This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 2028

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Inhibition, trypsin leads to Increased monitor peptide

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes.Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Trypsin inhibition leading to pancreatic acinar cell tumors adjacent Moderate Low Shigeru Hisada (send email) Under development: Not open for comment. Do not cite Under Development

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
Homo sapiens Homo sapiens Low NCBI
Macaca fascicularis Macaca fascicularis Low NCBI
Rattus norvegicus Rattus norvegicus High NCBI
Mus musculus Mus musculus High NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Mixed High

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
All life stages High

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

Pancreatic acinar cells secrete digestive enzymes including trypsin into the small intestine.

In rats, one of the pancreatic soluble trypsin inhibitors (TIs), monitor peptide (MP), is simultaneously secreted in the pancreatic juice. MP forms complexes with trypsin in the empty intestine, which keeps the intestinal level of free MP low. Once the gastric contents are transported to the small intestine, secretion of the pancreatic proteases including trypsin and MP is induced, where trypsin is used for protein hydrolysis, and the level of free MP is subsequently increased. The increased MP level stimulates CCK release from I cells lining the small intestinal mucosa via MP receptors, and the resulting increase in CCK stimulates exocrine secretion including MP from the pancreas. Increased MP further stimulates CCK secretion via a positive feedback loop as long as duodenal contents remain to consume trypsin for proteolysis.

After trypsin inhibitors are ingested, the intestinal content of free MP increases rapidly, especially in an empty intestine, via positive feedback regulation.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER. For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

TBD

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

Trypsin is a digestive enzyme secreted by pancreatic acinar cells that cleaves peptide bonds at the carboxyl end of basic amino acids (lysine and arginine). Secretion of pancreatic digestive enzymes including trypsin is regulated mainly by cholecystokinin (CCK) released from enteroendocrine I cells located in the duodenal mucosa of the small intestine [Wang BJ and Cui ZJ, 2007], and CCK release is controlled by multiple mechanisms [Caron J et al, 2017]. These mechanisms involve feedback regulation of trypsin-sensitive CCK-releasing peptides, one being positive feedback regulation of MP and the other negative feedback regulation of luminal CCK-releasing factor (LCRF) [Miyasaka K and Funakoshi A, 1998; Wang BJ and Cui ZJ, 2007; Guan D et al, 1990].

MP is one of the PSTIs in rats, which stimulates CCK release from duodenal enteroendocrine I cells as well as inhibition of trypsin activity. MP consists of 61 amino acids and has a molecular weight of approximately 6000. MP was first purified from rat pancreatic juice, and its amino acid sequence was subsequently determined [Iwai K et al, 1987; Lin YZ et al, 1990].

MP is bound to trypsin in the empty intestine. Once gastric contents are transported into the small intestine, secretion of the pancreatic proteases with MP is increased, where trypsin instead hydrolyzes these proteins, leading to an increase in the free MP level [Iwai K et al, 1988; Liddle RA, 1995; Graf R, 2006]. The increased level of MP stimulates CCK release from I cells, and then pancreatic exocrine secretion is stimulated [Liddle RA et al, 1992; Guan D et al, 1990; Cuber JC et al, 1990]. It was shown that MP binds to the surface of CCK-immunoreactive mucosal cells of the small intestine [Yamanishi R et al, 1993a; Yamanishi R et al, 1993b].

Following the increased secretion of pancreatic enzymes, proteolysis decreases intestinal protein contents, which once again decreases the intestinal level of free MP due to the excess of trypsin and in turn CCK release [Liddle RA, 1995; Miyasaka K and Funakoshi A, 1998; Graf R, 2006].

When raw soya flour (RSF), which contains trypsin inhibitory activity, or TIs such as camostat are ingested, trypsin activity is inhibited to increase the intestinal level of free MP especially in the empty intestine, followed by an increase in the blood level of CCK [Liddle RA, 1995; Miyasaka K and Funakoshi A, 1998]. TI ingestion-induced increases in blood levels of CCK leads to further CCK release due to increased pancreatic secretion of proteins including MP in a positive feedback manner. On the other hand, TIs may elevate the luminal concentration of LCRF to stimulate CCK release; however, this increase might not be as exaggerated as that of MP, because increased blood level of CCK does not induce further secretion of LCRF.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

In normal rats, positive regulation of CCK release by MP seems to require some level of pancreatic secretion before to be effective. In the presence of nutritional protein in the duodenum, trypsin is used for digestion of protein and increased levels of MP stimulates CCK release. On the other hand, after most of the protein is digested, increased free MP might be inactivated with excess of trypsin or other proteases, as follows [Foltz M, 2008]:

1) MP is degraded by trypsin and other proteases.

