• <!DOCTYPE html>
  • <html lang="en">
  • <div id="title">
  • <h2>AOP ID and Title:</h2>
  • <div class="title">AOP 346: Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</div>
  • <strong>Short Title: Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</strong>
  • </div>
  • <h2>Graphical Representation</h2>
  • <img src="https://aopwiki.org/system/dragonfly/production/2021/06/17/27f58do53j_Screen_Shot_2021_06_17_at_11.48.37_AM.png" height="500" width="700" alt=""/>
  • <div id="authors">
  • <h2>Authors</h2>
  • <p>Kelvin J. Santana Rodriguez,&nbsp;Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Great Lakes Toxicology and&nbsp;Ecology Divison, Duluth, MN, USA</p>
  • <p>Daniel L. Villeneuve, Kathleen M. Jensen, Gerald T. Ankley, US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA</p>
  • <p>David H. Miller,&nbsp;US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Ann Arbor, MI, USA</p>
  • </div>
  • <div id="status">
  • <h2>Status</h2>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Author status</th>
  • <th scope="col">OECD status</th>
  • <th scope="col">OECD project</th>
  • <th scope="col">SAAOP status</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Under Development: Contributions and Comments Welcome</td>
  • <td></td>
  • <td></td>
  • <td></td>
  • <td>WPHA/WNT Endorsed</td>
  • <td>1.12</td>
  • <td>Included in OECD Work Plan</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div id="abstract">
  • <h2>Abstract</h2>
  • <p><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">This adverse outcome pathway links inhibition of aromatase activity in teleost fish during gonadogenesis&nbsp;to increased&nbsp;differentiation to testis resulting in a male-biased sex ratio in the population,&nbsp;and ultimately, reduced population sustainability.&nbsp; Most gonochoristic fish species develop either as males or females and do not change sex throughout their life span. However, in species where sexual differentiation is controlled at least to some degree by environmental factors, there can be&nbsp;a window of development during gonadal differentiation that is sensitive to a variety of exogenous&nbsp;conditions, including exposure to&nbsp;some chemicals. For example, treatment with sex steroids in conjunction with the period of sexual differentiation has been showed to favor ovary or testis development in fish exposed to estrogens or androgens, respectively. Altered synthesis and regulation of endogenous steroids can also affect sexual differentiation in fish. In&nbsp;most vertebrate taxa, aromatase (cytochrome P450 [CYP]19a1) is the rate-limiting enzyme for the conversion&nbsp;of 17</span><span style="font-family:Calibri,sans-serif">&beta;</span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">-estradiol (E2) from testosterone (T). Endocrine-active&nbsp;chemicals such as fadrozole, letrozole and exemestane (pharmaceuticals) or prochloraz and propiconazole (fungicides)&nbsp;inhibit aromatase activity. Exposure of some&nbsp; fish species to aromatase inhibitors&nbsp;during&nbsp;sex differentiation&nbsp;can reduce endogenous E2 synthesis, thereby resulting in&nbsp;phenotypic males, the default sex in the absence&nbsp;of estrogen signaling during gonadal&nbsp;differentiation. Given the critical&nbsp;role of female fecundity in determining total numbers of offspring, the resultant&nbsp;male-biased sex ratio can reduce&nbsp;population size,&nbsp;especially if sustained over multiple generations. </span></span></span></span></p>
  • </div>
  • <div id="background">
  • <h3>Background</h3>
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">In fish&nbsp;sexual differentiation occurs post hatch and can be influenced&nbsp;by exogenous factors such as chemicals, temperature, pH, population density, social cues and more. As a result, the gonadal sex phenotype in many fish can be altered by environmental conditions experienced during development, particularly in conjunction with sexual differentiation (Scholz and Kl&uuml;ver, 2009). At this stage, the bipotential gonad can differentiate&nbsp;to either testes or ovaries&nbsp;depending both on genetic and environmental factors (Str&uuml;ssmann and Nakamura, 2002). Sex steroids are among the factors that influence sex differentiation in non-mammalian vertebrates; in many fish species exogenous androgens and estrogens act, respectively, to enhance the development of testes and ovaries in exposed animals (Nakamura 2010). In teleost fish, the relative balance between endogenous estrogens and androgens during sexual differentiation is critical to ensuring normal sex ratios and, ultimately, viable populations.&nbsp;Various homeostatic mechanisms ensure that steroid biosynthesis is appropriately controlled during development. A key biosynthetic enzyme is CYP19a1 (aromatase), which is responsible for the conversion of C19 androgens (e.g., T) to C18 estrogens (e.g., E2) in brain and gonadal tissues of vertebrates (Payne and Hales, 2004; Simpson et al. 1994).&nbsp; In fish, there are two CYP19a1 isoforms, with CYP19a1a mostly expressed in the gonads and CYP19a1b largely expressed in the brain (Callard et al. 2001).</span></span></span></p>
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">In fish&nbsp;sexual differentiation occurs post hatch and can be influenced&nbsp;by exogenous factors such as chemicals, temperature, pH, population density, social cues and more. As a result, the gonadal sex phenotype in oviparous fish&nbsp;can be altered by environmental conditions experienced during development, particularly in conjunction with sexual differentiation (Scholz and Kl&uuml;ver, 2009). At this stage, the bipotential gonad can differentiate&nbsp;to either testes or ovaries&nbsp;depending both on genetic and environmental factors (Str&uuml;ssmann and Nakamura, 2002). Sex steroids are among the factors that influence sex differentiation in non-mammalian vertebrates; in many fish species exogenous androgens and estrogens act, respectively, to enhance the development of testes and ovaries in exposed animals (Nakamura 2010). In teleost fish, the relative balance between endogenous estrogens and androgens during sexual differentiation is critical to ensuring normal sex ratios and, ultimately, viable populations.&nbsp;Various homeostatic mechanisms ensure that steroid biosynthesis is appropriately controlled during development. A key biosynthetic enzyme is CYP19a1 (aromatase), which is responsible for the conversion of C19 androgens (e.g., T) to C18 estrogens (e.g., E2) in brain and gonadal tissues of vertebrates (Payne and Hales, 2004; Simpson et al. 1994).&nbsp; In fish, there are two CYP19a1 isoforms, with CYP19a1a mostly expressed in the gonads and CYP19a1b largely expressed in the brain (Callard et al. 2001).</span></span></span></p>
