This AOP is licensed under the BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

AOP: 259

Title

A descriptive phrase which references both the Molecular Initiating Event and Adverse Outcome.It should take the form “MIE leading to AO”. For example, “Aromatase inhibition leading to reproductive dysfunction” where Aromatase inhibition is the MIE and reproductive dysfunction the AO. In cases where the MIE is unknown or undefined, the earliest known KE in the chain (i.e., furthest upstream) should be used in lieu of the MIE and it should be made clear that the stated event is a KE and not the MIE.  More help

Sensitization induction of the intestinal tract by food proteins

Short name
A name that succinctly summarises the information from the title. This name should not exceed 90 characters. More help
impARAS

Graphical Representation

A graphical representation of the AOP.This graphic should list all KEs in sequence, including the MIE (if known) and AO, and the pair-wise relationships (links or KERs) between those KEs. More help
Click to download graphical representation template Explore AOP in a Third Party Tool

Authors

The names and affiliations of the individual(s)/organisation(s) that created/developed the AOP. More help

Jolanda H M van Bilsen and Kitty C M Verhoeckx, TNO, Zeist, the Netherlands

Edyta Sienkiewicz-Szłapka, University of Warmia and Mazury, Osztyn, Poland

Daniel Lozano-Ojalvo and Elena Molina, Instituto  de  Investigación en Ciencias de la Alimentaci ón, Madrid, Spain

Linette E M Willemsen, Joost J Smit and Raymond Pieters, Utrecht University, Utrecht, Netherlands

Celia M Antunes, University of Evora, Evora, Portugal

Barbara Wróblewska, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland

Harry J Wichers, Wageningen University & Research, Wageningen, Netherlands

Edward F Knol, University Medical Center Utrecht, Utrecht, Netherlands

Gregory S Ladics, DuPont Company, Newark, United States

Sandra Denery-Papin and Colette Larré, INRA, Nantes, France

Yvonne M Vissers, Nestlé Ltd., Nestlé Research Center, Lausanne, Switzerland

Simona L Bavaro, Institute of Sciences of Food Production, National Research Council, Bari, Italy

Erwin L Roggen, 3Rs Managing and Consulting ApS, Lyngby, Denmark

Point of Contact

The user responsible for managing the AOP entry in the AOP-KB and controlling write access to the page by defining the contributors as described in the next section.   More help
Erwin L Roggen   (email point of contact)

Contributors

Users with write access to the AOP page.  Entries in this field are controlled by the Point of Contact. More help
  • Erwin L Roggen
  • Jolanda van Bilsen
  • Daniel Lozano-Ojalvo
  • Linette Willemsen
  • Raymond Pieters

Coaches

This field is used to identify coaches who supported the development of the AOP.Each coach selected must be a registered author. More help

Status

Provides users with information concerning how actively the AOP page is being developed, what type of use or input the authors feel comfortable with given the current level of development, and whether it is part of the OECD AOP Development Workplan and has been reviewed and/or endorsed. OECD Status - Tracks the level of review/endorsement the AOP has been subjected to. OECD Project Number - Project number is designated and updated by the OECD. SAAOP Status - Status managed and updated by SAAOP curators. More help
Handbook Version OECD status OECD project
v1.0
This AOP was last modified on April 29, 2023 16:03

Revision dates for related pages

Page Revision Date/Time

Abstract

A concise and informative summation of the AOP under development that can stand-alone from the AOP page. The aim is to capture the highlights of the AOP and its potential scientific and regulatory relevance. More help

The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient.

There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses.

The aim of this AOP was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP).

The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential.

The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches.

AOP Development Strategy

Context

Used to provide background information for AOP reviewers and users that is considered helpful in understanding the biology underlying the AOP and the motivation for its development.The background should NOT provide an overview of the AOP, its KEs or KERs, which are captured in more detail below. More help

Consumers are exposed to increasing numbers of novel proteins or protein-containing products (e.g. insect burgers or proteins derived from bacteria grown on waste streams). These sustainable protein-rich food products are to solve the food insecurity problem but require a comprehensive risk assessment complying with the European ‘Novel Food’ law.

Additional knowledge and biological tools are needed to support the prediction of the risk for food allergy development and the potential severity of the reaction. This constitutes a major public health problem and a challenge to risk assessors and managers.

Like other allergies, food allergy has a non-symptomatic sensitization phase and a symptomatic elicitation phase. Food-associated adverse reactions can be immunoglobulin E (IgE) mediated, non-IgE mediated or both. This AOP focusses on the current understanding of the cellular and molecular mechanisms driving sensitization induction resulting in IgE-mediated allergy.

