A. J., & Clarke, I. J. (2001). Negative Feedback Regulation of the Secretion and Actions of Gonadotropin-Releasing Hormone in Males. <em>Biology of Reproduction</em>, <em>64</em>(3), 735–742. https://doi.org/10.1095/biolreprod64.3.735</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Turner, T. T., Jones, C. E., Howards, S. S., Ewing, L. L., Zegeye, B., & Gunsalus, G. L. (1984). On the androgen microenvironment of maturing spermatozoa. <em>Endocrinology</em>, <em>115</em>(5), 1925–1932. https://doi.org/10.1210/endo-115-5-1925</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">van Duursen, M. B. M., Nijmeijer, S. M., de Morree, E. S., de Jong, P. Chr., & van den Berg, M. (2011). Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. <em>Toxicology</em>, <em>289</em>(2), 67–73. https://doi.org/10.1016/j.tox.2011.07.005</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Vesper, H. W., Wang, Y., Vidal, M., Botelho, J. C., & Caudill, S. P. (2015). Serum Total Testosterone Concentrations in the US Household Population from the NHANES 2011-2012 Study Population. <em>Clinical Chemisty</em>, <em>61</em>(12), 1495–1504. https://doi.org/10.1373/clinchem.2015.245969</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Vinggaard AM, Christiansen S, Laier P, Poulsen ME, Breinholt V, Jarfelt K, Jacobsen H, Dalgaard M, Nellemann C, & Hass U. (2005). Perinatal exposure to the fungicide prochloraz feminizes the male rat offspring. <em>Toxicological Sciences : An Official Journal of the Society of Toxicology</em>, <em>85</em>(2), 886–897. https://doi.org/doi.org/10.1093/toxsci/kfi150</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wilson, V. S., Lambright, C. R., Furr, J. R., Howdeshell, K. L., & Gray, L. E., Jr. (2009). The herbicide linuron reduces testosterone production from the fetal rat testis during both in utero and in vitro exposures. <em>TOXICOLOGY LETTERS</em>, <em>186</em>(2), 73–77. https://doi.org/10.1016/j.toxlet.2008.12.017</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Xie Q, Cao H, Liu H, Xia K, Gao Y, & Deng C. (2024). Prenatal DEHP exposure induces lifelong testicular toxicity by continuously interfering with steroidogenic gene expression. <em>Translational Andrology and Urology</em>, <em>13</em>(3), 369–382. https://doi.org/10.21037/tau-23-503</span></span></p>
<p> </p>
</div>
<div>
<h4><a href="/relationships/2131">Relationship: 2131: Decrease, circulating testosterone levels leads to Decrease, AR activation</a></h4>
<td><a href="/aops/288">Inhibition of 17α-hydrolase/C 10,20-lyase (Cyp17A1) activity leads to birth reproductive defects (cryptorchidism) in male (mammals)</a></td>
<td>adjacent</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td><a href="/aops/307">Decreased testosterone synthesis leading to short anogenital distance (AGD) in male (mammalian) offspring</a></td>
<td>adjacent</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td><a href="/aops/570">Decreased testosterone synthesis leading to hypospadias in male (mammalian) offspring</a></td>
<td>adjacent</td>
<td></td>
<td>High</td>
<td></td>
</tr>
<tr>
<td><a href="/aops/575">Decreased testosterone synthesis leading to increased nipple retention (NR) in male (rodent) offspring</a></td>
<td>adjacent</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>
</div>
<h4>Evidence Supporting Applicability of this Relationship</h4>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">KER2131 is assessed applicable to mammals, as T and AR activation are known to be related in mammals. </span><span style="font-family:"Verdana",sans-serif">It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">KER2131 is assessed applicable to both sexes, as T activates AR in both males and females.</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">KER2131 is considered applicable to developmental and adult life stages, as T-mediated AR activation is relevant from the AR is expressed.</span></span></span></p>
<h4>Key Event Relationship Description</h4>
<p><span style="font-size:11pt">This key event relationship links decreased testosterone (T) levels to decreased androgen receptor (AR) activation. T is an endogenous steroid hormone important for, amongst other things, reproductive organ development and growth as well as muscle mass and spermatogenesis <span style="color:black">(Marks, 2004)</span>.T is, together with dihydrotestosterone (DHT), a primary ligand for the AR in mammals (Schuppe et al., 2020). Besides its genomic actions, the AR can also mediate rapid, non-genomic second messenger signaling (Davey & Grossmann, 2016). When T levels are reduced, less substrate is available for the AR, and hence, AR activation is decreased <span style="color:black">(Gao et al., 2005)</span>. </span></p>
<h4>Evidence Supporting this KER</h4>
<strong>Biological Plausibility</strong>
<p><span style="font-size:11pt">The biological plausibility for this KER is considered high</span></p>
<p style="text-align:justify"><span style="font-size:11pt">AR activation is dependent on ligand binding (though a few cases of ligand-independent AR activation has been shown, see <em>uncertainties and inconsistencies</em>). T is a primary ligand for the AR, and when T levels are decreased there is less substrate for the AR, and hence, AR activation is decreased. In the male, T is primarily synthesized by the testes, and in some target tissues T is irreversibly metabolized to the more potent metabolite DHT. T and DHT both bind to the AR, but DHT has a higher binding affinity <span style="color:black">(Gao et al., 2005)</span>. The lower binding affinity of T compared to DHT is due to the faster dissociation rate of T from the full-length AR, as T has less effective FXXLF motif binding to AF2 <span style="color:black">(Askew et al., 2007)</span>. Binding of T or DHT has different effects in different tissues. E.g. in the developing male, T is required for development of the internal sex organs (epididymis, vas deferens and the seminal vesicles), whereas DHT is crucial for development of the external sex organs <span style="color:black">(Keller et al., 1996)</span>. In the adult male, androgen action in the reproductive tissues is DHT dependent, whereas action in muscle and bone is DHT independent <span style="color:black">(Gao et al., 2005)</span>. In patients with male androgen deficiency syndrome (AIS), clinically low levels of T leads to reduced AR activation (either due to low T or DHT in target tissue), which manifests as both androgenic related symptoms (such as incomplete or delayed sexual development, loss of body hair, small or shrinking testes, low or zero sperm count) as well as anabolic related symptoms (such as height loss, low trauma fracture, low bone mineral density, reduced muscle bulk and strength, increased body fat). All symptoms can be counteracted by treatment with T, which acts directly on the AR receptor in anabolic tissue <span style="color:black">(Bhasin et al., 2010)</span>. Similarly, removal of the testicles in weanling rats results in a feminized body composition and muscle metabolism, which is reversed by administration of T <span style="color:black">(Krotkiewski et al., 1980)</span>. As this demonstrates, the consequences of low T regarding AR activation will depend on tissue, life stage, species etc. </span></p>
<p style="text-align:justify"><span style="font-size:11pt">AR activation is dependent on ligand binding (though a few cases of ligand-independent AR activation has been shown, see <em>uncertainties and inconsistencies</em>). T is a primary ligand for the AR, and when T levels are decreased there is less substrate for the AR, and hence, AR activation is decreased. In the male, T is primarily synthesized by the testes, and in some target tissues T is irreversibly metabolized to the more potent metabolite DHT. T and DHT both bind to the AR, but DHT has a higher binding affinity <span style="color:black">(Gao et al., 2005)</span>. The lower binding affinity of T compared to DHT is due to the faster dissociation rate of T from the full-length AR, as T has less effective FXXLF motif binding to AF2 <span style="color:black">(Askew et al., 2007)</span>. Binding of T or DHT has different effects in different tissues. E.g. in the developing male, T is required for development of the internal sex organs (epididymis, vas deferens and the seminal vesicles), whereas DHT is crucial for development of the external sex organs <span style="color:black">(Keller et al., 1996)</span>. In the adult male, androgen action in the reproductive tissues is DHT dependent, whereas action in muscle and bone is DHT independent <span style="color:black">(Gao et al., 2005)</span>. In patients with male androgen deficiency syndrome, clinically low levels of T leads to reduced AR activation (either due to low T or DHT in target tissue), which manifests as both androgenic related symptoms (such as incomplete or delayed sexual development, loss of body hair, small or shrinking testes, low or zero sperm count) as well as anabolic related symptoms (such as height loss, low trauma fracture, low bone mineral density, reduced muscle bulk and strength, increased body fat). All symptoms can be counteracted by treatment with T, which acts directly on the AR receptor in anabolic tissue <span style="color:black">(Bhasin et al., 2010)</span>. Similarly, removal of the testicles in weanling rats results in a feminized body composition and muscle metabolism, which is reversed by administration of T <span style="color:black">(Krotkiewski et al., 1980)</span>. As this demonstrates, the consequences of low T regarding AR activation will depend on tissue, life stage, species etc. </span></p>
<strong>Empirical Evidence</strong>
<p style="text-align:justify"><span style="font-size:11pt">The empirical evidence for this KER is considered high</span></p>
<p style="text-align:justify"><span style="font-size:11pt">There is a positive dose-response relationship between increasing concentrations of T and AR activation <span style="color:black">(U.S. EPA., 2023)</span>. </span></p>
<li style="text-align:justify"><span style="color:black">In male patients with androgen deficiency, treatment with T counteracts anabolic (DHT independent) related symptoms such as height loss, low trauma fracture, low bone mineral density, reduced muscle bulk and strength, increased </span>body fat <span style="color:black">(Bhasin et al., 2010; Katznelson et al., 1996)</span>.</li>
<li style="text-align:justify"><span style="font-size:11pt">Removal of the testicles in weanling rats result in a feminized body composition and muscle metabolism, which is reversed by administration of T <span style="color:black">(Krotkiewski et al., 1980)</span>.</span></li>
</ul>
<strong>Uncertainties and Inconsistencies</strong>
<p><span style="font-size:11pt">Ligand-independent actions of the AR have been identified. To what extent and of which biological significance is not well defined (Bennesch & Picard, 2015). </span></p>
<h4>Quantitative Understanding of the Linkage</h4>
<strong>Response-response relationship</strong>
<p><span style="font-size:11pt">There is a positive dose-response relationship between increasing concentrations of T and AR activation <span style="color:black">(U.S. EPA., 2023)</span>. However, there is not enough data, or overview of the data, to define a quantitative linkage <em>in vivo</em>, and such a relationship will differ between biological systems (species, tissue, cell type).</span></p>
<strong>Time-scale</strong>
<p style="text-align:justify"><span style="font-size:11pt">AR and promoter interactions occur within 15 minutes of ligand binding, and RNA polymerase II and coactivator recruitment are then proposed to occur transiently with cycles of approximately 90 minutes <span style="color:black">(Kang et al., 2002)</span>. </span></p>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">AR expression changes with aging </span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Tissue-specific alterations in AR activity with aging</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Supakar et al., 1993; Wu et al., 2009)</span></span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Number of CAG repeats in the first exon of AR</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Decreased AR activation with increased number of CAGs</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Chamberlain et al., 1994; Tut et al., 1997)</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Low circulating testosterone levels due to primary (testicular) or secondary (pituitary-hypothalamic) hypogonadism</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Reduced levels of circulating testosterone</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Bhasin et al., 2010)</span></span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Removal of testicles</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Reduced levels of circulating testosterone</span></span></td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Krotkiewski et al., 1980)</span></span></span></td>
</tr>
</tbody>
</table>
<strong>Known Feedforward/Feedback loops influencing this KER</strong>