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Since the mid-90s, there has been concern about the potential impacts of endocrine disrupting chemicals (EDCs) in fish and wildlife. Many &nbsp;EDCs can exert effects in early life stages that can lead to potential impacts at the population level. For example, some chemicals have been shown to alter the sexual phenotype of fish by affecting steroidogenic enzymes such as aromatase. Inhibition&nbsp;of CYP19a1 expression or activity can alter the production &nbsp;of estrogens in &nbsp;developing gonads, affecting processes such as gonadal differentiation. In many fish species the &ldquo;default&rdquo; gonad type is testes, so when estrogen signaling is reduced there is a a resultant bias toward male-biased sex ratios (Guiguen et al. 2010). &nbsp;&nbsp;When male biased sex ratios occur, the number of breeding females can decrease over time and have negative impacts on population growth and sustainability. The present AOP provides the evidence framework of the negative impacts of aromatase inhibition at early developmental stages of teleost fish &nbsp;during the critical period of sexual differentiation and how this could&nbsp;lead to &nbsp;population-level effects. </span></span></span></p>
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Since the mid-90s, there has been concern about the potential impacts of endocrine disrupting chemicals (EDCs) in fish and wildlife. Many &nbsp;EDCs can exert effects in early life stages that can lead to potential impacts at the population level. For example, some chemicals have been shown to alter the sexual phenotype of fish by affecting steroidogenic enzymes such as aromatase. Inhibition&nbsp;of CYP19a1 expression or activity can alter the production &nbsp;of estrogens in &nbsp;developing gonads, affecting processes such as gonadal differentiation. In many fish species the &ldquo;default&rdquo; gonad type is testes, so when estrogen signaling is reduced there is&nbsp;a resultant bias toward male-biased sex ratios (Guiguen et al. 2010). &nbsp;&nbsp;When male biased sex ratios occur, the number of breeding females can decrease over time and have negative impacts on population growth and sustainability. The present AOP provides the evidence framework of the negative impacts of aromatase inhibition at early developmental stages of teleost fish &nbsp;during the critical period of sexual differentiation and how this could&nbsp;lead to &nbsp;population-level effects. </span></span></span></p>
  • <div>&nbsp;</div>
  • <p>&nbsp;</p>
  • </div>
  • <div id="aop_summary">
  • <h2>Summary of the AOP</h2>
  • <h3>Events</h3>
  • <h3>Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)</h3>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sequence</th>
  • <th scope="col">Type</th>
  • <th scope="col">Event ID</th>
  • <th scope="col">Title</th>
  • <th scope="col">Short name</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td></td>
  • <td>MIE</td>
  • <td>36</td>
  • <td><a href="/events/36">Inhibition, Aromatase</a></td>
  • <td>Inhibition, Aromatase</td>
  • </tr>
  • <tr><td></td><td></td><td></td><td></td><td></td></tr>
  • <tr>
  • <td></td>
  • <td>KE</td>
  • <td>1789</td>
  • <td><a href="/events/1789">Reduction, 17beta-estradiol synthesis by the undifferentiated gonad </a></td>
  • <td>Reduction, E2 Synthesis by the undifferentiated gonad </td>
  • </tr>
  • <tr>
  • <td></td>
  • <td>KE</td>
  • <td>1790</td>
  • <td><a href="/events/1790">Increased, Differentiation to Testis </a></td>
  • <td>Increased, Differentiation to Testis </td>
  • </tr>
  • <tr>
  • <td></td>
  • <td>KE</td>
  • <td>1791</td>
  • <td><a href="/events/1791">Increased, Male Biased Sex Ratio</a></td>
  • <td>Increased, Male Biased Sex Ratio</td>
  • </tr>
  • <tr><td></td><td></td><td></td><td></td><td></td></tr>
  • <tr>
  • <td></td>
  • <td>AO</td>
  • <td>360</td>
  • <td><a href="/events/360">Decrease, Population growth rate</a></td>
  • <td>Decrease, Population growth rate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h3>Key Event Relationships</h3>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Upstream Event</th>
  • <th scope="col">Relationship Type</th>
  • <th scope="col">Downstream Event</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/relationships/2144">Inhibition, Aromatase</a></td>
  • <td>adjacent</td>
  • <td>Reduction, 17beta-estradiol synthesis by the undifferentiated gonad </td>
  • <td>High</td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2145">Reduction, 17beta-estradiol synthesis by the undifferentiated gonad </a></td>
  • <td>adjacent</td>
  • <td>Increased, Differentiation to Testis </td>
  • <td>Moderate</td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2146">Increased, Differentiation to Testis </a></td>
  • <td>adjacent</td>
  • <td>Increased, Male Biased Sex Ratio</td>
  • <td>High</td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2147">Increased, Male Biased Sex Ratio</a></td>
  • <td>adjacent</td>
  • <td>Decrease, Population growth rate</td>
  • <td>Low</td>
  • <td></td>
  • </tr>
  • <tr>
  • <td></td>
  • <td></td>
  • <td></td>
  • <td></td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2167">Inhibition, Aromatase</a></td>
  • <td>non-adjacent</td>
  • <td>Increased, Differentiation to Testis </td>
  • <td>High</td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/2350">Inhibition, Aromatase</a></td>
  • <td>non-adjacent</td>
  • <td>Increased, Male Biased Sex Ratio</td>
  • <td>Moderate</td>
  • <td></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h3>Stressors</h3>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Name</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Fadrozole</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Letrozole</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Exemestane</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td>Stressor:292 Clotrimazole</td>
  • <td>Low</td>
  • </tr>
  • <tr>
  • <td>Prochloraz</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Stressor:292 Clotrimazole</h4>
  • <p>Brown et al.,&nbsp;2015</p>
  • </div>
  • <div id="overall_assessment">
  • <h2>Overall Assessment of the AOP</h2>
  • <p>See details below.</p>
  • <h3>Domain of Applicability</h3>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Development</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>zebrafish</td>
  • <td>Danio rerio</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7955" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Oreochromis niloticus</td>
  • <td>Oreochromis niloticus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=8128" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Chinook salmon</td>
  • <td>Oncorhynchus tshawytscha</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=74940" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>fathead minnow</td>
  • <td>Pimephales promelas</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=90988" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>European sea bass</td>
  • <td>Dicentrarchus labrax</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=13489" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4><strong>Life Stage</strong></h4>