2) MP forms a complex with trypsin as other PSTIs.

3) MP forms a complex with trypsin, thereafter degraded by proteases.

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help

Raw soya flour and trypsin inhibitors such as camostat inhibit trypsin activity, leading to an increase in CCK release from the upper intestine into the bloodstream, where the increased CCK released seems to be mediated by increased luminal concentration of MP due to trypsin inhibition [Green GM and Miyasaka K, 1983; Liddle RA et al, 1984; Goke B et al, 1986; Douglas BR et al, 1989; Cuber JC et al, 1990; Playford RJ et al, 1993; Obourn JD et al, 1997; Tashiro M et al, 2004; Komarnytsky S et al, 2011; Calam J et al, 1987] .

Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help

No study has shown a direct quantitative relationship between MIE and KE1.

Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help

No study has reported the time from trypsin inhibition to alteration of intestinal MP content. However, as mentioned above, treatment with trypsin inhibitors or MP increased the plasma concentration of CCK within 30 min in rats.

Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

MP stimulates CCK release from intestinal I cells, and the increased CCK level in turn promotes pancreatic acinar cells to secrete pancreatic enzymes including CCK-stimulating MP. Therefore, MP-mediated CCK release is under positive feedback regulation [Liddle RA, 1995; Wang BJ and Cui ZJ, 2007; Chey WY and Chang T, 2001], and the effects of trypsin inhibitors seem robust. As discussed previously, trypsin-sensitive LCRF released from intestinal mucosal cells also stimulate duodenal I cells to release CCK with negative feedback loop.

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

Isoforms of trypsin are found in many species, for example, cationic and anionic trypsins (trypsins 1 and 2) and mesotrypsin in humans, cationic and anionic trypsins in cows, and anionic trypsin and P23 in rats [Chen JM and Claude Férec C, 2013; Fukuoka S and Nyaruhucha CM, 2002] . Despite differences among species, the three-dimensional structures of the isoforms are highly conserved among species, and the natural substrates for the enzymes are generally any peptide that contains Lys or Arg [Baird Jr TT, 2017]. The active site of trypsin has a specific catalytic triad structure composed of serine, histidine, and aspartate, and the flanking amino acid sequences are entirely conserved [Baird Jr TT and Craik CS, 2013; Baird Jr TT, 2017]. Therefore, trypsin inhibitors have comparable effects on the enzymatic activity of trypsin isoforms among animal species including humans and rats [Savage GP and Morrison SC, 2003].

MP secreted from rat pancreatic acinar cells into the small intestine stimulates I cells of the small intestinal mucosa to release CCK.

MP-like peptides are also found in rats and other mammalian species [Eddeland A and Ohlsson K, 1976]. Rat soluble trypsin inhibitor [Tsuzuki S et al, 1992; Tsuzuki S et al, 1991], human soluble trypsin inhibitor [Pubols MH et al, 1974; Kikuchi N et al, 1985], and bovine soluble trypsin inhibitor [Greene LJ and Giordano JS Jr, 1969; Guy O et al, 1971] are homologous peptides, all of which show trypsin inhibitory activity but no CCK-stimulatory activity [Miyasaka K et al, 1989a; Miyasaka K et al, 1989b; Marchbank T et al, 1998; Voet D and Voet JG, 1995].