<p><span style="font-size:11pt">Androgens can upregulate and downregulate AR expression (Lee & Chang, 2003).</span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Askew, E. B., Gampe, R. T., Stanley, T. B., Faggart, J. L., & Wilson, E. M. (2007). Modulation of Androgen Receptor Activation Function 2 by Testosterone and Dihydrotestosterone. <em>Journal of Biological Chemistry</em>, <em>282</em>(35), 25801–25816. https://doi.org/10.1074/jbc.M703268200</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Bennesch, M. A., & Picard, D. (2015). Minireview: Tipping the Balance: Ligand-Independent Activation of Steroid Receptors. <em>Molecular Endocrinology</em>, <em>29</em>(3), 349–363. https://doi.org/10.1210/me.2014-1315</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Bhasin, S., Cunningham, G. R., Hayes, F. J., Matsumoto, A. M., Snyder, P. J., Swerdloff, R. S., & Montori, V. M. (2010). Testosterone Therapy in Men with Androgen Deficiency Syndromes: An Endocrine Society Clinical Practice Guideline. <em>The Journal of Clinical Endocrinology & Metabolism</em>, <em>95</em>(6), 2536–2559. https://doi.org/10.1210/jc.2009-2354</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Davey, R. A., & Grossmann, M. (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. <em>The Clinical Biochemist. Reviews</em>, <em>37</em>(1), 3–15. http://www.ncbi.nlm.nih.gov/pubmed/27057074</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gao, W., Bohl, C. E., & Dalton, J. T. (2005). Chemistry and Structural Biology of Androgen Receptor. <em>Chemical Reviews</em>, <em>105</em>(9), 3352–3370. https://doi.org/10.1021/cr020456u</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kang, Z., Pirskanen, A., Jänne, O. A., & Palvimo, J. J. (2002). Involvement of Proteasome in the Dynamic Assembly of the Androgen Receptor Transcription Complex. <em>Journal of Biological Chemistry</em>, <em>277</em>(50), 48366–48371. https://doi.org/10.1074/jbc.M209074200</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Katznelson, L., Finkelstein, J. S., Schoenfeld, D. A., Rosenthal, D. I., Anderson, E. J., & Klibanski, A. (1996). Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. <em>The Journal of Clinical Endocrinology & Metabolism</em>, <em>81</em>(12), 4358–4365. https://doi.org/10.1210/jcem.81.12.8954042</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Keller, E. T., Ershler, W. B., & Chang, Chawnshang. (1996). The androgen receptor: A mediator of diverse responses. <em>Frontiers in Bioscience</em>, <em>1</em>(4), 59–71. https://doi.org/10.2741/A116</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Krotkiewski, M., Kral, J. G., & Karlsson, J. (1980). Effects of castration and testosterone substitution on body composition and muscle metabolism in rats. <em>Acta Physiologica Scandinavica</em>, <em>109</em>(3), 233–237. https://doi.org/10.1111/j.1748-1716.1980.tb06592.x</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Lee, D. K., & Chang, C. (2003). Expression and Degradation of Androgen Receptor: Mechanism and Clinical Implication. <em>The Journal of Clinical Endocrinology & Metabolism</em>, <em>88</em>(9), 4043–4054. https://doi.org/10.1210/jc.2003-030261</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Marks, L. S. (2004). 5alpha-reductase: history and clinical importance. <em>Reviews in Urology</em>, <em>6 Suppl 9</em>(Suppl 9), S11-21. <a href="http://www.ncbi.nlm.nih.gov/pubmed/16985920" style="color:#0563c1; text-decoration:underline">http://www.ncbi.nlm.nih.gov/pubmed/16985920</a></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schuppe, E. R., Miles, M. C., and Fuxjager, M. J. (2020). Evolution of the androgen receptor: Perspectives from human health to dancing birds. Mol. Cell. Endocrinol. 499, 110577. doi:10.1016/J.MCE.2019.110577.</span></span></p>
<p><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">U.S. EPA. (2023). <em>ToxCast & Tox21 AR agonism of testosterone.</em> Retrieved from Https://Www.Epa.Gov/Chemical-Research/Toxicity-Forecaster-Toxcasttm-Data June 23, 2023. </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Data Released October 2018.</span></span></p>
</div>
<div>
<h4><a href="/relationships/2124">Relationship: 2124: Decrease, AR activation leads to Altered, Transcription of genes by the AR</a></h4>
<p><span style="font-size:11pt"><span style="font-family:Aptos,sans-serif"><span style="font-family:"Verdana",sans-serif">This KER is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across mammalian taxa. It is, however, acknowledged that this KER most likely has a much broader domain of applicability extending to non-mammalian vertebrates. AOP developers are encouraged to add additional relevant knowledge to expand on the applicability to also include other vertebrates.</span></span></span></p>
<h4>Key Event Relationship Description</h4>
<p style="text-align:justify"><span style="font-size:12pt">The androgen receptor (AR) is a ligand-dependent nuclear transcription factor that upon activation translocates to the nucleus, dimerizes, and binds androgen response elements (AREs) to modulate transcription of target genes <span style="color:black">(Lamont and Tindall, 2010, Roy et al. 2001)</span>. Decreased activation of the AR affects its transcription factor activity, therefore leading to altered AR-target gene expression. This KER refers to decreased AR activation and altered gene expression occurring in complex systems, such as <em>in vivo</em> and the specific effect on transcription of AR target genes will depend on species, life stage, tissue, cell type etc. </span></p>
<h4>Evidence Supporting this KER</h4>
<strong>Biological Plausibility</strong>
<p style="text-align:justify"><span style="font-size:12pt">The biological plausibility for this KER is considered high</span></p>
<p style="text-align:justify"><span style="font-size:12pt">The AR is a ligand-activated transcription factor part of the steroid hormone nuclear receptor family. Non-activated AR is found in the cytoplasm as a multiprotein complex with heat-shock proteins, immunophilins and, other chaperones <span style="color:black">(Roy et al. 2001)</span>. Upon activation through ligand binding, the AR dissociates from the protein complex, translocates to the nucleus and homodimerizes. Facilitated by co-regulators, AR can bind to DNA regions containing AREs and initiate transcription of target genes, that thus will be different in e.g. different tissues, life-stages, species etc. </span></p>
<p style="text-align:justify"><span style="font-size:12pt">Through mapping of AREs and ChIP sequencing studies, several AR target genes have been identified, mainly studied in prostate cells <span style="color:black">(Jin, Kim, and Yu 2013)</span>. Different co-regulators and ligands lead to altered expression of different sets of genes <span style="color:black">(Jin et al. 2013; Kanno et al. 2022)</span>. Alternative splicing of the AR can lead to different AR variants that also affects which genes are transcribed <span style="color:black">(Jin et al. 2013)</span>.</span></p>
<p style="text-align:justify"><span style="font-size:12pt">Apart from this canonical signaling pathway, the AR can suppress gene expression, indirectly regulate miRNA transcription, and have non-genomic effects by rapid activation of second messenger pathways in either presence or absence of a ligand <span style="color:black">(Jin et al. 2013)</span>.</span></p>
<strong>Empirical Evidence</strong>
<p style="text-align:justify"><span style="font-size:12pt">The empirical evidence for this KER is considered high</span></p>
<p style="text-align:justify"><span style="font-size:12pt">In humans, altered gene expression profiling in individuals with androgen insensitivity syndrome (AIS) can provide supporting empirical evidence <span style="color:black">(Holterhus et al. 2003; Peng et al. 2021)</span>. In rodent AR knockout (KO) models, gene expression profiling studies and gene-targeted approaches have provided information on differentially expressed genes in several organ systems including male and female reproductive, endocrine, muscular, cardiovascular and nervous systems <span style="color:black">(Denolet et al. 2006; Fan et al. 2005; Holterhus et al. 2003; Ikeda et al. 2005; Karlsson et al. 2016; MacLean et al. 2008; Rana et al. 2011; Russell et al. 2012; Shiina et al. 2006; Wang et al. 2006; Welsh et al. 2012; Willems et al. 2010; Yu et al. 2008, 2012; Zhang et al. 2006; Zhou et al. 2011)</span>.</span></p>
<p style="text-align:justify"><span style="font-size:12pt">Exposure to known antiandrogens has been shown to alter transcriptional profiles, for example of neonatal pig ovaries <span style="color:black">(Knapczyk-Stwora et al. 2019)</span>. </span></p>
<p style="text-align:justify"><span style="font-size:12pt">Dose concordance has also been observed for instance in zebrafish embryos; a dose of 50 µg/L of the AR antagonist flutamide resulted in 674 differentially expressed genes at 96 h post fertilization whereas 500 µg/L flutamide resulted in 2871 differentially expressed genes (Ayobahan et al., 2023). </span></p>
<strong>Uncertainties and Inconsistencies</strong>
<p style="text-align:justify"><span style="font-size:12pt">AR action has been reported to occur also without ligand binding. However, not much is known about the extent and biological implications of such non-canonical, ligand-independent AR activation <span style="color:black">(Bennesch and Picard 2015)</span>.</span></p>
<h4>Quantitative Understanding of the Linkage</h4>
<strong>Response-response relationship</strong>
<p style="text-align:justify"><span style="font-size:12pt">There is not enough data to define a quantitative relationship between AR activation and alteration of AR target gene transcription, and such a relationship will differ between biological systems (species, tissue, cell type, life stage etc).</span></p>
<strong>Time-scale</strong>
<p style="text-align:justify"><span style="font-size:12pt">AR and promoter interactions occur within 15 minutes of ligand binding, RNA polymerase II and coactivator recruitment are proposed to occur transiently with cycles of approximately 90 minutes in LNCaP cells <span style="color:black">(Kang et al. 2002)</span>. RNA polymerase II elongation rates in mammalian cells have been shown to range between 1.3 and 4.3 kb/min <span style="color:black">(Maiuri et al. 2011)</span>. Therefore, depending on the cell type and the half-life of the AR target gene transcripts, changes are to be expected within hours. </span></p>
<td><span style="font-size:12.0pt"><span style="font-family:"Calibri",sans-serif">AR expression in aging male rats</span></span></td>
<td><span style="font-size:12.0pt"><span style="font-family:"Calibri",sans-serif">Tissue-specific alterations in AR activity with aging</span></span></td>
<td><span style="font-size:12.0pt"><span style="font-family:"Calibri",sans-serif"><span style="color:black">(Supakar et al. 1993; Wu, Lin, and Gore 2009)</span></span></span></td>
</tr>
<tr>
<td>Genotype</td>
<td><span style="font-size:12.0pt"><span style="font-family:"Calibri",sans-serif">Number of CAG repeats in the first exon of AR</span></span></td>
<td><span style="font-size:12.0pt"><span style="font-family:"Calibri",sans-serif">Decreased AR activation with increased number of CAGs</span></span></td>
<td>
<p style="text-align:center"><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">(Tut et al. 1997; Chamberlain et al. 1994)</span></span></span></p>
</td>
</tr>
</tbody>
</table>
</div>
<strong>Known Feedforward/Feedback loops influencing this KER</strong>
<p style="text-align:justify"><span style="font-size:12pt">AR has been hypothesized to auto-regulate its mRNA and protein levels <span style="color:black">(Mora and Mahesh 1999)</span>.</span></p>
<h4>References</h4>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Ayobahan, S. U., Alvincz, J., Reinwald, H., Strompen, J., Salinas, G., Schäfers, C., et al. (2023). Comprehensive identification of gene expression fingerprints and biomarkers of sexual endocrine disruption in zebrafish embryo. Ecotoxicol. Environ. Saf. 250, 114514. doi:10.1016/J.ECOENV.2023.114514.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Bennesch, Marcela A., and Didier Picard. 2015. “Minireview: Tipping the Balance: Ligand-Independent Activation of Steroid Receptors.” <em>Molecular Endocrinology</em> 29(3):349–63.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Chamberlain, Nancy L., Erika D. Driverand, and Roger L. Miesfeldi. 1994. <em>The Length and Location of CAG Trinucleotide Repeats in the Androgen Receptor N-Terminal Domain Affect Transactivation Function</em>. Vol. 22.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Denolet, Evi, Karel De Gendt, Joke Allemeersch, Kristof Engelen, Kathleen Marchal, Paul Van Hummelen, Karen A. L. Tan, Richard M. Sharpe, Philippa T. K. Saunders, Johannes V. Swinnen, and Guido Verhoeven. 2006. “The Effect of a Sertoli Cell-Selective Knockout of the Androgen Receptor on Testicular Gene Expression in Prepubertal Mice.” <em>Molecular Endocrinology</em> 20(2):321–34. doi: 10.1210/me.2005-0113.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Fan, Wuqiang, Toshihiko Yanase, Masatoshi Nomura, Taijiro Okabe, Kiminobu Goto, Takashi Sato, Hirotaka Kawano, Shigeaki Kato, and Hajime Nawata. 2005. <em>Androgen Receptor Null Male Mice Develop Late-Onset Obesity Caused by Decreased Energy Expenditure and Lipolytic Activity but Show Normal Insulin Sensitivity With High Adiponectin Secretion</em>. Vol. 54.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Holterhus, Paul-Martin, Olaf Hiort, Janos Demeter, Patrick O. Brown, and James D. Brooks. 2003. <em>Differential Gene-Expression Patterns in Genital Fibroblasts of Normal Males and 46,XY Females with Androgen Insensitivity Syndrome: Evidence for Early Programming Involving the Androgen Receptor</em>. Vol. 4.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Jin, Hong Jian, Jung Kim, and Jindan Yu. 2013. “Androgen Receptor Genomic Regulation.” <em>Translational Andrology and Urology</em> 2(3):158–77.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Kang, Zhigang, Asta Pirskanen, Olli A. Jänne, and Jorma J. Palvimo. 2002. “Involvement of Proteasome in the Dynamic Assembly of the Androgen Receptor Transcription Complex.” <em>Journal of Biological Chemistry</em> 277(50):48366–71. doi: 10.1074/jbc.M209074200.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Kanno, Yuichiro, Nao Saito, Ryota Saito, Tomohiro Kosuge, Ryota Shizu, Tomofumi Yatsu, Takuomi Hosaka, Kiyomitsu Nemoto, Keisuke Kato, and Kouichi Yoshinari. 2022. “Differential DNA-Binding and Cofactor Recruitment Are Possible Determinants of the Synthetic Steroid YK11-Dependent Gene Expression by Androgen Receptor in Breast Cancer MDA-MB 453 Cells.” <em>Experimental Cell Research</em> 419(2). doi: 10.1016/j.yexcr.2022.113333.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Karlsson, Sara A., Erik Studer, Petronella Kettunen, and Lars Westberg. 2016. “Neural Androgen Receptors Modulate Gene Expression and Social Recognition but Not Social Investigation.” <em>Frontiers in Behavioral Neuroscience</em> 10(MAR). doi: 10.3389/fnbeh.2016.00041.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Knapczyk-Stwora, Katarzyna, Anna Nynca, Renata E. Ciereszko, Lukasz Paukszto, Jan P. Jastrzebski, Elzbieta Czaja, Patrycja Witek, Marek Koziorowski, and Maria Slomczynska. 2019. “Flutamide-Induced Alterations in Transcriptional Profiling of Neonatal Porcine Ovaries.” <em>Journal of Animal Science and Biotechnology</em> 10(1):1–15. doi: 10.1186/s40104-019-0340-y.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Lamont, K. R., and Tindall, D. J. (2010). Androgen Regulation of Gene Expression. Adv. Cancer Res. 107, 137–162. doi:10.1016/S0065-230X(10)07005-3.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">MacLean, Helen E., W. S. Maria Chiu, Amanda J. Notini, Anna-Maree Axell, Rachel A. Davey, Julie F. McManus, Cathy Ma, David R. Plant, Gordon S. Lynch, and Jeffrey D. Zajac. 2008. “ Impaired Skeletal Muscle Development and Function in Male, but Not Female, Genomic Androgen Receptor Knockout Mice .” <em>The FASEB Journal</em> 22(8):2676–89. doi: 10.1096/fj.08-105726.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Maiuri, Paolo, Anna Knezevich, Alex De Marco, Davide Mazza, Anna Kula, Jim G. McNally, and Alessandro Marcello. 2011. “Fast Transcription Rates of RNA Polymerase II in Human Cells.” <em>EMBO Reports</em> 12(12):1280–85. doi: 10.1038/embor.2011.196.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Mora, Gloria R., and Virendra B. Mahesh. 1999. <em>Autoregulation of the Androgen Receptor at the Translational Level: Testosterone Induces Accumulation of Androgen Receptor MRNA in the Rat Ventral Prostate Polyribosomes</em>.