  • <p>&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">The life stage to which this AOP applies is developing embryos/juveniles during gonadal differentiation. Since the sexually dimorphic expression of aromatase has been shown to play a crucial role in the differentiation to testis vs&nbsp;ovary&nbsp;of&nbsp;the undifferentiated bipotential gonad (Guiguen et al. 2010), the&nbsp;AOP is applicable to the stage of development during&nbsp;which aromatase might influence&nbsp;this process. The precise timing of the sensitive period relevant to this AOP will vary&nbsp;by species, but the AOP is not applicable to differentiated juveniles or to adults.</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Studies with zebrafish (<em>Danio rerio</em>) have shown that both brain and gonadal aromatase expression can be observed at 20 days post-fertilization (dpf) with an increase in expression at 25 dpf in fish destined to become females, coinciding&nbsp;with the onset of gonadal differentiation period (Lau et al. 2016). In Nile tilapia (</span></span></span></span><em>Oreochromis</em> <em>niloticus</em>)<span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">, aromatase expression can be observed as early as 3-4 dpf with an increase in expression starting at 11 dpf in genetic females (Kwon et al. 2001). Additionally, it has been shown that the period of 7-14 dpf&nbsp;is the most sensitive to chemical inhibition of CYP19a1 activity, and a continuous&nbsp;exposure of 2-3 weeks is sufficient for the masculinization of the majority of genetic female tilapia (Kwon et al. 2000). This clearly indicates alteration of differentiation from ovary to testis results during sex differentiation (OECD 2011).&nbsp;</span></span></span></span></p>
  • <h4><strong>Sex</strong></h4>
  • <p>&nbsp;</p>
  • <p><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">The molecular initiating&nbsp;event for this AOP occurs during gonad differentiation. Therefore, the&nbsp;AOP is only applicable to sexually undifferentiated individuals. </span></span></span></span>&nbsp;</p>
  • <h4><strong>Taxonomic</strong></h4>
  • <p>&nbsp;</p>
  • <p>Most evidence for the&nbsp;taxonomic applicability of this AOP comes from&nbsp;species in&nbsp;the class Osteichthyes. Aromatase itself is well conserved among vertebrates (e.g., Wilson et al. 2005; LaLone et al. 2018).&nbsp; However, the degree to which aromatase and subsequent production of endogenous estrogens such as E2 are involved in sex determination or sexual differentiation varies with species. Many fish, amphibian, and reptile species&nbsp;have environmental sex determination, and regulation of aromatase expression and sex steroids profiles are&nbsp;closely tied to sex-determining environmental factors&nbsp;(Angelopoulou et al. 2012). Alternatively, vertebrates that largely rely on genetic sex determination (birds, mammals) would be anticipated to be less vulnerable to effects of aromatase inhibitors during gonad differentiation, although there remains compelling evidence for an important role of steroid signaling during the process (Angelopoulou et al. 2012). &nbsp;Overall, regardless of differing roles for&nbsp;aromatase in sexual differentiation, expression&nbsp;appears universal among vertebrates during this life stage (Angelopoulou et al. 2012; Sarre et al. 2004; Uller and Helantera, 2011; Ramsey and Crews, 2009).&nbsp;&nbsp;Thus, in principle, components of the present AOP may have some degree of&nbsp;applicability to all vertebrates. Given the substantial diversity of sex determination and differentiation strategies&nbsp;in fish, amphibians and reptiles (including those from closely related phylogenetic groups; Sarre et al. 2004; Angelopoulou et al. 2012),&nbsp;quantiative sensitivity, and taxonomic domain of appicability of the present AOP are&nbsp;hard to generalize, although there is reason to believe it should have broad applicability in bony fishes.</p>
  • <h3>Essentiality of the Key Events</h3>
  • <div style="text-align:start">
  • <p>&nbsp;</p>
  • <p><span style="color:#000000"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Direct support for the essentiality of several of the key events in the AOP has been&nbsp;provided by gene modification/knockout studies of the<em> cyp19a1</em> gene in zebrafish and Nile tilapia. </span></span></span></span>Specifically:</p>
  • <ol>
  • <li><span style="color:#000000"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif; font-size:12pt">Lau et al. (2016)<sup> </sup></span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black"><span style="font-size:12pt">generated insertion/deletion mutations in the zebrafish </span><em>cyp19a1a</em><span style="font-size:12pt"> gene using TALEN (transcription activator-like effector nuclease)&nbsp;and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 approaches. All mutant </span><em>cyp19a1a</em><sup>-/- </sup>fish d<span style="font-size:12pt">eveloped as males. Histological examination (at 120 dpf) of the </span><em>cyp1a1a</em><sup>-/-</sup><strong> </strong><span style="font-size:12pt">mutants showed that they&nbsp;exhibited normal spermatogenesis in the testis with no observable difference between&nbsp;the wild type (+/+) and heterozygous (+/-) males. To confirm&nbsp;the necessity&nbsp;of E2</span><span style="font-size:12pt">&nbsp;synthesis for ovarian differentiation, they performed an experiment to &quot;rescue&quot; the phenotype of </span><em>cyp19a1a </em><span style="font-size:12pt">mutants by E2</span><span style="font-size:12pt">&nbsp;treatment (0.05, 0.50 and 5.00 nM) encampassing the period of gonadal differentiation (15&ndash;30 days pdf). Treatment with the estrogen&nbsp;</span><span style="font-size:12pt">resulted in normal functioning ovaries with fully developed perinucleolar oocytes and small amount of stromal tissue, even in some individuals at the lowest E2 concentration (0.05 nM). This supports the essentiality of aromatase inhibition relative to E</span><span style="font-size:13.3333px">2</span><span style="font-size:12pt">&nbsp;synthesis reduction as a critical step for testis differentiation.</span></span></span></span></span></li>
  • <li><span style="color:#000000"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">In a similar study also with zebrafish, Muth-K&ouml;hne et al. (2016)<sup> </sup>generated <em>cyp19a1a</em> and <em>cyp19a1b</em> gene mutant lines and a <em>cyp19a1a</em>;<em>cyp19a1b</em> double-knockout line using&nbsp;TALENs. All <em>cyp19a1a</em> mutants and <em>cyp19a1a;cyp19a1b</em> double mutants developed as males, whereas <em>cyp1a1b</em> double mutant (-/-) had a 1:1 sex ratio similar to the wild type controls. This again supports the essentiality of gonadal aromatase inhibition for testis differentiation that would lead to a male biased sex ratio. Additionally, a small rescue experiment&nbsp;</span></span></span></span></span><span style="color:#000000"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">performed using E2</span></span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">&nbsp;on all male mutant <em>cyp1a1a<sup>-/-</sup></em>&nbsp; indicated&nbsp;that E2 treatment could could restore a near normal sex ratio defect&nbsp; (9 females among 14 fish).</span></span></span></span></span></li>
