This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 3220
Title
Binding PPAR isoforms leads to Disrupted PPAR isoform nuclear signaling
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
|---|---|---|---|---|---|---|
| Xenobiotic binding to peroxisome proliferator-activated receptors (PPARs) causes dysregulation of lipid metabolism leading to liver steatosis | adjacent | High | Moderate | Erik Mylroie (send email) | Under development: Not open for comment. Do not cite |
Taxonomic Applicability
| Term | Scientific Term | Evidence | Link |
|---|---|---|---|
| Vertebrates | Vertebrates | High | NCBI |
Sex Applicability
| Sex | Evidence |
|---|---|
| Male | High |
| Female | Moderate |
Life Stage Applicability
| Term | Evidence |
|---|---|
| Embryo | Moderate |
| Juvenile | High |
| Adult, reproductively mature | High |
Key Event Relationship Description
Both natural and synthetic ligands can interact with all 3 main PPAR isoforms (α, β/δ, γ) with unsaturated fatty acids and other lipid-derived molecules being the primary natural ligands the PPAR isoforms (Ferré 2004). Numerous studies have shown the ability of synthetic ligands to bind the ligand binding domains of the PPAR isoforms (Ferré 2004; Grygiel-Górniak 2014). This Key Event Relationship describes the binding of stressor ligands to the PPAR isoforms with either agonist or antagonist interactions which then disrupts downstream PPAR isoform nuclear signaling. The ligands that bind the PPAR isoforms either agonistically or antagonistically can disrupt proper PPAR activity and nuclear signaling for the either expression or repression of target genes.
Evidence Collection Strategy
Evidence Supporting this KER
.
Biological Plausibility
Natural and synthetic ligands can interact with all 3 main PPAR isoforms (α, β/δ, γ) with unsaturated fatty acids and other lipid-derived molecules being the primary natural ligands the PPAR isoforms (Ferré 2004). Following binding with an activating ligand, PPAR isoforms heterodimerize with the retinoid X receptor (RXR) with this complex then recognizing the peroxisome proliferator response elements (PPRE) of the PPAR isoform target genes and promoting gene expression (Capelli et al. 2016). Therefore, ligands that act either agonistically or antagonistically beyond or more persistently than the normal biological range can disrupt proper nuclear signaling and subsequent gene expression.
Empirical Evidence
Synthetic ligands can be PPAR isoform specific whereas others, like bezafibrate, can bind and activate all 3 main PPAR isoforms (Grygiel-Górniak 2014). Specifically, the prototypical stressor, PFOS, has been shown to bind the three PPAR isoforms with varying degrees of affinity through in vitro ligand binding assays (Vanden Heuvel et al. 2006; Takacs and Abbot 2007; Wolf et al. 2008; Behr et al. 2020; Evans et al. 2022; Sun et al. 2023) as well as through computational binding/docking analyses (Li et al. 2018; Yi et al. 2019; Almedia et al. 2021; Garoche et al. 2021; Khazee et al. 2021; Huang et al. 2022; Wang et al. 2022a, Wang et al. 2022b; Kowalska et al. 2023).
Results from activity assays, nuclear signaling assays, and transcriptomic analyses using PPAR isoform agonist and antagonist have demonstrate that PPAR ligands directly affect PPAR activity, nuclear signaling, and the transcription of PPAR mediated target genes (Kojo et al. 2003; Behr et al. 2020; Gao et al. 2020; Evans et al. 2022; Murase et al. 2023; Ardenkjær-Skinnerup et al. 2024). Moreover, studies have demonstrated that exposure to the prototypical stressor, PFOS, can have a direct effect on the transcriptional expression of the PPAR isoforms in vertebrates (Lee et al. 2020; Beale et al. 2022) with these studies showing expression changes occurring primarily in the PPARα and PPARγ isoforms.