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Peng, Yajie, Hui Zhu, Bing Han, Yue Xu, Xuemeng Liu, Huaidong Song, and Jie Qiao. 2021. “Identification of Potential Genes in Pathogenesis and Diagnostic Value Analysis of Partial Androgen Insensitivity Syndrome Using Bioinformatics Analysis.” <em>Frontiers in Endocrinology</em> 12. doi: 10.3389/fendo.2021.731107.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Rana, Kesha, Barbara C. Fam, Michele V Clarke, Tammy P. S. Pang, Jeffrey D. Zajac, and Helen E. Maclean. 2011. “Increased Adiposity in DNA Binding-Dependent Androgen Receptor Knockout Male Mice Associated with Decreased Voluntary Activity and Not Insulin Resistance.” <em>Am J Physiol Endocrinol Me-Tab</em> 301:767–78. doi: 10.1152/ajpendo.00584.2010.-In.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Roy, Arun K., Rakesh K. Tyagi, Chung S. Song, Yan Lavrovsky, Soon C. Ahn, Tae Sung Oh, and Bandana Chatterjee. 2001. “Androgen Receptor: Structural Domains and Functional Dynamics after Ligand-Receptor Interaction.” Pp. 44–57 in <em>Annals of the New York Academy of Sciences</em>. Vol. 949. New York Academy of Sciences.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Russell, Patricia K., Michele V. Clarke, Jarrod P. Skinner, Tammy P. S. Pang, Jeffrey D. Zajac, and Rachel A. Davey. 2012. “Identification of Gene Pathways Altered by Deletion of the Androgen Receptor Specifically in Mineralizing Osteoblasts and Osteocytes in Mice.” <em>Journal of Molecular Endocrinology</em> 49(1):1–10. doi: 10.1530/JME-12-0014.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Shiina, Hiroko, Takahiro Matsumoto, Takashi Sato, Katsuhide Igarashi, Junko Miyamoto, Sayuri Takemasa, Matomo Sakari, Ichiro Takada, Takashi Nakamura, Daniel Metzger, Pierre Chambon, Jun Kanno, Hiroyuki Yoshikawa, and Shigeaki Kato. 2006. <em>Premature Ovarian Failure in Androgen Receptor-Deficient Mice</em>. Vol. 103.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Supakar, P. C., C. S. Song, M. H. Jung, M. A. Slomczynska, J. M. Kim, R. L. Vellanoweth, B. Chatterjee, and A. K. Roy. 1993. “A Novel Regulatory Element Associated with Age-Dependent Expression of the Rat Androgen Receptor Gene.” <em>Journal of Biological Chemistry</em> 268(35):26400–408. doi: 10.1016/s0021-9258(19)74328-2.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Tut, Thein G., Farid J. Ghadessy, M. A. Trifiro, L. Pinsky, and E. L. Yong. 1997. <em>Long Polyglutamine Tracts in the Androgen Receptor Are Associated with Reduced Trans-Activation, Impaired Sperm Production, and Male Infertility*</em>. Vol. 82.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Wang, Ruey Sheng, Shuyuan Yeh, Lu Min Chen, Hung Yun Lin, Caixia Zhang, Jing Ni, Cheng Chia Wu, P. Anthony Di Sant’Agnese, Karen L. DeMesy-Bentley, Chii Ruey Tzeng, and Chawnshang Chang. 2006. “Androgen Receptor in Sertoli Cell Is Essential for Germ Cell Nursery and Junctional Complex Formation in Mouse Testes.” <em>Endocrinology</em> 147(12):5624–33. doi: 10.1210/en.2006-0138.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Welsh, M., L. Moffat, K. Belling, L. R. de França, T. M. Segatelli, P. T. K. Saunders, R. M. Sharpe, and L. B. Smith. 2012. “Androgen Receptor Signalling in Peritubular Myoid Cells Is Essential for Normal Differentiation and Function of Adult Leydig Cells.” <em>International Journal of Andrology</em> 35(1):25–40. doi: 10.1111/j.1365-2605.2011.01150.x.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Willems, Ariane, Sergio R. Batlouni, Arantza Esnal, Johannes V. Swinnen, Philippa T. K. Saunders, Richard M. Sharpe, Luiz R. França, Karel de Gendt, and Guido Verhoeven. 2010. “Selective Ablation of the Androgen Receptor in Mouse Sertoli Cells Affects Sertoli Cell Maturation, Barrier Formation and Cytoskeletal Development.” <em>PLoS ONE</em> 5(11). doi: 10.1371/journal.pone.0014168.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Wu, D. I., Grace Lin, and Andrea C. Gore. 2009. “Age-Related Changes in Hypothalamic Androgen Receptor and Estrogen Receptor in Male Rats.” <em>The Journal of Comparative Neurology</em> 512:688–701. doi: 10.1002/cne.21925.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Yu, I. Chen, Hung Yun Lin, Ning Chun Liu, Ruey Shen Wang, Janet D. Sparks, Shuyuan Yeh, and Chawnshang Chang. 2008. “Hyperleptinemia without Obesity in Male Mice Lacking Androgen Receptor in Adipose Tissue.” <em>Endocrinology</em> 149(5):2361–68. doi: 10.1210/en.2007-0516.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Yu, Shengqiang, Chiuan Ren Yeh, Yuanjie Niu, Hong Chiang Chang, Yu Chieh Tsai, Harold L. Moses, Chih Rong Shyr, Chawnshang Chang, and Shuyuan Yeh. 2012. “Altered Prostate Epithelial Development in Mice Lacking the Androgen Receptor in Stromal Fibroblasts.” <em>Prostate</em> 72(4):437–49. doi: 10.1002/pros.21445.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Zhang, Caixia, Shuyuan Yeh, Yen-Ta Chen, Cheng-Chia Wu, Kuang-Hsiang Chuang, Hung-Yun Lin, Ruey-Sheng Wang, Yu-Jia Chang, Chamindrani Mendis-Handagama, Liquan Hu, Henry Lardy, Chawnshang Chang, and † † George. 2006. <em>Oligozoospermia with Normal Fertility in Male Mice Lacking the Androgen Receptor in Testis Peritubular Myoid Cells</em>.</span></span></p>
<p><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif">Zhou, Wei, Gensheng Wang, Christopher L. Small, Zhilin Liu, Connie C. Weng, Lizhong Yang, Michael D. Griswold, and Marvin L. Meistrich. 2011. “Erratum: Gene Expression Alterations by Conditional Knockout of Androgen Receptor in Adult Sertoli Cells of Utp14bjsd/Jsd (Jsd) Mice (Biology of Reproduction (2010) 83, (759-766) DOI: 10.1095/Biolreprod.110.085472).” <em>Biology of Reproduction</em> 84(2):400–408.</span></span></p>
</div>
<h3>List of Non Adjacent Key Event Relationships</h3>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">NR is observed in male mice and rats. Male rodents (mostly investigated in laboratory rats and mice) do not have nipples, a feature that is androgen-dependent in these species with fetal androgen action impeding development of nipple anlagen. The empirical evidence supports the applicability to rats, and the KER is considered equally applicable to mice based on the biological knowledge of nipple development in this species. The KER is not directly applicable to humans, as both males and females have two nipples, and there is no known effect of androgens on their development (Schwartz et al., 2021). However, NR is a clear readout of reduced androgen action and fetal masculinization during development, which is relevant to humans and mammals in general (Schwartz et al., 2021). It is included as a mandatory endpoint in several rodent OECD Test Guidelines (OECD, 2025a, 2025b, 2025c) and considered an adverse outcome applicable to the setting of Points of Departure for use in human health risk assessment (OECD, 2013).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">This KER is only applicable to males, as the testes are male sex organs. Moreover, females usually have the maximum number of nipples (12 in rats, 10 in mice) (Schwartz et al., 2021)</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The testes start producing testosterone in fetal life, around gestational day (GD) 15 in rats. Programming by androgens of the peripheral reproductive tissues, including the nipple anlagen, mainly occurs within the masculinization programming window, GD16-20 in rats. Morphological development of the mammary glands also starts in fetal life in both sexes, and upon programming by androgens, the mammary glands of males regress, causing a blockade of nipple formation (Kratochwil, 1986; Watson & Khaled, 2008). Nipples in females and retained nipples in males can first be observed postnatally, ideally at postnatal day (PND) 12-14 in rats (Schwartz et al., 2021). </span></span></p>
<h4>Key Event Relationship Description</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">This non-adjacent KER describes a fetal decrease in intratesticular testosterone leading to NR in male offspring. In this KER, intratesticular testosterone includes measurements of testosterone in homogenates of testes after <em>in vivo</em> exposure to chemicals, as well as measurements of testosterone production in testes <em>ex vivo</em> from exposed animals. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In male mammals, the testes are the first sex organs to develop. Once formed, they produce testosterone by steroidogenesis. The adrenal glands have been shown to synthesize testosterone, but on a much smaller scale, and the testes are the main site of testosterone production (Naamneh Elzenaty et al., 2022). Testicular testosterone is secreted into the blood to initiate masculinization of the peripheral reproductive tissues. In rats and mice, this includes effects on the developing mammary glands, which develop sexually dimorphic. Testosterone either directly activates the AR in the mammary glands or is converted to the more potent androgen dihydrotestosterone (DHT) (Murashima et al., 2015). Activation of AR by androgens in the mammary glands causes apoptosis of epithelial cells and thus separation of the glands from the overlying epidermis. Consequently, no nipples are formed (Kratochwil, 1986). During low androgen levels, such as in female rodents, nipple development progresses to form up to 10 (mice) and 12 (rats) nipples. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">As suppression of nipple development in male rats and mice is dependent on androgens, marked reductions in testicular testosterone production can thus cause nipple retention. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The KER is not directly applicable to humans, as both males and females have two nipples, and there is no known effect of androgens on their development (Schwartz et al., 2021). However, NR is a clear readout of reduced androgen action and fetal masculinization during development, which is relevant to humans (Schwartz et al., 2021). It is included as a mandatory endpoint in several rodent OECD Test Guidelines (OECD, 2025a, 2025b, 2025c) and considered an adverse outcome applicable to the setting of Points of Departure for use in human health risk assessment (OECD, 2013).</span></span></p>
<p> </p>
<h4>Evidence Supporting this KER</h4>
<strong>Biological Plausibility</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The biological plausibility for this KER is judged to be <strong>high</strong> given the canonical biological knowledge on normal reproductive development in rodents.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In common strains of rats and mice, females have 12 and 10 pairs of nipples, respectively, while males usually do not have nipples, although in rare instances control male rats may display a retained nipple (Schwartz et al., 2021). The sexual dimorphism of the mammary tissue is regulated by the androgens testosterone and DHT, during fetal life. Testosterone is produced by the fetal testes by the steroidogenesis pathway, starting from ~GD15. The testes are the primary male sex organs and produce most of the circulating testosterone, although a minor part may be contributed by other organs such as the adrenals (Naamneh Elzenaty et al., 2022). DHT is produced from testosterone in peripheral tissues by the enzyme 5α-reductase. Both testosterone and DHT activate AR in reproductive tissues to initiate masculinization. The programming of the tissues mainly happens within the masculinization programming window (GD16-20 in rats) (Murashima et al., 2015; Welsh et al., 2014).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The mammary glands start out the same in both sexes, developing along two milk lines in early fetal life. In males, androgens activate AR in the mammary gland mesenchymal cells, and in turn, the cells activate apoptosis of epithelial cells that otherwise would contribute to the development of nipples (Kratochwil, 1986; Schwartz et al., 2021). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Given the dependency of testosterone for regression of the nipples, either through direct AR activation or conversion to DHT, it is highly plausible that a decrease in intratesticular testosterone levels will lead to nipple retention in males. </span></span></p>
<strong>Empirical Evidence</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The empirical evidence from studies in animals for this KER is overall judged as <strong>strong.</strong></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">From the data collection, 8 data sets were extracted. The data sets included different stressors causing reduced fetal intratesticular testosterone, all in rats (Table 2 and Appendix 2, </span></span><a href="https://aopwiki.org/system/dragonfly/production/2025/09/17/2twr7tg67o_KER_3487_Appendix_2_250901_final.pdf">2twr7tg67o_KER_3487_Appendix_2_250901_final.pdf</a><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">). Of these 8 data sets, seven showed concurrent nipple retention. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong>Table 2 Empirical evidence for KER 3487 </strong>LOAEL: Lowest observed adverse effect level; NOAEL: No observed adverse effect level. See Appendix 2, for specifications.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The one study that did not find NR after fetal reduction in intratesticular testosterone levels only tested one dose of stressor, which therefore could be an indication of dose concordance (Hotchkiss et al., 2004).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Four datasets tested multiple doses of stressors. In two datasets, the LOAEL was the same for intratesticular testosterone and NR (Laier et al., 2006; Martino-Andrade et al., 2009). In the study by Martino-Andrade et al. (2009), rats were exposed in utero to DPB during gestation days (GD) 13 to 21. Fetal testicular testosterone levels were assessed at GD21, while NR was evaluated at postnatal day (PND) 13. At a dose of 500 mg/kg/day, both a reduction in fetal testicular testosterone and NR were observed. In contrast, at the lower dose of 100 mg/kg/day, only a slight, non-significant decrease in testosterone levels was reported, with no effect on NR. Additionally, the same publication noted a slight but non-significant reduction in fetal testicular testosterone levels following exposure to 150 mg/kg/day of DEHP, without any observed effects on NR (Martino-Andrade et al., 2009).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Further, one study found a lower LOAEL for NR than intratesticular testosterone (Taxvig et al., 2007) and another reported only dose (600 mg/kg bw/day), but not higher doses) significant for reduced intratesticular testosterone levels (Boberg et al., 2011). In both cases, there was a tendency for lower testosterone levels at other doses as well, and the inconsistency may therefore be due to low sample size and/or high variance in the testosterone data. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Overall, the data could suggest dose concordance for this KER, although the evidence for this is not strong.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The empirical evidence supports temporal concordance between the events. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">NR is generally first observable in postnatal animals, while the reductions in intratesticular testosterone are measured early in fetal life during exposure. This was demonstrated with prochloraz-induced NR, which was observed at PND13, when intratesticular testosterone levels were reduced (Vinggaard AM et al., 2005). NR was also observed postnatally in studies, where exposure to the stressor was only during fetal life (Boberg et al., 2011; Hotchkiss AK et al., 2004; Martino-Andrade AJ et al., 2009; Taxvig C et al., 2007)</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The data does not inform incidence concordance.</span></span><br />