  • <li><span style="color:#000000"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">Studies in Nile tilapia similar to those conducted in zebrafish were described by Zhang et al. (2017), who worked with genetic female mutants for <em>cypa19a</em> and <em>cyp19a1b</em>. Results showed that all <em>cyp19a1a</em><sup>+/-</sup> XX and <em>cyp19a1a</em><sup>+/+</sup> XX fish developed as females, whereas all <em>cyp19a1a</em><sup>-/-</sup> XX and <em>cyp19a1a</em>-/- XY fish developed as males, based on gonad differentiation. The <em>cyp19a1a</em><sup>-/-</sup> XX tilapia shifted to the male pathway as early as 5 dph and ultimatelywere fertile. This again provides strong support for the critical role of gonadal aromatase relative to ovarian development.&nbsp;</span></span></span></span></span></li>
  • <li><span style="color:#000000"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">In a similar study also with zebrafish, Muth-K&ouml;hne et al. (2016)<sup> </sup>generated <em>cyp19a1a</em> and <em>cyp19a1b</em> gene mutant lines and a <em>cyp19a1a</em>;<em>cyp19a1b</em> double-knockout line using&nbsp;TALENs. All <em>cyp19a1a</em> mutants and <em>cyp19a1a;cyp19a1b</em> double mutants developed as males, whereas <em>cyp1a1b</em> double mutant (-/-) had a 1:1 sex ratio similar to the wild type controls. This again supports the essentiality of gonadal aromatase inhibition for testis differentiation that would lead to a male biased sex ratio. Additionally, a small rescue experiment&nbsp;</span></span></span></span></span><span style="color:#000000"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">performed using E2</span></span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">&nbsp;on all male mutant <em>cyp1a1a<sup>-/-</sup></em>&nbsp; indicated&nbsp;that E2 treatment&nbsp;could restore a near normal sex ratio&nbsp;(9 females among 14 fish).</span></span></span></span></span></li>
  • <li><span style="color:#000000"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">Studies in Nile tilapia similar to those conducted in zebrafish were described by Zhang et al. (2017), who worked with genetic female mutants for <em>cypa19a</em> and <em>cyp19a1b</em>. Results showed that all <em>cyp19a1a</em><sup>+/-</sup> XX and <em>cyp19a1a</em><sup>+/+</sup> XX fish developed as females, whereas all <em>cyp19a1a</em><sup>-/-</sup> XX and <em>cyp19a1a</em>-/- XY fish developed as males, based on gonad differentiation. The <em>cyp19a1a</em><sup>-/-</sup> XX tilapia shifted to the male pathway as early as 5 dph and ultimately were fertile. This again provides strong support for the critical role of gonadal aromatase relative to ovarian development.&nbsp;</span></span></span></span></span></li>
  • </ol>
  • <p>&nbsp;</p>
  • <table align="left" cellspacing="0" class="MsoTableGrid" style="border-collapse:collapse; border:none; color:#000000; font-style:normal; font-weight:normal; margin-left:9px; margin-right:9px; text-align:start; text-decoration:none; white-space:normal; width:715px">
  • <tbody>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; height:23px; vertical-align:top; width:271px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><strong><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Key Event</span></strong></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:1px solid black; height:23px; vertical-align:top; width:81px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><strong><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Evidence</span></strong></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:1px solid black; height:23px; vertical-align:top; width:364px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><strong><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Essentiality/Assessment</span></strong></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:271px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Inhibition, Aromatase </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:81px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">strong</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:364px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">There is good evidence from gene knockout experiments of the two different isoforms of aromatase that support the specificity of gonadal aromatase inhibition for the subsequent key events to occur. </span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:271px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">E2 Synthesis by the undifferentiated gonad </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:81px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">moderate</span></span></span></p>
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">weak</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:364px">
  • <p><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:12pt">There is evidence from a stop (by </span><em>cyp19a1&nbsp;</em><span style="font-size:12pt">knockout) and recovery (through compensation) experiment where E2</span><sub>&nbsp;</sub><span style="font-size:12pt">can rescue the sex ratio altered due to the gonadal aromatase gene knockout suggesting that E2</span><span style="font-size:12pt">&nbsp;depletion is necessary for the subsequent key events to occur.</span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:271px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Differentiation to Testis </span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:81px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">strong</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:364px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">By definition, differentiation to testis is required for a male reproductive phenotype.&nbsp;</span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:271px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Male Biased Sex Ratio</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:81px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">moderate</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:364px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Breeding females (and both sexes) are necessary for population sustainability. A male biased sex population suggests a reduced offspring production and consequentially reduced population sustainability. </span></span></span></p>
  • </td>
  • </tr>
  • <tr>
  • <td style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:271px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Population Sustainability</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:81px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">n/a</span></span></span></p>
  • </td>
  • <td style="border-bottom:1px solid black; border-left:none; border-right:1px solid black; border-top:none; height:23px; vertical-align:top; width:364px">
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">This is the terminal key event in the AOP.&nbsp; Its essentiality for progression to downstream events in the sequence cannot be evaluated.</span></span></span></p>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <div>&nbsp;</div>
  • <p>&nbsp;</p>
  • <h3>Weight of Evidence Summary</h3>