References

List of the literature that was cited for this KER description. More help

 1.    Baird Jr TT, Craik CS: Trypsin. Academic Press, Cambridge, Massachusetts (pp)2594-2600,2013

 2.    Baird Jr TT: Trypsin. Elsevier,2017

 3.    Calam J, Bojarski JC, Springer CJ: Raw soya-bean flour increases cholecystokinin release in man. Br J Nutr 58:175-179,1987

 4.    Caron J, Domenger D, Dhulster P, Ravallec R, Cudennec B: Protein digestion-derived peptides and the peripheral regulation of food intake. Front Endocrinol (Lausanne) 8:85,2017

 5.    Chen J-M, Claude Férec C: Human trypsins. Academic Press, Cambridge, Massachusetts (pp) 2600-2609,2013

 6.    Chey WY, Chang T: Neural hormonal regulation of exocrine pancreatic secretion. Pancreatology 1:320-335,2001

 7.    Cuber JC, Bernard G, Fushiki T, Bernard C, Yamanishi R, Sugimoto E, Chayvialle JA: Luminal CCK-releasing factors in the isolated vascularly perfused rat duodenojejunum. Am J Physiol 259:G191-197,1990

 8.    Douglas BR, Woutersen RA, Jansen JB, de Jong AJ, Rovati LC, Lamers CB: Modulation by CR-1409 (lorglumide), a cholecystokinin receptor antagonist, of trypsin inhibitor-enhanced growth of azaserine-induced putative preneoplastic lesions in rat pancreas. Cancer Res 49:2438-2441,1989

 9.    Eddeland A, Ohlsson K: Purification of canine pancreatic secretory trypsin inhibitor and interaction in vitro with complexes of trypsin-alpha-macroglobulin. Scand J Clin Lab Invest 36:815-820,1976

10.    Foltz M, Ansems P, Schwarz J, Tasker MC, Lourbakos A, Gerhardt CC: Protein hydrolysates induce CCK release from enteroendocrine cells and act as partial agonists of the CCK1 receptor. J Agric Food Chem 56:837-843,2008

11.    Fukuoka S, Nyaruhucha CM: Expression and functional analysis of rat P23, a gut hormone-inducible isoform of trypsin, reveals its resistance to proteinaceous trypsin inhibitors. Biochim Biophys Acta 1588:106-112,2002

12.    Fushiki T, Kajiura H, Fukuoka S, Kido K, Semba T, Iwai K: Evidence for an intraluminal mediator in rat pancreatic enzyme secretion: reconstitution of the pancreatic response with dietary protein, trypsin and the monitor peptide. J Nutr 119:622-627,1989

13.    Goke B, Printz H, Koop I, Rausch U, Richter G, Arnold R, Adler G: Endogenous CCK release and pancreatic growth in rats after feeding a proteinase inhibitor (camostate). Pancreas 1:509-515,1986

14.    Graf R, Bimmler D: Biochemistry and biology of SPINK-PSTI and monitor peptide.. Endocrinol Metab Clin North Am 35:333-43, ix,2006

15.    Green GM, Miyasaka K: Rat pancreatic response to intestinal infusion of intact and hydrolyzed protein. Am J Physiol 245:G394-8,1983

16.    Greene LJ, Giordano JS Jr: The structure of the bovine pancreatic secretory trypsin inhibitor--Kazal's inhibitor. I. The isolation and amino acid sequences of the tryptic peptides from reduced aminoethylated inhibitor. J Biol Chem 244:285-298,1969

17.    Guan D, Ohta H, Tawil T, Liddle RA, Green GM: CCK-releasing activity of rat intestinal secretion: effect of atropine and comparison with monitor peptide. Pancreas 5:677-684,1990

18.    Guy O, Shapanka R, Greene LJ: The structure of the bovine pancreatic secretory trypsin inhibitor--Kazal's inhibitor. 3. Determination of the disulfide bonds and proteolysis by thermolysin. J Biol Chem 246:7740-7747,1971

19.    Iwai K, Fukuoka S, Fushiki T, Tsujikawa M, Hirose M, Tsunasawa S, Sakiyama F: Purification and sequencing of a trypsin-sensitive cholecystokinin-releasing peptide from rat pancreatic juice. Its homology with pancreatic secretory trypsin inhibitor. J Biol Chem 262:8956-8959,1987

20.    Iwai K, Fushiki T, Fukuoka S: Pancreatic enzyme secretion mediated by novel peptide: monitor peptide hypothesis. Pancreas 3:720-728,1988

21.    Kikuchi N, Nagata K, Yoshida N, Ogawa M: The multiplicity of human pancreatic secretory trypsin inhibitor. J Biochem 98:687-694,1985

22.    Komarnytsky S, Cook A, Raskin I: Potato protease inhibitors inhibit food intake and increase circulating cholecystokinin levels by a trypsin-dependent mechanism. Int J Obes (Lond) 35:236-243,2011