</p>
<strong>Uncertainties and Inconsistencies</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In several of the studies supporting this KER, intratesticular testosterone was measured in <em>ex vivo</em> testis cultures. This means that fetal testis from animals exposed <em>in utero</em> were cultured for ~3 hours, and the culture media were then collected for testosterone measurement. This creates uncertainty in the exact intratesticular testosterone values. However, in these studies, intratesticular testosterone levels were also measured with largely similar outcomes from the methods. The large translatability is clear from the measurements in (Borch et al., 2004). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">As discussed above, the study with negative results for NR might be an indication of dose concordance, as only one stressor dose was tested (Hotchkiss AK et al., 2004). The uncertainty in the study on diisonyl phthalate (Boberg et al., 2011) has also briefly been discussed. Exposure to the phthalate only reduced intratesticular testosterone in the dose of 600 mg/kg bw/day, but not 750 or 900 mg/kg bw/day. For these two higher doses, testosterone also tended to be lower, and lack of statistical significance may be explained by a low sample size.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The empirical evidence for this KER includes stressors with more than one known mechanism of action. In particular, the pesticides prochloraz and linuron are known to also be AR antagonists (Andersen et al., 2002; Lambright et al., 2000), and for these studies, it can therefore not be excluded whether the observed effect on NR is due to the chemicals lowering intratesticular testosterone levels or due to direct antagonism of the AR or a mixture of effects.</span></span></p>
<h4>Quantitative Understanding of the Linkage</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The quantitative understanding of this KER is classified as <strong>low</strong>.</span></span></p>
<strong>Response-response relationship</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">There are no direct models for reductions in intratesticular testosterone levels and NR. A model for the phthalates has been developed, showing an induction of NR when <em>ex vivo</em> testosterone production is reduced to ~40% of control males. After this point, the number of nipples per male increases significantly as testosterone levels decrease. Other chemicals than phthalates have not been tested on this model, and it therefore does not inform of a direct relationship between intratesticular testosterone and NR (Gray et al., 2024).</span></span></p>
<strong>Time-scale</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The time scale of this KER is weeks. In rodents, the mammary glands start developing in both sexes during fetal life. However, once the testes start producing testosterone (~GD15 in rats), the androgen hormones block the further development of the nipple anlagen in males. While the programming of the tissue happens during fetal development, the development of the nipples is not finished until after birth. In females and males with retained nipples, the nipples do not appear until after birth and are optimally assessed at PND12-14, when they have emerged, but the pups have not yet developed thick fur (Schwartz et al., 2021; Welsh et al., 2014). </span></span></p>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Long-Evans Hooded rats are less sensitive to NR than Sprague-Dawley rats</span></span></td>
<td>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">(Wolf et al., 1999; You et al., 1998)</span></span></span></p>
</td>
</tr>
</tbody>
</table>
</div>
<strong>Known Feedforward/Feedback loops influencing this KER</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">There are no known feedback/feedforward loops for this KER. </span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Andersen, H. R., Vinggaard, A. M., Rasmussen, T. H., Gjermandsen, I. M., & Bonefeld-Jørgensen, E. C. (2002). Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicology and Applied Pharmacology, 179(1), 1–12. https://doi.org/10.1006/taap.2001.9347</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Boberg, J., Christiansen, S., Axelstad, M., Kledal, T. S., Vinggaard, A. M., Dalgaard, M., Nellemann, C., & Hass, U. (2011). Reproductive and behavioral effects of diisononyl phthalate (DINP) in perinatally exposed rats. REPRODUCTIVE TOXICOLOGY, 31(2), 200–209. https://doi.org/10.1016/j.reprotox.2010.11.001</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Borch J, Ladefoged O, Hass U, & Vinggaard AM. (2004). Steroidogenesis in fetal male rats is reduced by DEHP and DINP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats. Reproductive Toxicology (Elmsford, N.Y.), 18(1), 53–61. https://doi.org/10.1016/j.reprotox.2003.10.011</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gray L E Jr, Lambright CS, Evans N, Ford J, & Conley JM. (2024). Using targeted fetal rat testis genomic and endocrine alterations to predict the effects of a phthalate mixture on the male reproductive tract. Current Research in Toxicology, 7, 100180. https://doi.org/10.1016/j.crtox.2024.100180</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Holmer, M. L., Zilliacus, J., Draskau, M. K., Hlisníková, H., Beronius, A., & Svingen, T. (2024). Methodology for developing data-rich Key Event Relationships for Adverse Outcome Pathways exemplified by linking decreased androgen receptor activity with decreased anogenital distance. Reproductive Toxicology, 128, 108662. https://doi.org/10.1016/j.reprotox.2024.108662</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hotchkiss AK, Parks-Saldutti LG, Ostby JS, Lambright C, Furr J, Vandenbergh JG, & Gray LE Jr. (2004). A mixture of the “antiandrogens” linuron and butyl benzyl phthalate alters sexual differentiation of the male rat in a cumulative fashion. Biology of Reproduction, 71(6), 1852–1861. https://doi.org/10.1095/biolreprod.104.031674</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kratochwil, K. (1986). Tissue Combination and Organ Culture Studies in the Development of the Embryonic Mammary Gland. In R. B. L. Gwatkin (Ed.), Manipulation of Mammalian Development (pp. 315–333). Springer US. https://doi.org/10.1007/978-1-4613-2143-9_11</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Laier P, Metzdorff SB, Borch J, Hagen ML, Hass U, Christiansen S, Axelstad M, Kledal T, Dalgaard M, McKinnell C, Brokken LJ, & Vinggaard AM. (2006). Mechanisms of action underlying the antiandrogenic effects of the fungicide prochloraz. Toxicology and Applied Pharmacology, 213(2), 160–171. https://doi.org/10.1016/j.taap.2005.10.013</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Lambright, C., Ostby, J., Bobseine, K., Wilson, V., Hotchkiss, A. K., Mann, P. C., & Gray, L. E. J. (2000). Cellular and molecular mechanisms of action of linuron: An antiandrogenic herbicide that produces reproductive malformations in male rats. Toxicological Sciences : An Official Journal of the Society of Toxicology, 56(2), 389–399. https://doi.org/10.1093/toxsci/56.2.389</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Martino-Andrade AJ, Morais RN, Botelho GG, Muller G, Grande SW, Carpentieri GB, Leão GM, & Dalsenter PR. (2009). Coadministration of active phthalates results in disruption of foetal testicular function in rats. International Journal of Andrology, 32(6), 704–712. https://doi.org/10.1111/j.1365-2605.2008.00939.x</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Murashima, A., Kishigami, S., Thomson, A., & Yamada, G. (2015). Androgens and mammalian male reproductive tract development. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1849(2), 163–170. https://doi.org/10.1016/j.bbagrm.2014.05.020</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Naamneh Elzenaty, R., Du Toit, T., & Flück, C. E. (2022). Basics of androgen synthesis and action. Best Practice & Research Clinical Endocrinology & Metabolism, 36(4), 101665. https://doi.org/10.1016/j.beem.2022.101665</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2013), Guidance Document Supporting OECD Test Guideline 443 on the Extended One-Generational Reproductive Toxicity Test, OECD Series on Testing and Assessment, No. 151, OECD Publishing, Paris, ENV/JM/MONO(2013)10</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2025a), Test No. 443: Extended One-Generation Reproductive Toxicity Study, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264185371-en. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2025a), Test No. 421: Reproduction/Developmental Toxicity Screening Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264264380-en.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2025c), Test No. 422: Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264264403-en.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schwartz CL, Christiansen S, Hass U, Ramhøj L, Axelstad M, Löbl NM, & Svingen T. (2021). On the Use and Interpretation of Areola/Nipple Retention as a Biomarker for Anti-androgenic Effects in Rat Toxicity Studies. Frontiers in Toxicology, 3, 730752. https://doi.org/10.3389/ftox.2021.730752</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Taxvig C, Hass U, Axelstad M, Dalgaard M, Boberg J, Andeasen HR, & Vinggaard AM. (2007). Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicological Sciences : An Official Journal of the Society of Toxicology, 100(2), 464–473. https://doi.org/10.1093/toxsci/kfm227</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Vinggaard AM, Christiansen S, Laier P, Poulsen ME, Breinholt V, Jarfelt K, Jacobsen H, Dalgaard M, Nellemann C, & Hass U. (2005). Perinatal exposure to the fungicide prochloraz feminizes the male rat offspring. Toxicological Sciences : An Official Journal of the Society of Toxicology, 85(2), 886–897. https://doi.org/doi.org/10.1093/toxsci/kfi150</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Watson, C. J., & Khaled, W. T. (2008). Mammary development in the embryo and adult: A journey of morphogenesis and commitment. Development, 135(6), 995–1003. https://doi.org/10.1242/dev.005439</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Welsh M, Suzuki H, & Yamada G. (2014). The masculinization programming window. Endocrine Development, 27, 17–27. https://doi.org/10.1159/000363609</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wolf C Jr, Lambright C, Mann P, Price M, Cooper RL, Ostby J, & Gray LE Jr. (1999). Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p’-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicology and Industrial Health, 15(1), 94–118. https://doi.org/10.1177/074823379901500109</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">You L, Casanova M, Archibeque-Engle S, Sar M, Fan LQ, & Heck HA. (1998). Impaired male sexual development in perinatal Sprague-Dawley and Long-Evans hooded rats exposed in utero and lactationally to p,p’-DDE. Toxicological Sciences : An Official Journal of the Society of Toxicology, 45(2), 162–173. https://doi.org/10.1093/toxsci/45.2.162</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">This KER is considered applicable to rodents (evidence primarily from laboratory rats and mice), where males normally lack nipples due to suppressed differentiation by high levels of androgens. The empirical evidence in this KER supports that reduction in testosterone causes NR in rats, whereas relevance in mice is assumed based on knowledge about developmental biology in this species. In humans, both sexes have two nipples, and there is no known androgen-driven sexual dimorphism (Schwartz et al., 2021). The KER is thus not considered directly applicable to humans. However, NR is a clear readout of reduced androgen action and fetal masculinization during development in rodents, which is relevant to humans (Schwartz et al., 2021). It is included as a mandatory endpoint in several rodent OECD Test Guidelines (OECD, 2025a, 2025b, 2025c) and considered an adverse outcome applicable to the setting of Points of Departure for use in human health risk assessment (OECD, 2013).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">This KER is only applicable to males, as female rats and mice develop 12 and 10 nipples, respectively (Schwartz et al., 2021). Females do have circulating testosterone in fetal life, but the levels are much lower than in males (Houtsmuller et al., 1995), and do therefore not suppress nipple formation. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The programming for androgen-driven suppression of nipple development in rodents occurs during fetal life, around gestational days (GD) 16-20 in rats <span style="color:black">(Imperato-McGinley et al., 1986)</span>. In both male and female rodents, the development of the mammary glands starts in fetal life, including initial growth and subsequent sexual differentiation (Kratochwil, 1986; Watson & Khaled, 2008). The relevant timing for the investigation of NR is PND12-14 in male rat offspring when the nipples are visible in the female littermates. At this time in development, the nipples/areolas are visible through the skin without excessive fur that may interfere with the investigation <span style="color:black">(Schwartz et al., 2021). </span></span></span></p>