Beyond the direct effects of stressor ligands on PPAR isoforms, activation of one PPAR isoform can have effects on the expression of other PPAR isoforms. For example, agonism of PPARβ/δ can cause reduced expression of PPARα and PPARγ isoforms (Shi et al. 2002; Kim et al. 2020; Kim et al. 2023), and certain coregulators can have effects (sometimes opposite) on different PPAR isoforms (Tahri-Joutey et al. 2021). Finally, omics studies have shown that agonist and antagonist of PPAR isoforms alter PPAR signaling transcripts (Louisse et al. 2020; Heintz et al. 2024). Overall, this evidence displays that disruption of PPAR isoforms via stressor chemicals can affect other PPAR isoforms and impact PPAR nuclear signaling.
Uncertainties and Inconsistencies
While the PPAR molecular structure and function among vertebrates is largely conserved (Gust et al 2020), species to species variation does exist in structure and specific function; and therefore, it is important to exercise care when looking to extrapolate across species. The binding affinity of certain ligands and the magnintude of response in PPAR nuclear signaling may differ from species to species due to variations in PPAR molecular structure.
Known modulating factors
Quantitative Understanding of the Linkage
Response-response Relationship
Unknown.
Time-scale
Rapid Molecular Interactions.
Known Feedforward/Feedback loops influencing this KER
As PPAR signaling is essential for maintaining energy homeostasis, there is a complex network of feedforward/feedback loops influencing PPAR nuclear signaling via ligands, products, and the PPAR isoforms acting on each other. Due to extensive detail needed to properly describe all potential feedforward/feedback loops that could influence this KER, the authors direct readers to reviews by Ament et al. (2012) and Lamichane et al. (2018).
Domain of Applicability
The conservation of PPAR molecular structure and function among vertebrates (Gust et al 2020) indicates this key event is likely to be conserved among this broad phylogenetic group. Furthermore, PPAR isoforms play a crucial role in lipid metabolism across representative vertebrate species. However, given that species to species variation does exist in structure and specific function, it is important to exercise care when looking to extrapolate across species.
References
Almeida, N.M., Eken, Y. and Wilson, A.K., 2021. Binding of per-and polyfluoro-alkyl substances to peroxisome proliferator-activated receptor gamma. ACS omega, 6(23), pp.15103-15114.
Ament, Z., Masoodi, M. and Griffin, J.L., 2012. Applications of metabolomics for understanding the action of peroxisome proliferator-activated receptors (PPARs) in diabetes, obesity and cancer. Genome Medicine, 4, pp.1-12.
Ardenkjær-Skinnerup, J., Nissen, A.C.V.E., Nikolov, N.G., Hadrup, N., Ravn-Haren, G., Wedebye, E.B. and Vogel, U., 2024. Orthogonal assay and QSAR modelling of Tox21 PPARγ antagonist in vitro high-throughput screening assay. Environmental Toxicology and Pharmacology, 105, p.104347.
Beale, D.J., Sinclair, G., Shah, R., Paten, A., Kumar, A., Long, S.M., Vardy, S. and Jones, O.A., 2022. A review of omics-based PFAS exposure studies reveals common biochemical response pathways. Science of The Total Environment, p.157255.
Behr, A.C., Plinsch, C., Braeuning, A. and Buhrke, T., 2020. Activation of human nuclear receptors by perfluoroalkylated substances (PFAS). Toxicology in Vitro, 62, p.104700.
Capelli, D., Cerchia, C., Montanari, R., Loiodice, F., Tortorella, P., Laghezza, A., Cervoni, L., Pochetti, G. and Lavecchia, A., 2016. Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode. Scientific reports, 6(1), p.34792.
Evans, N., Conley, J.M., Cardon, M., Hartig, P., Medlock-Kakaley, E. and Gray Jr, L.E., 2022. In vitro activity of a panel of per-and polyfluoroalkyl substances (PFAS), fatty acids, and pharmaceuticals in peroxisome proliferator-activated receptor (PPAR) alpha, PPAR gamma, and estrogen receptor assays. Toxicology and Applied Pharmacology, 449, p.116136.