23.    Liddle RA, Goldfine ID, Williams JA: Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 87:542-549,1984

24.    Liddle RA, Misukonis MA, Pacy L, Balber AE: Cholecystokinin cells purified by fluorescence-activated cell sorting respond to monitor peptide with an increase in intracellular calcium.. Proc Natl Acad Sci U S A 89:5147-5151,1992

25.    Liddle RA: Regulation of cholecystokinin secretion by intraluminal releasing factors. Am J Physiol 269:G319-27,1995

26.    Lin YZ, Isaac DD, Tam JP: Synthesis and properties of cholecystokinin-releasing peptide (monitor peptide), a 61-residue trypsin inhibitor. Int J Pept Protein Res 36:433-439,1990

27.    Marchbank T, Freeman TC, Playford RJ: Human pancreatic secretory trypsin inhibitor. Distribution, actions and possible role in mucosal integrity and repair. Digestion 59:167-174,1998

28.    Miyasaka K, Nakamura R, Funakoshi A, Kitani K: Stimulatory effect of monitor peptide and human pancreatic secretory trypsin inhibitor on pancreatic secretion and cholecystokinin release in conscious rats. Pancreas 4:139-144,1989a

29.    Miyasaka K, Funakoshi A, Nakamura R, Kitani K, Uda K, Murata A, Ogawa M: Differences in stimulatory effects between rat pancreatic secretory trypsin inhibitor-61 and -56 on rat pancreas. Jpn J Physiol 39:891-899,1989b

30.    Miyasaka K, Funakoshi A: Luminal feedback regulation, monitor peptide, CCK-releasing peptide, and CCK receptors. Pancreas 16:277-283,1998

31.    Obourn JD, Frame SR, Chiu T, Solomn TE, Cook JC: Evidence that A8947 enhances pancreas growth via a trypsin inhibitor mechanism.Toxicol Appl Pharmacol 146:116-126,1997

32.    Playford RJ, King AW, Deprez PH, De-Belleroche J, Freeman TC, Calam J: Effects of diet and the cholecystokinin antagonist; devazepide (L364,718) on CCK mRNA, and tissue and plasma CCK concentrations. Eur J Clin Invest 23:641-647,1993

33.    Pubols MH, Bartelt DC, Greene LJ: Trypsin inhibitor from human pancreas and pancreatic juice. J Biol Chem 249:2235-2242,1974

34.    Savage GP, Morrison SC: Trypsin inhibitors. Elsevier (pp) 5878-5884,2003

35.    Tashiro M, Samuelson LC, Liddle RA, Williams JA: Calcineurin mediates pancreatic growth in protease inhibitor-treated mice. Am J Physiol Gastrointest Liver Physiol 286:G784-790,2004

36.    Tsuzuki S, Fushiki T, Kondo A, Murayama H, Sugimoto E: Effect of a high-protein diet on the gene expression of a trypsin-sensitive, cholecystokinin-releasing peptide (monitor peptide) in the pancreas. Eur J Biochem 199:245-252,1991

37.    Tsuzuki S, Miura Y, Fushiki T, Oomori T, Satoh T, Natori Y, Sugimoto E: Molecular cloning and characterization of genes encoding rat pancreatic cholecystokinin (CCK)-releasing peptide (monitor peptide) and pancreatic secretory trypsin inhibitor (PSTI). Biochim Biophys Acta 1132:199-202,1992

38.    Voet D, Voet JG: Biochemistry (2nd ed.). John Wiley & Sons (pp) 396-400,1995

39.    Wang BJ, Cui ZJ: How does cholecystokinin stimulate exocrine pancreatic secretion? From birds, rodents, to human.. Am J Physiol Regul Integr Comp Physiol 292:R666-78,2007

40.    Yamanishi R, Kotera J, Fushiki T, Soneda T, Iwanaga T, Sugimoto E: Characteristic and localization of the monitor peptide receptor. Biosci Biotechnol Biochem 57:1153-1156,1993a

41.    Yamanishi R, Kotera J, Fushiki T, Soneda T, Saitoh T, Oomori T, Satoh T, Sugimoto E: A specific binding of the cholecystokinin-releasing peptide (monitor peptide) to isolated rat small-intestinal cells.. Biochem J 291 ( Pt 1):57-63,1993b