<h4>Key Event Relationship Description</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">This KER describes a fetal decrease in circulating testosterone (often measured in serum or plasma) leading to NR in male rodent offspring. In rats and mice, females develop 10 and 12 nipples, respectively, with males typically displaying zero. In male rodents, testosterone is primarily produced by the fetal testes, secreted into the bloodstream and transported to the peripheral reproductive tissues, including the preliminary mammary tissue. Testosterone can bind directly to the AR in the tissue or first being converted to DHT by 5α-reductase (Murashima et al., 2015). AR activation by androgens in mesenchymal cells of the developing mammary glands causes cell death and subsequent separation of the tissue from the epidermis, resulting in no formation of nipples (Kratochwil, 1986). In females, where androgen levels are low, nipple formation is not blocked. The dependency of androgens for suppression of nipple development in males means that reductions in circulating testosterone levels can lead to retention of nipples. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In humans, both sexes have two nipples, and there is no known androgen-driven sexual dimorphism (Schwartz et al., 2021). The KER is thus not considered directly applicable to humans, but is a clear readout of reduced androgen action and fetal masculinization during development, which is relevant to humans (Schwartz et al., 2021). It is included as a mandatory endpoint in several rodent OECD Test Guidelines (OECD, 2025a, 2025b, 2025c) and considered an adverse outcome applicable to the setting of Points of Departure for use in human health risk assessment (OECD, 2013).</span></span></p>
<h4>Evidence Supporting this KER</h4>
<strong>Biological Plausibility</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The biological plausibility for this KER is judged to be <strong>high,</strong> given the canonical biological knowledge on normal reproductive development in rodents. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Sexual differentiation in males, including blocking of nipple development in rodents, is programmed in fetal life. Once formed, the fetal testes synthesize testosterone through the steroidogenesis pathway. Testosterone is secreted and transported in the bloodstream either as free testosterone or bound to plasma proteins (albumin or sex-hormone binding globulin). Testosterone binds AR in peripheral tissues and can also be converted to DHT by the enzyme 5α-reductase. Binding of testosterone and DHT to AR program the fetal reproductive tissue to male differentiation (Murashima et al., 2015). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In most rodents, development of the nipples is a sexually dimorphic process. In female rats, where androgen levels are low, the nipples develop along the milk lines forming 12 nipples, which are visible around postnatal day 12-14 (Schwartz et al., 2021). In male rats, AR activation in fetal life suppresses the formation of the nipples through apoptosis of epithelial cells in the developing mammary glands. Normally, male rats do therefore not have nipples, although in rare occasions male control rats may display one or more retained nipples (Kratochwil, 1986; Schwartz et al., 2021). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Testosterone is produced from around GD15 in fetal rats and is present in circulation around the same time. Programming of the nipple tissue to regress mainly occurs within the masculinization programming window (GD16-20 in rats) (Welsh et al., 2014).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Given the dependency of testosterone for the regression of the nipples, either through direct AR activation or conversion to DHT, it is highly plausible that a decrease in circulating levels of testosterone will lead to nipple retention in males. </span></span></p>
<strong>Empirical Evidence</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The empirical evidence from studies in animals for this KER is overall judged as <strong>moderate</strong></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">From the data collection, two data sets were extracted. The data set included two different stressors causing reduced fetal levels of circulating testosterone in rats (Table 2 and appendix 2, </span></span><a href="https://aopwiki.org/system/dragonfly/production/2025/09/17/61b9o238vs_KER_3486_Appendix_2.pdf">61b9o238vs_KER_3486_Appendix_2.pdf</a><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">). Both data sets showed concurrent NR. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong>Table 2 Empirical evidence for KER 3486 </strong>LOAEL: Lowest observed adverse effect level; See appendix 2 for specifications.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The empirical evidence for this KER does not inform dose concordance, as no study uses more than one dose of stressor. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">NR is generally first observable in postnatal animals, while the reductions in intratesticular testosterone are measured early in fetal life during exposure. This was demonstrated with prochloraz-induced NR, which was observed at PND13, but not when examining the males at GD21, when circulating testosterone levels were reduced (Vinggaard AM et al., 2005). </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The data does not inform incidence concordance.</span></span><br />
</p>
<strong>Uncertainties and Inconsistencies</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The low number of studies retrieved in the empirical evidence collection, this KER is in itself an uncertainty, and both studies only investigated one stressor dose.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">An uncertainty in the empirical evidence is that prochloraz is also known to be an AR antagonist (Andersen et al., 2002), and it can therefore not be excluded that the effects of prochloraz on NR is, at least partly, due to direct antagonism of AR and not due to the low testosterone levels.</span></span></p>
<h4>Quantitative Understanding of the Linkage</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The quantitative understanding of this KER is classified as <strong>low</strong>.</span></span></p>
<strong>Response-response relationship</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">There is no known information on the response-response relationship for this KER.</span></span></p>
<strong>Time-scale</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The time scale of this KER is weeks. Testosterone is secreted from ~GD15 in rats, which is at the beginning of the masculinization programming window. The mammary glands start developing during fetal life as well, but cannot be observed in female rodents until weeks after birth, which is also the time at which NR can be observed in males (Schwartz et al., 2021)</span></span></p>
<td>Long-Evans Hooded rats are less sensitive to NR than Sprague Dawley rats</td>
<td><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">(Wolf et al., 1999; You et al., 1998)</span></span></td>
</tr>
</tbody>
</table>
<strong>Known Feedforward/Feedback loops influencing this KER</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">There are no known feedback/feedforward loops for this KER. </span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Andersen, H. R., Vinggaard, A. M., Rasmussen, T. H., Gjermandsen, I. M., & Bonefeld-Jørgensen, E. C. (2002). Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicology and Applied Pharmacology, 179(1), 1–12. https://doi.org/10.1006/taap.2001.9347</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Borch J, Ladefoged O, Hass U, & Vinggaard AM. (2004). Steroidogenesis in fetal male rats is reduced by DEHP and DINP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats. Reproductive Toxicology (Elmsford, N.Y.), 18(1), 53–61. https://doi.org/10.1016/j.reprotox.2003.10.011</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Holmer, M. L., Zilliacus, J., Draskau, M. K., Hlisníková, H., Beronius, A., & Svingen, T. (2024). Methodology for developing data-rich Key Event Relationships for Adverse Outcome Pathways exemplified by linking decreased androgen receptor activity with decreased anogenital distance. Reproductive Toxicology, 128, 108662. https://doi.org/10.1016/j.reprotox.2024.108662</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Houtsmuller, E. J., de Jong, F. H., Rowland, D. L., & Slob, A. K. (1995). Plasma testosterone in fetal rats and their mothers on day 19 of gestation. Physiology & Behavior, 57(3), 495–499. <a href="https://doi.org/10.1016/0031-9384(94)00291-C" style="color:#0563c1; text-decoration:underline">https://doi.org/10.1016/0031-9384(94)00291-C</a></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Imperato-McGinley J, Binienda Z, Gedney J, & Vaughan ED Jr. (1986). Nipple differentiation in fetal male rats treated with an inhibitor of the enzyme 5 alpha-reductase: definition of a selective role for dihydrotestosterone. Endocrinology, 118(1), 132–137. <a href="https://doi.org/10.1210/endo-118-1-132" style="color:#0563c1; text-decoration:underline">https://doi.org/10.1210/endo-118-1-132</a> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kratochwil, K. (1986). Tissue Combination and Organ Culture Studies in the Development of the Embryonic Mammary Gland. In R. B. L. Gwatkin (Ed.), Manipulation of Mammalian Development (pp. 315–333). Springer US. https://doi.org/10.1007/978-1-4613-2143-9_11</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Murashima, A., Kishigami, S., Thomson, A., & Yamada, G. (2015). Androgens and mammalian male reproductive tract development. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1849(2), 163–170. <a href="https://doi.org/10.1016/j.bbagrm.2014.05.020" style="color:#0563c1; text-decoration:underline">https://doi.org/10.1016/j.bbagrm.2014.05.020</a></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2013), Guidance Document Supporting OECD Test Guideline 443 on the Extended One-Generational Reproductive Toxicity Test, OECD Series on Testing and Assessment, No. 151, OECD Publishing, Paris, ENV/JM/MONO(2013)10</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2025a), Test No. 443: Extended One-Generation Reproductive Toxicity Study, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264185371-en. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2025b), Test No. 421: Reproduction/Developmental Toxicity Screening Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264264380-en.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2025c), Test No. 422: Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, <a href="https://doi.org/10.1787/9789264264403-en" style="color:#0563c1; text-decoration:underline">https://doi.org/10.1787/9789264264403-en</a>.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schwartz CL, Christiansen S, Hass U, Ramhøj L, Axelstad M, Löbl NM, & Svingen T. (2021). On the Use and Interpretation of Areola/Nipple Retention as a Biomarker for Anti-androgenic Effects in Rat Toxicity Studies. Frontiers in Toxicology, 3, 730752. https://doi.org/10.3389/ftox.2021.730752</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Vinggaard AM, Christiansen S, Laier P, Poulsen ME, Breinholt V, Jarfelt K, Jacobsen H, Dalgaard M, Nellemann C, & Hass U. (2005). Perinatal exposure to the fungicide prochloraz feminizes the male rat offspring. Toxicological Sciences : An Official Journal of the Society of Toxicology, 85(2), 886–897. https://doi.org/doi.org/10.1093/toxsci/kfi150</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Watson, C. J., & Khaled, W. T. (2008). Mammary development in the embryo and adult: A journey of morphogenesis and commitment. Development, 135(6), 995–1003. https://doi.org/10.1242/dev.005439</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Welsh M, Suzuki H, & Yamada G. (2014). The masculinization programming window. Endocrine Development, 27, 17–27. https://doi.org/10.1159/000363609</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wolf C Jr, Lambright C, Mann P, Price M, Cooper RL, Ostby J, & Gray LE Jr. (1999). Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p’-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicology and Industrial Health, 15(1), 94–118. https://doi.org/10.1177/074823379901500109</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">You L, Casanova M, Archibeque-Engle S, Sar M, Fan LQ, & Heck HA. (1998). Impaired male sexual development in perinatal Sprague-Dawley and Long-Evans hooded rats exposed in utero and lactationally to p,p’-DDE. Toxicological Sciences : An Official Journal of the Society of Toxicology, 45(2), 162–173. https://doi.org/10.1093/toxsci/45.2.162</span></span></p>
</div>
<div>
<h4><a href="/relationships/3348">Relationship: 3348: Decrease, AR activation leads to nipple retention, increased</a></h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The KER is considered directly applicable to rats and mice, in which males normally have no nipples due to high levels of androgens during development, leading to regression of nipple anlagen. The empirical evidence supports the relevance to rats, whereas the relevance in mice is assumed based on knowledge about developmental biology in this species. Applicability may extend to most rodents. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">While NR is not directly translatable to humans, it serves as a clear indicator of diminished androgen activity causing disrupted fetal masculinisation and sexual differentiation during development - an effect considered relevant to mammals, humans (Schwartz et al., 2021), and vertebrates more broadly (Ogino et al., 2023). NR is included as a mandatory endpoint in several rodent OECD Test Guidelines <span style="color:black">(OECD 2025a; OECD 2025b, OECD 2025c)</span> and in OECD GD 151 considered an adverse outcome applicable to the setting of Points of Departure for use in human health risk assessment <span style="color:black">(OECD, 2013). </span>NR can also be used as an indicator of anti-androgenicity in mammals and vertebrates in the environment due to the conserved nature of the AR and its implication in sexual differentiation across species (Ogino et al., 2023).</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Programming of nipple/areola regression in males occurs during a short window of sensitivity to androgens in the nipple anlagen during fetal life. This takes place in rats around embryonic days 13-15 <span style="color:black">(Imperato-McGinley et al., 1986)</span>, which is, therefore, the relevant window of exposure. The relevant timing for the investigation of NR is PND12-14 in male rat offspring when the nipples are visible in the female littermates. At this time in development, the nipples/areolas are visible through the skin without excessive fur that may interfere with the investigation <span style="color:black">(Schwartz et al., 2021)</span>. It should be mentioned that though the occurrence of nipples/areolas in male offspring is believed to be relatively stable throughout life, it may be responsive to postnatal changes. Permanent nipple/areola retention is observed in some but not all<em> in utero </em>exposure studies with antiandrogens inducing nipple/areola retention at PND 12-14. Most of the differences between studies seem explainable by the window of exposure, dose levels and methods for investigation used, but the responsiveness of nipple/areola retention to postnatal changes remains to be fully explored <span style="color:black">(Schwartz et al., 2021)</span>.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Data presented in this KER support that disruption of androgen action during fetal life can lead to increased nipple/areola retention in male rat offspring. Since female mice and rat offspring, in general, have 10 (mice) or 12 (rats) nipples at the relevant time of investigation, increased nipple/areola retention at that time point is not a relevant endpoint for females. </span></span></p>