  • <h3 style="text-align:start"><span style="font-size:18px"><span style="color:#000000"><span style="font-family:Calibri,sans-serif">Biological Plausibility</span></span></span></h3>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:#212529">Aromatase catalyzes the conversion of T to E2,&nbsp;so the biological plausibility of&nbsp;aromatase inhibition leading to reductions in available E2&nbsp;is clear. Additionally, the role of E2 as a major regulator of&nbsp;normal&nbsp;female gonad development is well documented (Gorelick et al. 2011; Guiguen et al. 2010). The link between E2 reductions leading to increased differentiation of the bipotential gonad to testis is highly plausible. As E2 signaling is reduced, ER responsive genes required for ovarian&nbsp;differentiation will be downregulated in the bipotential gonad resulting in a default development of testes (</span></span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">Yin et al. 2017; Zhang et al. 2017)</span></span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:#212529">. Therefore, it is plausible that E2&nbsp;reduction in the undifferentiated gonad at the onset of sexual differentiation would promote&nbsp;testis formation. The direct link between increased differentiation to testis leading to a male biased sex ratio is also well supported by biological plausibility. If the conditions that favor&nbsp;a male producing phenotype (in this case, the aromatase inhibitor) overlap with the critical period of sex differentiation in a given population, it is reasonable that relatively more male offspring will be produced (</span></span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">D&#39;Cotta et al., 2001, </span></span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:#212529">Kwon et al., 2000; Luzio et al. 2016). Therefore, exposure of sensitive species to aromatase inhibition for an extended period of time during reproducitve development plausibly would result in a male-biased population. Empirical evidence supporting the direct link between male biased cohorts&nbsp;and a reduced population sustainability in fish species is limited. However, biased sex ratios can definitely impact fish populations&nbsp;(Marty et al. 2017). For example, a&nbsp;male-biased sex ratio would logically lead to a reduction in the number of breeding females such that over time&nbsp;decreases in offspring would result in population declines (Brown et al. 2015; Grayson et al. 2014). Miller et al. (2022) recently developed a model specifically designed to capture the effects of male-biased sex ratios on population trajectories in fathead minnows (<em>Pimephales promelas</em>).&nbsp;</span></span></span></span></span></p>
  • <h3 style="text-align:start"><span style="color:#000000"><span style="font-size:18px"><span style="font-family:Calibri,sans-serif">Concordance of Dose Response Relationships</span></span></span></h3>
  • <p style="text-align:start"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:medium">There have been a number of in vitro and in vivo studies, primarily in fish, that have examined the effects of known aromatase inhibitors on different key events in the AOP.&nbsp; Most&nbsp;</span></span></span></span><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:medium">of these studies only measured one key event&nbsp;in the AOP so cannot be directly used to explore dose-response concordance between key event relationships.</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:medium">There have been a number of in vitro and in vivo studies, primarily in fish, that have examined the effects of known aromatase inhibitors on different key events in the AOP.&nbsp; Most&nbsp;</span></span></span></span><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:medium">of these studies only measured one key event&nbsp;in the AOP so cannot be directly used to explore dose-response concordance between key events.</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:medium">The differential sensitivity to inhibition of aromatase&nbsp;is most easily measured in vitro. Doering et al. (2019b) determined the effects of different concentrations of several known&nbsp;aromatase inhibitors (e.g., fadrozole, prochloraz) on brain aromatase activity in a taxonomically-diverse set of fish species, and found that while absolute potency of the chemicals varied across species, rank order potency of the test chemicals was generally similar. </span></span></span></span></p>
  • <p style="text-align:start"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:medium">The differential sensitivity to inhibition of aromatase&nbsp;is most easily measured in vitro. Doering et al. (2019b) determined the effects of different concentrations of several known&nbsp;aromatase inhibitors (e.g., fadrozole, prochloraz) on brain aromatase activity in a taxonomically-diverse set of fish species, and found that while absolute potency of the chemicals varied across species, rank order potency of the test chemicals was generally similar.&nbsp;</span></span></span></span><span style="font-size:16px"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:black">Importantly, relative potencies measured in vitro reflected those observed in in vivo studies such as those described below, thus providing indirect evidence of dose concordance between the MIE and downstream Key Events.</span></span></span></p>
  • <p style="text-align:start"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:medium">There have been several in vivo studies evaluating the effects of varying degrees of aromatase inhibition on different key events in the AOP. However, there are limitations to these studies in the context of determining dose-dependency across all key events in the AOP. For example, E2 levels typically have not been or&nbsp;measured or determined at a time relevant to&nbsp;gonadal differentiation. However, a few have measured multiple key events, although typically only at one time point. One study assessed dose-reponse relationships between different concentrations of the&nbsp;model aromatase inhibitor exemestane and expression of the enzyme.&nbsp;</span></span></span></span><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Immunohistochemical analyses revealed that gonad tissue of Nile tilapia (<em>Oreochromis niloticus</em>) exposed from 9-35 days post-hatch (dph) to 100, 500, 1000 and 2000 </span><span style="font-family:Calibri,sans-serif">&mu;</span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">g/g feed&nbsp;had no cross-reaction with P450arom at the three highest doses, but gonad tissue&nbsp;samples exhibited a strong&nbsp;immunopositive responses against P450arom at a lower&nbsp;dose of exemestane&nbsp;(100 </span><span style="font-family:Calibri,sans-serif">&mu;</span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">g/g feed), similar to the differentiating ovaries of the control fish (Ruksana et al. 2010). No ovarian development was noted in fish in the 500, 1000 and 2000 mg/kg treatments, and the 1000 and 2000 treatments resulted in 100% phenotypic males.</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Uchida et al. (2004) evaluated two key events in the AOP in an experiment with fadrozole&nbsp;using zebrafish genetic females exposed from 15-40 dph via the diet. They observed ovarian transition to testis in all exposed animals, culminating in 62.5, 100 and 100% males in 10, 100 and 1000 mg/kg treatments, respectively.</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Another study showed a dose-dependent rate of increased differentiation to testes in zebrafish exposed from 0-63 dph to different concentrations of fadrozole (10, 32, 100 ug/L) via the water&nbsp;</span></span></span></span><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">(Muth-K&ouml;hne et al. 2016).</span></span></span></p>