The mode of action (MOA) of sensitization and IgE mediated allergy to food proteins in predisposed individuals is poorly understood. It is recognized that food processing, oral uptake and digestion affect the characteristics of food and food proteins. Thus, acquiring a good understanding of the MOA requires well-characterized food and food protein samples for in vivo challenges in animals or preferentially humans. Such samples are now made available by the NFOGEST Cost Action.

There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses.

The aim of this AOP is to collect and structure the current mechanistic understanding of sensitization

induction to food proteins.

Strategy

Provides a description of the approaches to the identification, screening and quality assessment of the data relevant to identification of the key events and key event relationships included in the AOP or AOP network.This information is important as a basis to support the objective/envisaged application of the AOP by the regulatory community and to facilitate the reuse of its components.  Suggested content includes a rationale for and description of the scope and focus of the data search and identification strategy/ies including the nature of preliminary scoping and/or expert input, the overall literature screening strategy and more focused literature surveys to identify additional information (including e.g., key search terms, databases and time period searched, any tools used). More help

Summary of the AOP

This section is for information that describes the overall AOP.The information described in section 1 is entered on the upper portion of an AOP page within the AOP-Wiki. This is where some background information may be provided, the structure of the AOP is described, and the KEs and KERs are listed. More help

Events:

Molecular Initiating Events (MIE)
An MIE is a specialised KE that represents the beginning (point of interaction between a prototypical stressor and the biological system) of an AOP. More help
Key Events (KE)
A measurable event within a specific biological level of organisation. More help
Adverse Outcomes (AO)
An AO is a specialized KE that represents the end (an adverse outcome of regulatory significance) of an AOP. More help

Relationships Between Two Key Events (Including MIEs and AOs)

This table summarizes all of the KERs of the AOP and is populated in the AOP-Wiki as KERs are added to the AOP.Each table entry acts as a link to the individual KER description page. More help

Network View

This network graphic is automatically generated based on the information provided in the MIE(s), KEs, AO(s), KERs and Weight of Evidence (WoE) summary tables. The width of the edges representing the KERs is determined by its WoE confidence level, with thicker lines representing higher degrees of confidence. This network view also shows which KEs are shared with other AOPs. More help

Prototypical Stressors

A structured data field that can be used to identify one or more “prototypical” stressors that act through this AOP. Prototypical stressors are stressors for which responses at multiple key events have been well documented. More help

Life Stage Applicability

The life stage for which the AOP is known to be applicable. More help

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available. More help

Sex Applicability

The sex for which the AOP is known to be applicable. More help

Overall Assessment of the AOP

Addressess the relevant biological domain of applicability (i.e., in terms of taxa, sex, life stage, etc.) and Weight of Evidence (WoE) for the overall AOP as a basis to consider appropriate regulatory application (e.g., priority setting, testing strategies or risk assessment). More help

Domain of Applicability

Addressess the relevant biological domain(s) of applicability in terms of sex, life-stage, taxa, and other aspects of biological context. More help

Essentiality of the Key Events

The essentiality of KEs can only be assessed relative to the impact of manipulation of a given KE (e.g., experimentally blocking or exacerbating the event) on the downstream sequence of KEs defined for the AOP. Consequently, evidence supporting essentiality is assembled on the AOP page, rather than on the independent KE pages that are meant to stand-alone as modular units without reference to other KEs in the sequence. The nature of experimental evidence that is relevant to assessing essentiality relates to the impact on downstream KEs and the AO if upstream KEs are prevented or modified. This includes: Direct evidence: directly measured experimental support that blocking or preventing a KE prevents or impacts downstream KEs in the pathway in the expected fashion. Indirect evidence: evidence that modulation or attenuation in the magnitude of impact on a specific KE (increased effect or decreased effect) is associated with corresponding changes (increases or decreases) in the magnitude or frequency of one or more downstream KEs. More help

Evidence Assessment

Addressess the biological plausibility, empirical support, and quantitative understanding from each KER in an AOP. More help

Known Modulating Factors

Modulating factors (MFs) may alter the shape of the response-response function that describes the quantitative relationship between two KES, thus having an impact on the progression of the pathway or the severity of the AO.The evidence supporting the influence of various modulating factors is assembled within the individual KERs. More help

Quantitative Understanding

Optional field to provide quantitative weight of evidence descriptors.  More help

Considerations for Potential Applications of the AOP (optional)

Addressess potential applications of an AOP to support regulatory decision-making.This may include, for example, possible utility for test guideline development or refinement, development of integrated testing and assessment approaches, development of (Q)SARs / or chemical profilers to facilitate the grouping of chemicals for subsequent read-across, screening level hazard assessments or even risk assessment. More help

References

List of the literature that was cited for this AOP. More help