<h4>Key Event Relationship Description</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">This KER links a decrease in androgen receptor (AR) activation during fetal development to increased nipple/areola retention (NR) in male rodent offspring. It should be noted that the upstream Key Event (KE) ‘decrease, androgen receptor activation’ (KE-1614 in AOP Wiki) specifically focuses on decreased activation of the AR <em>in vivo</em>, while most methods that can be used to measure AR activity are carried out <em>in vitro</em>. Indirect information about this KE may, for example, be provided from assays showing <em>in vitro</em> AR antagonism, decreased <em>in vitro</em> or <em>in vivo</em> testosterone production/levels, or decreased <em>in vitro</em> or <em>in vivo</em> dihydrotestosterone (DHT) production/levels. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The KER is not directly applicable to humans as both sexes have two nipples, and there is no known effect of androgens on their development (Schwartz et al., 2021). However, NR is a clear readout of reduced androgen action, fetal masculinization and sexual differentiation during development, which is relevant to humans, mammals (Schwartz et al., 2021), and vertebrates more broadly (Ogino et al., 2023). It is included as a mandatory endpoint in several rodent OECD Test Guidelines (OECD, 2025a, 2025b, 2025c) and, in OECD GD 151, is considered an adverse outcome applicable to the setting of Points of Departure for use in human health risk assessment (OECD, 2013). NR can also be used as an indicator of anti-androgenicity in mammals and vertebrates in the environment due to the conserved nature of the AR and its implication in sexual differentiation across species (Ogino et al., 2023). </span></span></p>
<h4>Evidence Supporting this KER</h4>
<strong>Biological Plausibility</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The biological plausibility for this KER is judged to be high based on the following:</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">- Sexual differentiation happens in fetal life. The testes are developed and start to produce testosterone that is converted in other tissues by the enzyme 5-alpha-reductase to the more potent androgen dihydrotestosterone (DHT). Both hormones bind and activate the nuclear receptor and transcription factor AR, which in turn drives the masculinization of the male fetus <span style="color:black">(Schwartz et al., 2021; Welsh et al., 2014).</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">- Fetal masculinization depends on the activation of androgen signalling during a critical time window, the masculinization programming window (MPW), from gestational day (GD) 16-20 in rats, 14.5-16.5 in mice and presumably gestation weeks (GWs) 8-14 in humans <span style="color:black">(Amato et al., 2022; Welsh et al., 2008)</span>. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">- The fetal masculinization process involves a range of tissues and organs, including the nipple anlagen in rats and mice. In humans, both sexes have two nipples. In contrast, common laboratory mice and rats are sexually dimorphic, with females having 12 (rats) and 10 (mice) nipples and males generally having none (<span style="color:black">Mayer et al., 2008; Schwartz et al., 2021)</span>. In both male and female mouse embryos, stem cells differentiate into a mammary gland, with nipple anlagen being visible by embryonic day 11.5 <span style="color:black">(Mayer et al., 2008)</span>. In male embryos, the presence of androgen leads the nipple anlagen to regress a few days later <span style="color:black">(Kratochwil, 1977; Kratochwil & Schwartz, 1976)</span> . The androgen responsiveness in the nipple anlagen is rather short, in mice starting late embryonic day 13, with loss of responsiveness on embryonic day 15 <span style="color:black">(Imperato-McGinley et al., 1986; Kratochwil, 1977)</span> and thus roughly following the timing of the MPW. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">- Nipple formation is inhibited in female mice and rat fetuses exposed to androgens during gestation <span style="color:black">(Goldman et al., 1976; Greene et al., 1941; Imperato-McGinley et al., 1986)</span>.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">- Male <em>Tfm</em>-mutant mice, which are insensitive to androgens and believed to be so due to a nonfunctional androgen receptor, present with retained nipples <span style="color:black">(Kratochwil & Schwartz, 1976)</span>. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">- Multiple mechanisms of action may potentially lead to nipple retention in male mouse and rat offspring. DHT is the main androgen responsible for nipple/areola regression through interaction with AR in the nipple anlagen <span style="color:black">(Imperato-McGinley et al., 1986)</span>. Inhibition of testosterone synthesis or the conversion of testosterone to DHT, increased metabolism of androgens, or direct interference with AR activation may thus all lead to nipple/areola retention <span style="color:black">(Imperato-McGinley et al., 1986; Schwartz et al., 2021).</span></span></span></p>
<strong>Empirical Evidence</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The empirical support from studies in animals for this KER is judged as high overall.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">It should be noted that the KE decreased AR activation (KE 1614 in AOP Wiki) specifically focuses on decreased activation of the AR <em>in vivo</em>, with no methods currently available to measure this. Examples of assays that provide indirect information about KE 1614 are described in upstream MIE/KEs.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The empirical evidence for this KER from animal studies <em>in vivo</em> is based on studies using six different substances that result in decreased AR activation by different mechanisms. Flutamide, procymidone and vinclozolin bind to the AR and inhibit the receptor activity and thereby act as AR antagonists, see MIE 26. Finasteride inhibits the 5-alpha-reductase enzyme that converts testosterone to DHT, see MIE 1617. DEHP and DBP exposure during prenatal development in rats results in reduced fetal testosterone levels, see KE-2298 and KE1690. (MIE 26, MIE 1617 and KE 1690 can be found in AOP-Wiki).</span></span></p>
<p> </p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The evidence for the upstream KE is mainly based on data from <em>in vitro</em> assays (AR antagonism or 5-alpha-reductase inhibition <em>in vitro</em>), whereas the evidence for the downstream KE is based on <em>in vivo</em> studies, and there is generally no evidence for both KEs from the same study. However, decreased testosterone levels can be measured <em>in vivo</em>, and <span style="color:black">(Howdeshell et al., 2007; Martino-Andrade et al., 2009)</span> measured the effect of developmental phthalate exposure on both testosterone levels and nipple/areola retention (see the section about “Dose concordance”).</span></span></p>
<p> </p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The empirical evidence for the six substances is summarised in Table 3.</span></span></p>
<p> </p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Table 3. Summary of empirical evidence for decreased androgen receptor activation, leading to decreased nipple/areola retention. References for the studies supporting the empirical evidence are found in the section “Evidence for decreased AR activation (KE 1614) by flutamide, procymidone, and vinclozolin, finasteride, DEHP and DBP” and in Table 4 in Appendix 2 (</span></span><a href="https://aopwiki.org/system/dragonfly/production/2025/09/18/6djoma9gmj_KER_3348_Appendix_2_.pdf">6djoma9gmj_KER_3348_Appendix_2_.pdf</a>)<span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Increased NR in males after prenatal exposure in studies in rat</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Increased NR in males after prenatal exposure in studies in rat</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Increased NR in males after prenatal exposure in studies in rat</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Inhibition of 5-alpha-reductase enzyme in <em>in vitro</em> assays</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Increased NR in males after prenatal exposure in studies in rat</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Reduced production of testosterone in fetal testis measured in <em>ex vivo</em> testis assays, reduced testosterone levels in testis, and reduced fetal plasma or serum testosterone levels</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Increased NR in males after prenatal exposure in studies in rat</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Reduced production of testosterone in fetal testis measured in ex vivo testis assays and reduced testosterone levels in fetal testis</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Increased NR in males after prenatal exposure in studies in rat</span></span></p>
<p> </p>
</td>
</tr>
</tbody>
</table>
<p> </p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">From Table 3, it can be deduced that fetal exposure to substances known to decrease androgen receptor activation through antagonism of the AR (vinclozolin, procymidone, flutamide), inhibition of testosterone synthesis (DEHP, DBP) or inhibition of the conversion of testosterone to DHT (finasteride), results in increased nipple/areola retention in rat male offspring.</span></span></p>
<p> </p>
<p> </p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><u>Evidence for decreased AR activation (KE 1614) by flutamide, procymidone, vinclozolin, finasteride, DEHP and DBP.</u></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Flutamide, a pharmaceutical, binds the AR and inhibits its activity, thereby acting as an AR antagonist. It has been used as an antiandrogen for the treatment of prostate cancer and is used as a reference chemical for antiandrogenic activity in the AR transactivation assays in the OECD test guideline No 458 <span style="color:black">(Goldspiel & Kohler, 1990; Labrie, 1993; OECD, 2023; Simard et al., 1986)</span> </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Procymidone and vinclozolin are fungicides that have been shown to be AR antagonists. Procymidone binds to the AR and inhibits the agonist binding, as shown in AR binding assays using rat prostate cytosol <span style="color:black">(Hosokawa et al., 1993)</span> or AR transfected cells <span style="color:black">(Ostby et al., 1999)</span>. Procymidone also inhibits agonist activated transcription in AR reporter assays <span style="color:black">(Hass et al., 2012; Kojima et al., 2004; Orton et al., 2011; Ostby et al., 1999; Scholze et al., 2020)</span>. Vinclozolin binds to the AR and inhibits the agonist binding, as shown in AR binding assays using rat epididymis cytosol <span style="color:black">(Kelce & Wilson, 1997)</span> or AR transfected cells <span style="color:black">(Wong et al., 1995)</span>. Vinclozolin also inhibits agonist activated transcription in AR reporter assays <span style="color:black">(Euling, 2002; Kojima et al., 2004; Molina-Molina et al., 2006; Orton et al., 2011; Scholze et al., 2020; Shimamura et al., 2002; Wong et al., 1995)</span>.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Finasteride is a pharmaceutical that inhibits the 5-alpha-reductase enzyme that converts testosterone to DHT. Finasteride is used to treat benign prostatic hypertrophy <span style="color:black">(Andersson & Russell, 1990; Stoner, 1990; Wood & Rittmaster, 1994)</span>. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Prenatal exposure to DEHP in rats has been shown to reduce the production of testosterone in fetal testis measured in <em>ex vivo </em>testis assays, and to reduce testosterone levels in testis and in fetal plasma and serum <span style="color:black">(Borch et al., 2006; Borch J et al., 2004; Culty et al., 2008; Hannas et al., 2011, 2012; Howdeshell et al., 2007; Klinefelter et al., 2012; Parks, 2000; VO et al., 2009; Wilson et al., 2004, 2007)</span>. Conversely, prenatal DEHP exposure did not result in any effects on testosterone levels in the testis at PND1 in one study by <span style="color:black">Andrade et al. </span><span style="color:black">(2006) </span><span style="color:black">(Andrade et al., 2006)</span>. Similar to DEHP, prenatal exposure to DBP has been shown to reduce the production of testosterone in fetal rat testis measured in ex vivo testis studies <span style="color:black">(Howdeshell et al., 2007; Wilson et al., 2004)</span> and reduce testosterone levels in the fetal rat testis <span style="color:black">(Martino-Andrade et al., 2009)</span>. The precise underlying mechanism for these effects of DEHP and DPB is presently unknown. </span></span></p>