  • <p style="text-align:start"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:medium">The most commo</span></span></span></span><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:medium">nly reported dose response relationship for this AOP was for the non-adjacent relationship between aromatase inhibition and an increased male biased sex ratio. For example,&nbsp;</span></span></span></span><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Nile tilapia, zebrafish, fathead minnow (<em>Pimephales promelas</em>), bluegill (<em>Lepomis macrochirus</em>), yellow catfish (<em>Pelteobagrus fulvidraco</em>) and&nbsp;Japanese flounder (<em>Paralichthys olivaceus</em>)&nbsp;exposed to different concentrations of known aromatase inhibitors (exemestane, fadrozole, letrozole, prochloraz) via the diet or water reported dose-dependent increases&nbsp;in the relative number of males (Kwon et al.&nbsp;2000; Kitano et al. 2000; Thorpe et al.&nbsp;2011;&nbsp;&nbsp;Holbech et al.&nbsp;2012; Gao et al. 2010; Shen et al. 2013)</span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">.</span></span></span></p>
  • <p style="text-align:start">Finally, there are models that demonstrate a dose-dependent decrease in population size corresponding with an increasing proportion of males in zebrafish and fathead minnows (Brown et al. 2015; Miller&nbsp;et al. 2022).</p>
  • <h3 style="text-align:start"><span style="font-size:18px"><span style="color:#000000"><span style="font-family:Calibri,sans-serif">Temporal Concordance</span></span></span></h3>
  • <p style="text-align:start">Because this AOP involves actions during a specific development transition from an undifferentiated to differentiated gonad, the temporal concordance of the events is implicit. A male biased sex ratio cannot be observed until the population has undergone sexual differentiation. Likewise, reproduction and associated population growth rate cannot be assessed until the animals achieve sexual maturity.</p>
  • <h3 style="text-align:start"><span style="font-family:Arial,Helvetica,sans-serif"><span style="color:#000000"><span style="font-size:18px">Consistency</span></span></span></h3>
  • <p style="text-align:start"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="font-size:medium">There have been a number of in vitro and in vivo studies, primarily in fish, that have examined the effects of known aromatase inhibitors on different key events&nbsp;in the AOP. Some of these studies measured only one key event&nbsp;in the AOP and/or employed just a single dose of a given stressor, so cannot be directly used to explore dose-response concordance. However, even with&nbsp;these limitations, they demonstrate that the overall AOP is consistent with expectations in a variety of species exposed to known chemical inhibitors of aromatase (see&nbsp;Dose Concordance table). For example, studies with chinook salmon (<em>Oncorhynchus tshawytscha</em>), Japanese fugu (<em>Takifugu rubripes</em>), Japanese medaka (<em>Oryzias latipes</em>),&nbsp;</span></span></span></span><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Nile tilapia, zebrafish, fathead minnow, bluegill, yellow catfish&nbsp;and&nbsp;Japanese flounder exposed to known aromatase inhibitors (exemestane, fadrozole, letrozole, prochloraz) via the diet or water during sexual differentiation have reported increases&nbsp;in differentiation to testis and/or the relative number of males (Piferrer et al. 1994; Kwon et al.&nbsp;2000; Rashid et al. 2007; Kitano et al. 2000; Thorpe et al.&nbsp;2011; Thresher et al. 2011; Holbech et al.&nbsp;2012; Gao et al. 2010; Shen et al. 2013)</span><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">.</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="background-color:white"><span style="color:#000000">Male-biased sex ratios are&nbsp;</span>not specific to this AOP. Many of the key events&nbsp;included overlap with another AOP (#376) linking activation of the androgen receptor to male biased sex ratios. </span></span></span></span></p>
  • <h3 style="text-align:start"><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:18px"><span style="color:#000000">Uncertainties, inconsistencies, and data gaps</span></span></span></h3>
  • <p style="text-align:start"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif"><span style="color:#212529"><span style="background-color:white"><span style="font-size:medium">Currently the major uncertainty in this AOP is the biological linkage between E2</span><sub>&nbsp;</sub><span style="font-size:medium">synthesis reduction by the undifferentiated gonad leading to an increased, differentiation to testis. Biological plausibility connections have been established, but experimental measurements of E2</span><span style="font-size:medium">&nbsp;during the particular period of differentiation are lacking. Also, as noted in the Domain of Applicability section, the taxonomic range of applicability of the AOP is uncertain.</span></span></span></span></span></span></p>
  • <h3>Quantitative Consideration</h3>
  • <p>There is not yet a sufficient quantitative understanding of this overall AOP to predict the degree to which aromatase inhibition would&nbsp;result in population-level impacts. That said, there are models available suitable for the quantitative prediction of changes in E2 levels caused by degree of aromatase inhibition in some small fish species (Conolly et al. 2018; Doering et al. 2019a), as well as the effects of different (male-biased) sex ratios on fathead minnow population size (Miller et al. 2022).&nbsp;&nbsp;However, there currently are no quantitative data/models relating reductions in E2 to the degree of (increased) differentiation to male gonads and/or male-biased cohorts of fish.&nbsp;&nbsp;</p>
  • </div>
  • <div id="considerations_for_potential_applicaitons">
  • <h2>Considerations for Potential Applications of the AOP (optional)</h2>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Altered sex ratios in fish can be a useful diagnostic endpoint for identifying EDCs both in field and lab settings. For example, the Fish Sexual Development Test (FSDT) has formally been adopted by the Organisation of&nbsp;Economic Cooperation and Development (OECD) as a test guideline (No. 234)&nbsp;for the detecting&nbsp;EDCs (OECD, 2011b). The FDST is conducted in zebrafish during early development, including&nbsp;sexual differentiation, and uses gonadal differentiation and skewed sex ratios to detect estrogen, androgen and steroidogenesis&nbsp;activity of test chemicals (Dang &amp; Kienzler 2019). This AOP directly supports the mechanistic basis for assays such as the FDST. The AOP also supports the use of in vitro assays that measure aromatase inhibition by test chemicals as a basis for predicting apical impacts on fish (e.g., Conolly et al. 2018; Doering et al. 2019a; 2019b).&nbsp;</span></span></span></span></p>
