This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 1199
Title
Inhibition, Deiodinase 2 leads to Decreased, Triiodothyronine (T3) in tissues
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
|---|---|---|---|---|---|---|
| Type II iodothyronine deiodinase (DIO2) inhibition leading to altered amphibian metamorphosis | adjacent | Moderate | Low | Jonathan Haselman (send email) | Under Development: Contributions and Comments Welcome |
Taxonomic Applicability
Sex Applicability
Life Stage Applicability
Key Event Relationship Description
Evidence Collection Strategy
Evidence Supporting this KER
Biological Plausibility
Empirical Evidence
Uncertainties and Inconsistencies
Known modulating factors
Quantitative Understanding of the Linkage
Response-response Relationship
Time-scale
Known Feedforward/Feedback loops influencing this KER
Domain of Applicability
Taxonomic: According to the evaluation of the empirical taxonomic domain of applicability (tDOA) of an adverse outcome pathway network for thyroid hormone system disruption (THSD) by Haigis et al., 2023, the level of confidence for a linkage between DIO2 inhibition and reduced thyroid hormone (TH) levels was considered high for mammals and fish (Cavallin et al., 2017, Da Silva et al., 2019, Darras, 2021, Darras and Van Herck, 2012, Galton et al., 2007, 2009 , Haselman et al., 2022, Houbrechts et al., 2016a,b, 2019, Noyes et al., 2011, Olker et al., 2019, Rosene et al., 2010, Schneider et al., 2001, Stinckens et al., 2018, 2020, Walpita et al., 2010). This was supported by structural protein conservation analysis by Lalone et al., 2018 and Haigis et al., 2023. Structural protein conservation of mammalian, fish, amphibian, reptilian and avian DIO2 was found compared to the human (Homo sapiens) protein target using the U.S. Environmental Protection Agency’s Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS v6.0; seqapass.epa.gov/seqapass/) tool, while acknowledging the potential existence of interspecies differences in conservation. No empirical evidence linking DIO2 inhibition to THSD was found for reptiles and birds.
References
Cavallin, J. E., Ankley, G. T., Blackwell, B. R., Blanksma, C. A., Fay, K. A., Jensen, K. M., Kahl, M. D., Knapen, D., Kosian, P. A., Poole, S. T., et al. (2017). Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environ. Toxicol. Chem. 36, 2942–2952.
Da Silva, M. M., Goncalves, C. F. L., Miranda-Alves, L., Fortunato, R. S., Carvalho, D. P., and Ferreira, A. C. F. (2019). Inhibition of type 1 iodothyronine deiodinase by bisphenol A. Horm. Metab. Res. 51, 671–677.
Darras, V. M. (2021). Deiodinases: How nonmammalian research helped shape our present view. Endocrinology 162.
Darras, V. M., and Van Herck, S. L. J. (2012). Iodothyronine deiodinase structure and function: From ascidians to humans. J. Endocrinol. 215, 189–206.
Galton, V. A., Wood, E. T., St. Germain, E. A., Withrow, C. A., Aldrich, G., St. Germain, G. M., Clark, A. S., and St. Germain, D. L. (2007). Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology 148, 3080–3088.
Galton, V. A., Schneider, M. J., Clark, A. S., and St. Germain, D. L. (2009). Life without thyroxine to 3,5,30-triiodothyronine conversion: Studies in mice devoid of the 50-deiodinases. Endocrinology 150, 2957–2963.
Haigis A-C., Vergauwen L., LaLone C.A., Villeneuve D.L., O'Brien J.M., Knapen D. (2023). Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci. 195, 1-27.
Haselman, J. T., Olker, J. H., Kosian, P. A., Korte, J. J., Denny, J. S., Tietge, J. E., Hornung, M. W., and Degitz, S. J. (2022). Characterization of the mechanistic linkages between iodothyronine deiodinase inhibition and impaired Thyroid-Mediated growth and development in Xenopus laevis sing iopanoic acid. Toxicol. Sci. 187, 139–149.
Houbrechts, A. M., Delarue, J., Gabri€els, I. J., Sourbron, J., and Darras, V. M. (2016a). Permanent deiodinase type 2 deficiency strongly perturbs zebrafish development, growth, and fertility. Endocrinology 157, 3668–3681.
Houbrechts, A. M., Vergauwen, L., Bagci, E., Van houcke, J., Heijlen, M., Kulemeka, B., Hyde, D. R., Knapen, D., and Darras, V. M. (2016b). Deiodinase knockdown affects zebrafish eye development at the level of gene expression, morphology and function. Mol. Cell. Endocrinol. 424, 81–93.
Houbrechts, A. M., Van houcke, J., and Darras, V. M. (2019). Disruption of deiodinase type 2 in zebrafish disturbs male and female reproduction. Journal of Endocrinology 241, 111–123.
Lalone, C. A., Villeneuve, D. L., Doering, J. A., Blackwell, B. R., Transue, T. R., Simmons, C. W., Swintek, J., Degitz, S. J., Williams, A. J., and Ankley, G. T. (2018). Evidence for cross species extrapolation of mammalian-based high-throughput screening assay results. Environ. Sci. Technol. 52, 13960–13971.
Noyes, P. D., Hinton, D. E., and Stapleton, H. M. (2011). Accumulation and debromination of decabromodiphenyl ether (BDE-209) in juvenile fathead minnows (Pimephales promelas) induces thyroid disruption and liver alterations. Toxicol. Sci. 122, 265–274.
Olker, J. H., Korte, J. J., Denny, J. S., Hartig, P. C., Cardon, M. C., Knutsen, C. N., Kent, P. M., Christensen, J. P., Degitz, S. J., and Hornung, M. W. (2019). Screening the ToxCast phase 1, phase 2, and e1k chemical libraries for inhibitors of iodothyronine deiodinases. Toxicol. Sci. 168, 430–442.
Rosene, M. L., Wittmann, G., Arrojo E Drigo, R., Singru, P. S., Lechan, R. M., and Bianco, A. C. (2010). Inhibition of the type 2 iodothyronine deiodinase underlies the elevated plasma TSH associated with amiodarone treatment. Endocrinology 151, 5961–5970.
Schneider, M. J., Fiering, S. N., Pallud, S. E., Parlow, A. F., St. Germain, D. L., and Galton, V. A. (2001). Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 15, 2137–2148.
Stinckens, E., Vergauwen, L., Ankley, G. T., Blust, R., Darras, V. M., Villeneuve, D. L., Witters, H., Volz, D. C., and Knapen, D. (2018). An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. Aquat. Toxicol. 200, 1–12.
Stinckens, E., Vergauwen, L., Blackwell, B. R., Ankley, G. T., Villeneuve, D. L., and Knapen, D. (2020). Effect of thyroperoxidase and deiodinase inhibition on anterior swim bladder inflation in the zebrafish. Environ. Sci. Technol. 54, 6213–6223.
Walpita, C. N., Crawford, A. D., and Darras, V. M. (2010). Combined antisense knockdown of type 1 and type 2 iodothyronine deiodinases disrupts embryonic development in zebrafish (Danio rerio). Gen. Comp. Endocrinol. 166, 134–141.