<p> </p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><u>Evidence for increased nipple/areola retention in males (AO-1786) by prenatal exposure to flutamide, procymidone, vinclozolin, finasteride, DEHP and DBP.</u></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">All datasets that were used for the weight of evidence assessment were judged as reliable without or with restriction. The majority of datasets assessed showed an increased nipple/areola retention in male offspring after gestational exposure. The conclusion was that the level of confidence was strong for all six substances. The studies are summarised in Table 4 in Appendix 2, </span></span><a href="https://aopwiki.org/system/dragonfly/production/2025/09/18/6djoma9gmj_KER_3348_Appendix_2_.pdf">6djoma9gmj_KER_3348_Appendix_2_.pdf</a></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Dose concordance is challenging to assess for this KER since <em>in vivo</em> AR activity is currently not possible to measure, but can only be inferred indirectly by measures of upstream events. In some studies, fetal (testicular) testosterone levels during, or close to, the fetal masculinization programming window are measured in a subset of animals exposed similarly to those investigated for NR post-natally. Such information may inform on dose concordance if more doses are included.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">In a rat in utero exposure study (GD13-21) with DPB and DEHP, testosterone levels in the fetal testes were investigated at GD21, and NR was investigated at PND13<span style="color:black"> (Martino-Andrade et al., 2009)</span>. For DBP, both reduced testosterone levels in fetal testes and NR were observed at 500 mg/kg/d, whereas no effect on NR and only a slight non-significant reduction of testosterone was observed at the lower dose (100 mg/kg/d). For DEHP, a slight but non-significant decrease in testosterone levels in fetal rat testis was observed after exposure to 150 mg/kg/d DEHP, with no effects on nipple/areola retention<span style="color:black">.</span></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Such data could suggest dose concordance for this part of the KER, although the evidence for this is not strong.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Temporal concordance can only be considered from a theoretical perspective since the downstream event, increased NR, is a result of disruption to normal regression of nipple anlagen in male rodents induced during a short window of gestational development (in mice of approximately 2 days), but usually measured at PND12-14 in rats. Earlier than this, the areolae are not yet visible through the skin and later than this, the animals grow fur and need to be shaved for proper examination. This is supported by several of the studies in the empirical evidence, where the test substance was administered during a short period during gestation and nipple retention was observed postnatally.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Based on current knowledge, it is understood that the upstream event – decreased AR activation<em> in vivo</em> – takes place minutes to hours after exposure to an anti-androgenic substance. If a substance decreases AR activation through inhibition of the AR, the upstream event is expected to happen immediately after exposure. If a substance decreases androgen receptor activation through inhibition of testosterone synthesis, the upstream event is expected to happen minutes to hours after the exposure.</span></span><br />
</p>
<p> </p>
<strong>Uncertainties and Inconsistencies</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">For DEHP and DBP, there were some inconsistencies in the empirical evidence, but they could be explained by differences in study designs and uncertainties in measurements (see Appendix 1). </span></span><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Some uncertainty is imposed by the poorly supported dose-concordance. However, the dose-concordance is well supported by the current understanding of biological processes.</span></span></p>
<h4>Quantitative Understanding of the Linkage</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The quantitative understanding of the linkage is low. This is a consequence of it not being possible to measure the upstream and the downstream events in the same study. </span></span></p>
<strong>Response-response relationship</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">The difficulties in extrapolating potency from <em>in vitro</em> to <em>in vivo</em> studies were exemplified by a comparison of the effects of pyrifluquinazon and bisphenol C <em>in vitro</em> and in utero. <em>In vitro</em>, bisphenol C antagonized the androgen receptor with a much higher potency than pyrifluquinazon, but <em>in vivo</em> the potencies were reversed with pyrifluquinazon exposure leading to NR at lower exposure levels than bisphenol C <span style="color:black">(Gray et al., 2019)</span><span style="color:black">.</span></span></span></p>
<strong>Time-scale</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">AR activation operates on a time-scale of minutes. The AR is a ligand-activated nuclear receptor and transcription factor. Upon ligand binding a conformational change and subsequent dimerization of the AR takes place within 3-6 minutes <span style="color:black">(Schaufele et al., 2005)</span>. Nuclear translocation <span style="color:black">(Nightingale et al., 2003)</span> and promoter interactions occur within 15 minutes of ligand binding, and RNA polymerase II and coactivator recruitment are then proposed to occur transiently with cycles of approximately 90 minutes <span style="color:black">(Kang et al., 2002)</span>. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">For the downstream event, the time-scale for observing a measurable effect on nipple/areola retention is closer to days and weeks, depending on species. For instance, in mice the nipple anlage are responsive to androgen action at embryonic day 13-15, while a sexual dimorphism of the nipples/areolas can first be observed after birth <span style="color:black">(Imperato-McGinley et al., 1986)</span> . </span></span></p>
<strong>Known modulating factors</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">A well established modulating factor for androgen action is genetic variations in the AR, which decrease the function of the receptor. For example, longer CAG repeat lengths have been associated with decreased AR activation <span style="color:black">(Chamberlain et al., 1994; Tut et al., 1997)</span>. </span></span><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Rat strain is another important modulating factor, with studies showing that the Long-Evans Hooded rat is less sensitive to nipple/areola retention than the Sprague-Dawley rat <span style="color:black"> (Wolf et al., 1999; You et al., 1998)</span></span></span></p>
<strong>Known Feedforward/Feedback loops influencing this KER</strong>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Not relevant for this KER. </span></span></p>
<h4>References</h4>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Amato, C. M., Yao, H. H.-C., & Zhao, F. (2022). One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. Frontiers in Endocrinology, 13. https://doi.org/10.3389/fendo.2022.910964</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Andersson, S., & Russell, D. W. (1990). Structural and biochemical properties of cloned and expressed human and rat steroid 5 alpha-reductases. Proceedings of the National Academy of Sciences, 87(10), 3640–3644. https://doi.org/10.1073/pnas.87.10.3640</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Andrade, A. M., Grande, S. W., Talsness, C. E., Grote, K., & Chahoud, I. (2006). Developmental exposure to high and low doses of di-(2-ethylhexyl) phthalate (DEHP); Effects on male rat offspring. NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 372, 100–101.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Barlow, N. J., McIntyre, B. S., & Foster, P. M. D. (2004). Male reproductive tract lesions at 6, 12, and 18 months of age following in utero exposure to di(n-butyl) phthalate. TOXICOLOGIC PATHOLOGY, 32(1), 79–90. https://doi.org/10.1080/01926230490265894</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Borch, J., Axelstad, M., Vinggaard, A. M., & Dalgaard, M. (2006). Diisobutyl phthalate has comparable anti-androgenic effects to di-n-butyl phthalate in fetal rat testis. Toxicology Letters, 163(3), 183–190. https://doi.org/10.1016/j.toxlet.2005.10.020</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Borch J, Ladefoged O, Hass U, & Vinggaard AM. (2004). Steroidogenesis in fetal male rats is reduced by DEHP and DINP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats. Reproductive Toxicology (Elmsford, N.Y.), 18(1), 53–61. https://doi.org/10.1016/j.reprotox.2003.10.011</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Chamberlain, N. L., Driver, E. D., & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Research, 22(15), 3181–3186. https://doi.org/10.1093/nar/22.15.3181</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Christiansen S, Scholze M, Dalgaard M, Vinggaard AM, Axelstad M, Kortenkamp A, & Hass U. (2009). Synergistic disruption of external male sex organ development by a mixture of four antiandrogens. Environmental Health Perspectives, 117(12), 1839–1846. https://doi.org/10.1289/ehp.0900689</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Christiansen S, Boberg J, Axelstad M, Dalgaard M, Vinggaard AM, Metzdorff SB, & Hass U. (2010). Low-dose perinatal exposure to di(2-ethylhexyl) phthalate induces anti-androgenic effects in male rats. Reproductive Toxicology (Elmsford, N.Y.), 30(2), 313–321. https://doi.org/10.1016/j.reprotox.2010.04.005</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Clewell, R. A., Thomas, A., Willson, G., Creasy, D. M., & Andersen, M. E. (2013). A dose response study to assess effects after dietary administration of diisononyl phthalate (DINP) in gestation and lactation on male rat sexual development. REPRODUCTIVE TOXICOLOGY, 35, 70–80. https://doi.org/10.1016/j.reprotox.2012.07.008</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Culty, M., Thuillier, R., Li, W., Wang, Y., Martinez-Arguelles, D. B., Benjamin, C. G., Triantafilou, K. M., Zirkin, B. R., & Papadopoulos, V. (2008). In Utero Exposure to Di-(2-ethylhexyl) Phthalate Exerts Both Short-Term and Long-Lasting Suppressive Effects on Testosterone Production in the Rat1. Biology of Reproduction, 78(6), 1018–1028. https://doi.org/10.1095/biolreprod.107.065649</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Euling, S. Y. (2002). Response-Surface Modeling of the Effect of 5alpha-Dihydrotestosterone and Androgen Receptor Levels on the Response to the Androgen Antagonist Vinclozolin. Toxicological Sciences, 69(2), 332–343. https://doi.org/10.1093/toxsci/69.2.332</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Fussell KC, Schneider S, Buesen R, Groeters S, Strauss V, Melching-Kollmuss S, & van Ravenzwaay B. (2015). Investigations of putative reproductive toxicity of low-dose exposures to flutamide in Wistar rats. Archives of Toxicology, 89(12), 2385–2402. https://doi.org/10.1007/s00204-015-1622-6</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Goldman AS, Shapiro B, & Neumann F. (1976). Role of testosterone and its metabolites in the differentiation of the mammary gland in rats. Endocrinology, 99(6), 1490–1495. https://doi.org/10.1210/endo-99-6-1490</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Goldspiel, B. R., & Kohler, D. R. (1990). Flutamide: An Antiandrogen for Advanced Prostate Cancer. DICP, 24(6), 616–623. https://doi.org/10.1177/106002809002400612</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gray LE Jr, Ostby J, Furr J, Price M, Veeramachaneni DN, & Parks L. (2000). Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicological Sciences : An Official Journal of the Society of Toxicology, 58(2), 350–365. https://doi.org/10.1093/toxsci/58.2.350</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gray LE Jr, Barlow NJ, Howdeshell KL, Ostby JS, Furr JR, & Gray CL. (2009). Transgenerational effects of Di (2-ethylhexyl) phthalate in the male CRL:CD(SD) rat: added value of assessing multiple offspring per litter. Toxicological Sciences : An Official Journal of the Society of Toxicology, 110(2), 411–425. https://doi.org/10.1093/toxsci/kfp109</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Gray, L. E., Furr, J. R., Conley, J. M., Lambright, C. S., Evans, N., Cardon, M. C., Wilson, V. S., Foster, P. M., & Hartig, P. C. (2019). A Conflicted Tale of Two Novel AR Antagonists in Vitro and in Vivo: Pyrifluquinazon Versus Bisphenol C. Toxicological Sciences, 168(2), 632–643. https://doi.org/10.1093/toxsci/kfz010</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Greene, R. R., Burrill, M. W., & Ivy, A. C. (1941). Experimental intersexuality: The effects of combined estrogens and androgens on the embryonic sexual development of the rat. Journal of Experimental Zoology, 87(2), 211–232. https://doi.org/10.1002/jez.1400870203</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hannas, B. R., Furr, J., Lambright, C. S., Wilson, V. S., Foster, P. M. D., & Gray, L. E. (2011). Dipentyl Phthalate Dosing during Sexual Differentiation Disrupts Fetal Testis Function and Postnatal Development of the Male Sprague-Dawley Rat with Greater Relative Potency than Other Phthalates. Toxicological Sciences, 120(1), 184–193. https://doi.org/10.1093/toxsci/kfq386</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hannas, B. R., Lambright, C. S., Furr, J., Evans, N., Foster, P. M. D., Gray, E. L., & Wilson, V. S. (2012). Genomic Biomarkers of Phthalate-Induced Male Reproductive Developmental Toxicity: A Targeted RT-PCR Array Approach for Defining Relative Potency. Toxicological Sciences, 125(2), 544–557. https://doi.org/10.1093/toxsci/kfr315</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hass U, Scholze M, Christiansen S, Dalgaard M, Vinggaard AM, Axelstad M, Metzdorff SB, & Kortenkamp A. (2007). Combined exposure to anti-androgens exacerbates disruption of sexual differentiation in the rat. Environmental Health Perspectives, 115, 122–128. https://doi.org/10.1289/ehp.9360</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hass U, Boberg J, Christiansen S, Jacobsen PR, Vinggaard AM, Taxvig C, Poulsen ME, Herrmann SS, Jensen BH, Petersen A, Clemmensen LH, & Axelstad M. (2012). Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. Reproductive Toxicology (Elmsford, N.Y.), 34(2), 261–274. https://doi.org/10.1016/j.reprotox.2012.05.090</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hellwig J, van Ravenzwaay B, Mayer M, & Gembardt C. (2000). Pre- and postnatal oral toxicity of vinclozolin in Wistar and Long-Evans rats. Regulatory Toxicology and Pharmacology : RTP, 32(1), 42–50. https://doi.org/10.1006/rtph.2000.1400</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Holmer, M. L., Zilliacus, J., Draskau, M. K., Hlisníková, H., Beronius, A., & Svingen, T. (2024). Methodology for developing data-rich Key Event Relationships for Adverse Outcome Pathways exemplified by linking decreased androgen receptor activity with decreased anogenital distance. Reproductive Toxicology, 128, 108662. https://doi.org/10.1016/j.reprotox.2024.108662</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Hosokawa S, Murakami M, Ineyama M, Yamada T, Yoshitake A, Yamada H, Miyamoto J. The affinity of procymidone to androgen receptor in rats and mice. J Toxicol Sci. 1993 May;18(2):83-93. doi: 10.2131/jts.18.83. PMID: 8331696.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Howdeshell, K. L., Furr, J., Lambright, C. R., Rider, C. V., Wilson, V. S., & Gray, L. E. (2007). Cumulative Effects of Dibutyl Phthalate and Diethylhexyl Phthalate on Male Rat Reproductive Tract Development: Altered Fetal Steroid Hormones and Genes. Toxicological Sciences, 99(1), 190–202. https://doi.org/10.1093/toxsci/kfm069</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Imperato-McGinley J, Binienda Z, Gedney J, & Vaughan ED Jr. (1986). Nipple differentiation in fetal male rats treated with an inhibitor of the enzyme 5 alpha-reductase: definition of a selective role for dihydrotestosterone. Endocrinology, 118(1), 132–137. https://doi.org/10.1210/endo-118-1-132</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Jarfelt K, Dalgaard M, Hass U, Borch J, Jacobsen H, & Ladefoged O. (2005). Antiandrogenic effects in male rats perinatally exposed to a mixture of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) adipate. Reproductive Toxicology (Elmsford, N.Y.), 19(4), 505–515. https://doi.org/10.1016/j.reprotox.2004.11.005</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kang, H.