  • </div>
  • <div id="references">
  • <h2>References</h2>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Angelopoulou, R., Lavranos, G., &amp; Manolakou, P. (2012). Sex determination strategies in 2012: towards a common regulatory model?.&nbsp;</span></span><em><span style="color:#212121">Reproductive biology and endocrinology : RB&amp;E</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">10</span></em><span style="color:#212121"><span style="background-color:white">, 13. https://doi.org/10.1186/1477-7827-10-13</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Brown, A. R., Owen, S. F., Peters, J., Zhang, Y., Soffker, M., Paull, G. C., Hosken, D. J., Wahab, M. A., &amp; Tyler, C. R. (2015). Climate change and pollution speed declines in zebrafish populations.&nbsp;</span></span><em><span style="color:#212121">Proceedings of the National Academy of Sciences of the United States of America</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">112</span></em><span style="color:#212121"><span style="background-color:white">(11), E1237&ndash;E1246. https://doi.org/10.1073/pnas.1416269112</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Conolly, R.B., G.T. Ankley, W.-Y. Cheng, M.L. Mayo, D.H. Miller, E.J. Perkins, D.L. Villeneuve and K.H. Watanabe. 2017. Quantitative adverse outcome pathways and their application to predictive toxicology<em>. Environ. Sci. Technol</em>. 51, 4661-4672.</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">D&#39;Cotta, H., Fostier, A., Guiguen, Y., Govoroun, M., &amp; Baroiller, J. F. (2001). Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus.&nbsp;</span></span><em><span style="color:#212121">Molecular reproduction and development</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">59</span></em><span style="color:#212121"><span style="background-color:white">(3), 265&ndash;276. https://doi.org/10.1002/mrd.1031</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Dang, Z., &amp; Kienzler, A. (2019). Changes in fish sex ratio as a basis for regulating endocrine disruptors.&nbsp;</span></span><em><span style="color:#212121">Environment international</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">130</span></em><span style="color:#212121"><span style="background-color:white">, 104928. https://doi.org/10.1016/j.envint.2019.104928</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Doering, J.A., D.L. Villeneuve, K.A. Fay, E.C. Randolph, K.M. Jensen, M.D. Kahl, C.A. LaLone and G.T. Ankley. (2019b). Differential sensitivity to in vitro inhibition of cytochrome P450 aromatase (CYP19) activity among 18 freshwater fishes. <em>Toxicol. Sci</em>. 170, 394-403.</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Doering, J.A., D.L. Villeneuve, S.T. Poole, B.R. Blackwell, K.M. Jensen, M.D. Kahl, A.R. Kittelson, D.J. Feifarek, C.B. Tilton, C.A. LaLone and G.T. Ankley. (2019a). Quantitative response-response relationships linking aromatase inhibition to decreased fecundity are conserved across three fishes with asynchronous oocyte development. <em>Environ. Sci. Technol.</em> 53, 10470-10578.</span></span></span></p>
  • <p style="text-align:start">Gao,&nbsp;Z.X., Wang H.P., Wallat, G., Yao, H., Rapp, D. , O &rsquo; Bryant, P., MacDonald, R. &amp; Wang, W. (2010). Effects of a non-steroidal aromatase inhibitor on gonadal differentiation of bluegill sunfish Lepomis macrochirus . Aquacult Res , 41 , 1282 &ndash; 9 .</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Gorelick, D. A., &amp; Halpern, M. E. (2011). Visualization of estrogen receptor transcriptional activation in zebrafish.&nbsp;<em>Endocrinology</em>,&nbsp;152(7), 2690&ndash;2703. https://doi.org/10.1210/en.2010-1257</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Grayson, K. L., Mitchell, N. J., Monks, J. M., Keall, S. N., Wilson, J. N., &amp; Nelson, N. J. (2014). Sex ratio bias and extinction risk in an isolated population of Tuatara (Sphenodon punctatus).&nbsp;<em>PloS one</em>,&nbsp;9(4), e94214. https://doi.org/10.1371/journal.pone.0094214</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Guiguen, Y., Fostier, A., Piferrer, F., &amp; Chang, C. F. (2010). Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish.&nbsp;<em>General and comparative endocrinology</em>,&nbsp;165(3), 352&ndash;366. https://doi.org/10.1016/j.ygcen.2009.03.002</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Holbech, H., Kinnberg, K. L., Brande-Lavridsen, N., Bjerregaard, P., Petersen, G. I., Norrgren, L., Orn, S., Braunbeck, T., Baumann, L., Bomke, C., Dorgerloh, M., Bruns, E., Ruehl-Fehlert, C., Green, J. W., Springer, T. A., &amp; Gourmelon, A. (2012). Comparison of zebrafish (Danio rerio) and fathead minnow (<em>Pimephales promelas</em>) as test species in the Fish Sexual Development Test (FSDT).&nbsp;</span></span><em><span style="color:#212121">Comparative biochemistry and physiology. Toxicology &amp; pharmacology : CBP</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">155</span></em><span style="color:#212121"><span style="background-color:white">(2), 407&ndash;415. https://doi.org/10.1016/j.cbpc.2011.11.002</span></span></span></span></span></p>
  • <p style="text-align:start">Kitano,&nbsp;T., Takamune, K., Nagahama, Y., &amp; Abe, S. I. (2000). Aromatase inhibitor and 17alpha-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Molecular reproduction and development, 56(1), 1&ndash;5. https://doi.org/10.1002/(SICI)1098-2795(200005)56:1&lt;1::AID-MRD1&gt;3.0.CO;2-3</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Kwon, J. Y., Haghpanah, V., Kogson-Hurtado, L. M., McAndrew, B. J., &amp; Penman, D. J. (2000). Masculinization of genetic female nile tilapia (Oreochromis niloticus) by dietary administration of an aromatase inhibitor during sexual differentiation.&nbsp;</span></span><em><span style="color:#212121">The Journal of experimental zoology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">287</span></em><span style="color:#212121"><span style="background-color:white">(1), 46&ndash;53.</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Kwon, J. Y., McAndrew, B. J., &amp; Penman, D. J. (2001). Cloning of brain aromatase gene and expression of brain and ovarian aromatase genes during sexual differentiation in genetic male and female Nile tilapia Oreochromis niloticus.&nbsp;<em>Molecular reproduction and development</em>,&nbsp;59(4), 359&ndash;370. https://doi.org/10.1002/mrd.1042</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Lau, E. S., Zhang, Z., Qin, M., &amp; Ge, W. (2016). Knockout of Zebrafish Ovarian Aromatase Gene (cyp19a1a) by TALEN and CRISPR/Cas9 Leads to All-male Offspring Due to Failed Ovarian Differentiation. <em>Scientific reports</em>, 6, 37357. https://doi.org/10.1038/srep37357</span></span></span></p>