Ferré, P., 2004. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes, 53(suppl_1), pp.S43-S50.
Gao, P., Wang, L., Yang, N., Wen, J., Zhao, M., Su, G., Zhang, J. and Weng, D., 2020. Peroxisome proliferator-activated receptor gamma (PPARγ) activation and metabolism disturbance induced by bisphenol A and its replacement analog bisphenol S using in vitro macrophages and in vivo mouse models. Environment international, 134, p.105328.
Garoche, C., Boulahtouf, A., Grimaldi, M., Chiavarina, B., Toporova, L., den Broeder, M.J., Legler, J., Bourguet, W. and Balaguer, P., 2021. Interspecies Differences in Activation of Peroxisome Proliferator-Activated Receptor γ by Pharmaceutical and Environmental Chemicals. Environmental Science & Technology, 55(24), pp.16489-16501.
Beale, D.J., Sinclair, G., Shah, R., Paten, A., Kumar, A., Long, S.M., Vardy, S. and Jones, O.A., 2022. A review of omics-based PFAS exposure studies reveals common biochemical response pathways. Science of The Total Environment, p.157255.
Grygiel-Górniak, B., 2014. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications-a review. Nutrition journal, 13, pp.1-10.
Gust, K.A., Ji, Q., Luo, X., 2020. Example of Adverse Outcome Pathway Concept Enabling Genome-to-Phenome Discovery in Toxicology. Integr. Comp. Biol. 60, 375-384.
Heintz, M.M., Klaren, W.D., East, A.W., Haws, L.C., McGreal, S.R., Campbell, R.R. and Thompson, C.M., 2024. Comparison of transcriptomic profiles between HFPO-DA and prototypical PPARα, PPARγ, and cytotoxic agents in mouse, rat, and pooled human hepatocytes. Toxicological Sciences, p.kfae044.
Huang, J., Wang, Q., Liu, S., Lai, H. and Tu, W., 2022. Comparative chronic toxicities of PFOS and its novel alternatives on the immune system associated with intestinal microbiota dysbiosis in adult zebrafish. Journal of Hazardous Materials, 425, p.127950.
Khazaee, M., Christie, E., Cheng, W., Michalsen, M., Field, J. and Ng, C., 2021. Perfluoroalkyl acid binding with peroxisome proliferator-activated receptors α, γ, and δ, and fatty acid binding proteins by equilibrium dialysis with a comparison of methods. Toxics, 9(3), p.45.
Kim, D.H., Kim, D.H., Heck, B.E., Shaffer, M., Yoo, K.H. and Hur, J., 2020. PPAR-δ agonist affects adipo-chondrogenic differentiation of human mesenchymal stem cells through the expression of PPAR-γ. Regenerative Therapy, 15, pp.103-111.
Kim, I.S., Silwal, P. and Jo, E.K., 2023. Peroxisome proliferator-activated receptor-targeted therapies: challenges upon infectious diseases. Cells, 12(4), p.650.
Kojo, H., Fukagawa, M., Tajima, K., Suzuki, A., Fujimura, T., Aramori, I., Hayashi, K.I. and Nishimura, S., 2003. Evaluation of human peroxisome proliferator-activated receptor (PPAR) subtype selectivity of a variety of anti-inflammatory drugs based on a novel assay for PPARδ (β). Journal of pharmacological sciences, 93(3), pp.347-355.
Kowalska, D., Sosnowska, A., Bulawska, N., Stępnik, M., Besselink, H., Behnisch, P. and Puzyn, T., 2023. How the Structure of Per-and Polyfluoroalkyl Substances (PFAS) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors—An In Silico Screening Study. Molecules, 28(2), p.479.
Lamichane, S., Dahal Lamichane, B. and Kwon, S.M., 2018. Pivotal roles of peroxisome proliferator-activated receptors (PPARs) and their signal cascade for cellular and whole-body energy homeostasis. International journal of molecular sciences, 19(4), p.949.