-Y., Huang, K.-E., Chang, S. Y., Ma, W.-L., Lin, W.-J., & Chang, C. (2002). Differential Modulation of Androgen Receptor-mediated Transactivation by Smad3 and Tumor Suppressor Smad4. Journal of Biological Chemistry, 277(46), 43749–43756. https://doi.org/10.1074/jbc.M205603200</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kelce, W. R., & Wilson, E. M. (1997). Environmental antiandrogens: Developmental effects, molecular mechanisms, and clinical implications. JOURNAL OF MOLECULAR MEDICINE-JMM, 75(3), 198–207. https://doi.org/10.1007/s001090050104</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Klinefelter, G. R., Laskey, J. W., Winnik, W. M., Suarez, J. D., Roberts, N. L., Strader, L. F., Riffle, B. W., & Veeramachaneni, D. N. R. (2012). Novel molecular targets associated with testicular dysgenesis induced by gestational exposure to diethylhexyl phthalate in the rat: a role for estradiol. REPRODUCTION, 144(6), 747–761. https://doi.org/10.1530/REP-12-0266</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kojima, H., Katsura, E., Takeuchi, S., Niiyama, K., & Kobayashi, K. (2004). Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environmental Health Perspectives, 112(5), 524–531. https://doi.org/10.1289/ehp.6649</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kratochwil, K. (1977). Development and loss of androgen responsiveness in the embryonic rudiment of the mouse mammary gland. Developmental Biology, 61(2), 358–365. https://doi.org/10.1016/0012-1606(77)90305-0</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Kratochwil, K., & Schwartz, P. (1976). Tissue interaction in androgen response of embryonic mammary rudiment of mouse: identification of target tissue for testosterone. Proceedings of the National Academy of Sciences, 73(11), 4041–4044. https://doi.org/10.1073/pnas.73.11.4041</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Labrie, F. (1993). Mechanism of action and pure antiandrogenic properties of flutamide. Cancer, 72(12 Suppl), 3816–3827. https://doi.org/10.1002/1097-0142(19931215)72:12+<3816::aid-cncr2820721711>3.0.co;2-3</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Martino-Andrade AJ, Morais RN, Botelho GG, Muller G, Grande SW, Carpentieri GB, Leão GM, & Dalsenter PR. (2009). Coadministration of active phthalates results in disruption of foetal testicular function in rats. International Journal of Andrology, 32(6), 704–712. https://doi.org/10.1111/j.1365-2605.2008.00939.x</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Matsuura I, Saitoh T, Tani E, Wako Y, Iwata H, Toyota N, Ishizuka Y, Namiki M, Hoshino N, Tsuchitani M, Ikeda Y. Evaluation of a two-generation reproduction toxicity study adding endpoints to detect endocrine disrupting activity using lindane. J Toxicol Sci. (2005) Dec;30 Spec No.:135-161. doi: 10.2131/jts.30.s135. PMID: 16641539. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Mayer, J. A., Foley, J., De La Cruz, D., Chuong, C. M., & Widelitz, R. (2008). Conversion of the nipple to hair-bearing epithelia by lowering bone morphogenetic protein pathway activity at the dermal-epidermal interface. The American Journal of Pathology, 173(5), 1339–1348. https://doi.org/10.2353/AJPATH.2008.070920</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">McIntyre BS, Barlow NJ, & Foster PM. (2001). Androgen-mediated development in male rat offspring exposed to flutamide in utero: permanence and correlation of early postnatal changes in anogenital distance and nipple retention with malformations in androgen-dependent tissues. Toxicological Sciences : An Official Journal of the Society of Toxicology, 62(2), 236–249. https://doi.org/10.1093/toxsci/62.2.236</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Molina-Molina JM, Hillenweck A, Jouanin I, Zalko D, Cravedi JP, Fernández MF, Pillon A, Nicolas JC, Olea N, Balaguer P. Steroid receptor profiling of vinclozolin and its primary metabolites. Toxicol Appl Pharmacol. 2006 Oct 1;216(1):44-54. doi: 10.1016/j.taap.2006.04.005. Epub 2006 Jun 5. PMID: 16750840.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Moore RW, Rudy TA, Lin TM, Ko K, & Peterson RE. (2001). Abnormalities of sexual development in male rats with in utero and lactational exposure to the antiandrogenic plasticizer Di(2-ethylhexyl) phthalate. Environmental Health Perspectives, 109(3), 229–237. https://doi.org/10.1289/ehp.01109229</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Mylchreest E, Wallace DG, Cattley RC, & Foster PM. (2000). Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. Toxicological Sciences : An Official Journal of the Society of Toxicology, 55(1), 143–151. https://doi.org/10.1093/toxsci/55.1.143</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Nightingale, J., Chaudhary, K. S., Abel, P. D., Stubbs, A. P., Romanska, H. M., Mitchell, S. E., Stamp, G. W. H., & Lalani, E.-N. (2003). Ligand Activation of the Androgen Receptor Downregulates E-Cadherin-Mediated Cell Adhesion and Promotes Apoptosis of Prostatic Cancer Cells. Neoplasia, 5(4), 347–361. https://doi.org/10.1016/S1476-5586(03)80028-3</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2013), Guidance Document Supporting OECD Test Guideline 443 on the Extended One-Generational Reproductive Toxicity Test, OECD Series on Testing and Assessment, No. 151, OECD Publishing, Paris, ENV/JM/MONO(2013)10</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2023). Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals. OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264264366-en</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2025a), Test No. 443: Extended One-Generation Reproductive Toxicity Study, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264185371-en. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2025b), Test No. 421: Reproduction/Developmental Toxicity Screening Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264264380-en.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">OECD (2025c), Test No. 422: Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264264403-en.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Ogino, Y., Ansai, S., Watanabe, E. et al. Evolutionary differentiation of androgen receptor is responsible for sexual characteristic development in a teleost fish. Nat Commun 14, 1428 (2023). https://doi.org/10.1038/s41467-023-37026-6 </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Orton, F., Rosivatz, E., Scholze, M., & Kortenkamp, A. (2011). Widely Used Pesticides with Previously Unknown Endocrine Activity Revealed as in Vitro Antiandrogens. ENVIRONMENTAL HEALTH PERSPECTIVES, 119(6), 794–800. https://doi.org/10.1289/ehp.1002895</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Ostby J, Monosson E, Kelce WR, & Gray LE Jr. (1999). Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicology and Industrial Health, 15(1), 48–64. https://doi.org/10.1177/074823379901500106</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Parks, L. G. (2000). The Plasticizer Diethylhexyl Phthalate Induces Malformations by Decreasing Fetal Testosterone Synthesis during Sexual Differentiation in the Male Rat. Toxicological Sciences, 58(2), 339–349. https://doi.org/10.1093/toxsci/58.2.339</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Pedersen, E. B., Christiansen, S., & Svingen, T. (2022). AOP key event relationship report: Linking androgen receptor antagonism with nipple retention. In Current Research in Toxicology (Vol. 3). Elsevier B.V. https://doi.org/10.1016/j.crtox.2022.100085</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Saillenfait AM, Sabaté JP, & Gallissot F. (2008). Diisobutyl phthalate impairs the androgen-dependent reproductive development of the male rat. Reproductive Toxicology (Elmsford, N.Y.), 26(2), 107–115. https://doi.org/10.1016/j.reprotox.2008.07.006</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Saillenfait AM, Sabaté JP, & Gallissot F. (2009). Effects of in utero exposure to di-n-hexyl phthalate on the reproductive development of the male rat. Reproductive Toxicology (Elmsford, N.Y.), 28(4), 468–476. https://doi.org/10.1016/j.reprotox.2009.06.013</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schaufele, F., Carbonell, X., Guerbadot, M., Borngraeber, S., Chapman, M. S., Ma, A. A. K., Miner, J. N., & Diamond, M. I. (2005). The structural basis of androgen receptor activation: Intramolecular and intermolecular amino–carboxy interactions. Proceedings of the National Academy of Sciences, 102(28), 9802–9807. https://doi.org/10.1073/pnas.0408819102</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schneider S, Kaufmann W, Strauss V, & van Ravenzwaay B. (2011). Vinclozolin: a feasibility and sensitivity study of the ILSI-HESI F1-extended one-generation rat reproduction protocol. Regulatory Toxicology and Pharmacology : RTP, 59(1), 91–100. https://doi.org/10.1016/j.yrtph.2010.09.010</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Scholze, M., Taxvig, C., Kortenkamp, A., Boberg, J., Christiansen, S., Svingen, T., Lauschke, K., Frandsen, H., Ermler, S., Hermann, S. S., Pedersen, M., Lykkeberg, A. K., Axelstad, M., & Vinggaard, A. M. (2020). Quantitative in Vitro to in Vivo Extrapolation (QIVIVE) for Predicting Reduced Anogenital Distance Produced by Anti-Androgenic Pesticides in a Rodent Model for Male Reproductive Disorders. Environmental Health Perspectives, 128(11), 117005. https://doi.org/10.1289/EHP6774</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Schwartz, C. L., Christiansen, S., Hass, U., Ramhøj, L., Axelstad, M., Löbl, N. M., & Svingen, T. (2021). On the Use and Interpretation of Areola/Nipple Retention as a Biomarker for Anti-androgenic Effects in Rat Toxicity Studies. In Frontiers in Toxicology (Vol. 3). Frontiers Media S.A. <a href="https://doi.org/10.3389/ftox.2021.730752" style="color:#0563c1; text-decoration:underline">https://doi.org/10.3389/ftox.2021.730752</a></span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Shimamura M, Kodaira K, Kenichi H, Ishimoto Y, Tamura H, Iguchi T. Comparison of antiandrogenic activities of vinclozolin and D,L-camphorquinone in androgen receptor gene transcription assay in vitro and mouse in utero exposure assay in vivo. Toxicology. 2002 May 24;174(2):97-107. doi: 10.1016/s0300-483x(02)00044-6. PMID: 11985887. </span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Simard, J., Luthy, I., Guay, J., Bélanger, A., & Labrie, F. (1986). Characteristics of interaction of the antiandrogen flutamide with the androgen receptor in various target tissues. Molecular and Cellular Endocrinology, 44(3), 261–270. https://doi.org/10.1016/0303-7207(86)90132-2</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Stoner, E. (1990). The clinical development of a 5α-reductase inhibitor, finasteride. The Journal of Steroid Biochemistry and Molecular Biology, 37(3), 375–378. https://doi.org/10.1016/0960-0760(90)90487-6</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals. (2023). OECD. https://doi.org/10.1787/9789264264366-en</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Tut, T. G., Ghadessy, F. J., Trifiro, M. A., Pinsky, L., & Yong, E. L. (1997). Long Polyglutamine Tracts in the Androgen Receptor Are Associated with Reduced Trans -Activation, Impaired Sperm Production, and Male Infertility 1. The Journal of Clinical Endocrinology & Metabolism, 82(11), 3777–3782. https://doi.org/10.1210/jcem.82.11.4385</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Vo TT, Jung EM, Dang VH, Jung K, Baek J, Choi KC, Jeung EB. Differential effects of flutamide and di-(2-ethylhexyl) phthalate on male reproductive organs in a rat model. J Reprod Dev. 2009 Aug;55(4):400-11. doi: 10.1262/jrd.20220. Epub 2009 Apr 13. PMID: 19367084.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Welsh, M., Saunders, P. T. K., Fisken, M., Scott, H. M., Hutchison, G. R., Smith, L. B., & Sharpe, R. M. (2008). Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. JOURNAL OF CLINICAL INVESTIGATION, 118(4), 1479–1490. https://doi.org/10.1172/JCI34241</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Welsh, M., Suzuki, H., & Yamada, G. (2014). The Masculinization Programming Window. In O. Hiort & S. F. Ahmed (Eds.), UNDERSTANDING DIFFERENCES AND DISORDERS OF SEX DEVELOPMENT (DSD) (Vol. 27, pp. 17–27). https://doi.org/10.1159/000363609</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wilson, V. S., Lambright, C., Furr, J., Ostby, J., Wood, C., Held, G., & Gray, L. E. (2004). Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicology Letters, 146(3), 207–215. https://doi.org/10.1016/j.toxlet.2003.09.012</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wilson, V. S., Howdeshell, K. L., Lambright, C. S., Furr, J., & Earl Gray, L. (2007). Differential expression of the phthalate syndrome in male SpragueDawley and Wistar rats after in utero DEHP exposure. Toxicology Letters, 170(3), 177–184. https://doi.org/10.1016/j.toxlet.2007.03.004</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wolf C Jr, Lambright C, Mann P, Price M, Cooper RL, Ostby J, Gray LE Jr. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol Ind Health. 1999 Jan-Mar;15(1-2):94-118. doi: 10.1177/074823379901500109. PMID: 10188194.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wolf CJ, LeBlanc GA, Ostby JS, & Gray LE Jr. (2000). Characterization of the period of sensitivity of fetal male sexual development to vinclozolin. Toxicological Sciences : An Official Journal of the Society of Toxicology, 55(1), 152–161. https://doi.org/10.1093/toxsci/55.1.152</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wolf CJ, LeBlanc GA, & Gray LE Jr. (2004). Interactive effects of vinclozolin and testosterone propionate on pregnancy and sexual differentiation of the male and female SD rat. Toxicological Sciences : An Official Journal of the Society of Toxicology, 78(1), 135–143. https://pubmed.ncbi.nlm.nih.gov/14736997/</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wong, C. I., Kelce, W. R., Sar, M., & Wilson, E. M. (1995). Androgen Receptor Antagonist versus Agonist Activities on the Fungicide Vinclozolin Relative to Hydroxyflutamide. Nucleic Acids, Protein Synthesis, and Molecular Genetics, 270(34), 19998–20003.</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">Wood, A. J. J., & Rittmaster, R. S. (1994). Finasteride. New England Journal of Medicine, 330(2), 120–125. https://doi.org/10.1056/NEJM199401133300208</span></span></p>
<p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif">You, L., Casanova, M., Archibeque-Engle, S., Sar, M., Fan, L.-Q., & Heck, A. (1998). Impaired Male Sexual Development in Perinatal Sprague-Dawley and Long-Evans Hooded Rats Exposed in Utero and Lactationally to p,p’-DDE. In TOX1COLOGICAL SCIENCES (Vol. 45). https://academic.oup.com/toxsci/article/45/2/162/1653877</span></span></p>