Lee, J.W., Choi, K., Park, K., Seong, C., Do Yu, S. and Kim, P., 2020. Adverse effects of perfluoroalkyl acids on fish and other aquatic organisms: A review. Science of the Total Environment, 707, p.135334.
Li, C.H., Ren, X.M., Ruan, T., Cao, L.Y., Xin, Y., Guo, L.H. and Jiang, G., 2018. Chlorinated polyfluorinated ether sulfonates exhibit higher activity toward peroxisome proliferator-activated receptors signaling pathways than perfluorooctanesulfonate. Environmental science & technology, 52(5), pp.3232-3239.
Li, Y., Liu, X., Niu, L. and Li, Q., 2017. Proteomics analysis reveals an important role for the PPAR signaling pathway in DBDCT-induced hepatotoxicity mechanisms. Molecules, 22(7), p.1113.
Louisse, J., Rijkers, D., Stoopen, G., Janssen, A., Staats, M., Hoogenboom, R., Kersten, S. and Peijnenburg, A., 2020. Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Archives of toxicology, 94(9), pp.3137-3155.
Murase, W., Kubota, A., Ikeda-Araki, A., Terasaki, M., Nakagawa, K., Shizu, R., Yoshinari, K. and Kojima, H., 2023. Effects of perfluorooctanoic acid (PFOA) on gene expression profiles via nuclear receptors in HepaRG cells: Comparative study with in vitro transactivation assays. Toxicology, 494, p.153577.
Rajapaksha, H., Bhatia, H., Wegener, K., Petrovsky, N. and Bruning, J.B., 2017. X-ray crystal structure of rivoglitazone bound to PPARγ and PPAR subtype selectivity of TZDs. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861(8), pp.1981-1991.
Shi, Y., Hon, M. and Evans, R.M., 2002. The peroxisome proliferator-activated receptor δ, an integrator of transcriptional repression and nuclear receptor signaling. Proceedings of the National Academy of Sciences, 99(5), pp.2613-2618.
Sun, X., Xie, Y., Zhang, X., Song, J. and Wu, Y., 2023. Estimation of Per-and Polyfluorinated Alkyl Substance Induction Equivalency Factors for Humpback Dolphins by Transactivation Potencies of Peroxisome Proliferator-Activated Receptors. Environmental Science & Technology, 57(9), pp.3713-3721.
Tahri-Joutey, M., Andreoletti, P., Surapureddi, S., Nasser, B., Cherkaoui-Malki, M. and Latruffe, N., 2021. Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα. International journal of molecular sciences, 22(16), p.8969.
Takacs, M.L. and Abbott, B.D., 2007. Activation of mouse and human peroxisome proliferator–activated receptors (α, β/δ, γ) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicological Sciences, 95(1), pp.108-117.
Vanden Heuvel, J.P., Thompson, J.T., Frame, S.R. and Gillies, P.J., 2006. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-α,-β, and-γ, liver X receptor-β, and retinoid X receptor-α. Toxicological Sciences, 92(2), pp.476-489.
Wang, Q., Huang, J., Liu, S., Wang, C., Jin, Y., Lai, H. and Tu, W., 2022a. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish. Environment International, 166, p.107351.
Wang, P., Liu, D., Yan, S., Cui, J., Liang, Y. and Ren, S., 2022b. Adverse effects of perfluorooctane sulfonate on the liver and relevant mechanisms. Toxics, 10(5), p.265.
Wolf, C.J., Takacs, M.L., Schmid, J.E., Lau, C. and Abbott, B.D., 2008. Activation of mouse and human peroxisome proliferator− activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths. Toxicological Sciences, 106(1), pp.162-171.
Yi, S., Chen, P., Yang, L. and Zhu, L., 2019. Probing the hepatotoxicity mechanisms of novel chlorinated polyfluoroalkyl sulfonates to zebrafish larvae: Implication of structural specificity. Environment international, 133, p.105262.