  • <p style="text-align:start">LaLone, C.A., D.L. Villeneuve, J.A. Doering, B.R. Blackwell, T.R. Transue, C.W. Simmons, J. Swintek, S.J. Degitz, A.J. Williams and G.T. Ankley. 2018. Evidence for cross-species extrapolation of mammalian-based high-throughput screening assay results. Environ. Sci. Technol. 52, 13960-13971.</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Luzio, A., Matos, M., Santos, D., Fonta&iacute;nhas-Fernandes, A. A., Monteiro, S. M., &amp; Coimbra, A. M. (2016). Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17&alpha;-ethinylestradiol and fadrozole exposures.&nbsp;<em>Aquatic toxicology (Amsterdam, Netherlands),</em>&nbsp;177, 269&ndash;284. https://doi.org/10.1016/j.aquatox.2016.05.029</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Luzio, A., Monteiro, S. M., Rocha, E., Fonta&iacute;nhas-Fernandes, A. A., &amp; Coimbra, A. M. (2016). Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17&alpha;-ethinylestradiol and fadrozole).&nbsp;<em>Aquatic toxicology (Amsterdam, Netherlands),</em>&nbsp;175, 90&ndash;105. https://doi.org/10.1016/j.aquatox.2016.03.014</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">Marty, M. S., Blankinship, A., Chambers, J., Constantine, L., Kloas, W., Kumar, A., Lagadic, L., Meador, J., Pickford, D., Schwarz, T., &amp; Verslycke, T. (2017). Population-relevant endpoints in the evaluation of endocrine-active substances (EAS) for ecotoxicological hazard and risk assessment.&nbsp;</span></span></span><em><span style="font-family:Calibri,sans-serif"><span style="color:#212121">Integrated environmental assessment and management</span></span></em><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span></span><em><span style="font-family:Calibri,sans-serif"><span style="color:#212121">13</span></span></em><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">(2), 317&ndash;330. https://doi.org/10.1002/ieam.1887</span></span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Miller, D.H., D.L. Villeneuve, K.J. Santana-Rodriguez and G.T. Ankley. 2022. A multi-dimensional matrix model for predicting the effects of male-biased sex ratios on fish populations. <em>Environmental Toxicology and Chemistry</em>. 41, 1066-1077.</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Muth-K&ouml;hne, E., Westphal-Settele, K., Br&uuml;ckner, J., Konradi, S., Schiller, V., Sch&auml;fers, C., Teigeler, M., &amp; Fenske, M. (2016). Linking the response of endocrine regulated genes to adverse effects on sex differentiation improves comprehension of aromatase inhibition in a Fish Sexual Development Test.&nbsp;<em>Aquatic toxicology (Amsterdam, Netherlands)</em>,&nbsp;176, 116&ndash;127. https://doi.org/10.1016/j.aquatox.2016.04.018</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Nakamura M. (2010). The mechanism of sex determination in vertebrates-are sex steroids the key-factor?.&nbsp;</span></span><em><span style="color:#212121">Journal of experimental zoology. Part A, Ecological genetics and physiology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">313</span></em><span style="color:#212121"><span style="background-color:white">(7), 381&ndash;398. https://doi.org/10.1002/jez.616</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Payne, A. H., &amp; Hales, D. B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones.&nbsp;</span></span><em><span style="color:#212121">Endocrine reviews</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">25</span></em><span style="color:#212121"><span style="background-color:white">(6), 947&ndash;970. https://doi.org/10.1210/er.2003-0030</span></span></span></span></span></p>
  • <p style="text-align:start">Piferrer, F., Zanuy, S., Carrillo, M., Solar, I. I., Devlin, R. H., &amp; Donaldson, E. M. (1994). Brief treatment with an aromatase inhibitor during sex differentiation causes chromosomally female salmon to develop as normal, functional males. Journal of Experimental Zoology, 270(3), 255&ndash;262. https://doi.org/10.1002/JEZ.1402700304</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Ramsey, M., &amp; Crews, D. (2009). Steroid signaling and temperature-dependent sex determination-Reviewing the evidence for early action of estrogen during ovarian determination in turtles.&nbsp;</span></span><em><span style="color:#212121">Seminars in cell &amp; developmental biology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">20</span></em><span style="color:#212121"><span style="background-color:white">(3), 283&ndash;292. https://doi.org/10.1016/j.semcdb.2008.10.004</span></span></span></span></span></p>
  • <p style="text-align:start">Rashid, H., Kitano, H., Lee, K. H., Nii, S., Shigematsu, T., Kadomura, K., Yamaguchi, A., &amp; Matsuyama, M. (2007). Fugu (Takifugu rubripes) sexual differentiation: CYP19 regulation and aromatase inhibitor induced testicular development. Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation, 1(5), 311&ndash;322. https://doi.org/10.1159/000108935</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Ruksana, S., Pandit, N. P., &amp; Nakamura, M. (2010). Efficacy of exemestane, a new generation of aromatase inhibitor, on sex differentiation in a gonochoristic fish.&nbsp;Comparative biochemistry and physiology<em>. Toxicology &amp; Pharmacology</em> : CBP,&nbsp;152(1), 69&ndash;74. https://doi.org/10.1016/j.cbpc.2010.02.014</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Sarre, S. D., Georges, A., &amp; Quinn, A. (2004). The ends of a continuum: genetic and temperature-dependent sex determination in reptiles.&nbsp;</span></span><em><span style="color:#212121">BioEssays : news and reviews in molecular, cellular and developmental biology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">26</span></em><span style="color:#212121"><span style="background-color:white">(6), 639&ndash;645. https://doi.org/10.1002/bies.20050</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Scholz, S., &amp; Kl&uuml;ver, N. (2009). Effects of endocrine disrupters on sexual, gonadal development in fish.&nbsp;</span></span><em><span style="color:#212121">Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">3</span></em><span style="color:#212121"><span style="background-color:white">(2-3), 136&ndash;151. https://doi.org/10.1159/000223078</span></span></span></span></span></p>
  • <p style="text-align:start">Shen,&nbsp;Z. G., Fan, Q. X., Yang, W., Zhang, Y. L., Hu, P. P., &amp; Xie, C. X. (2013). Effects of non-steroidal aromatase inhibitor letrozole on sex inversion and spermatogenesis in yellow catfish Pelteobagrus fulvidraco. The Biological bulletin, 225(1), 18&ndash;23. https://doi.org/10.1086/BBLv225n1p18</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W., Hinshelwood, M. M., Graham-Lorence, S., Amarneh, B., Ito, Y., Fisher, C. R., &amp; Michael, M. D. (1994). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis.&nbsp;</span></span><em><span style="color:#212121">Endocrine reviews</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">15</span></em><span style="color:#212121"><span style="background-color:white">(3), 342&ndash;355. https://doi.org/10.1210/edrv-15-3-342</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Str&uuml;ssmann, C.A. &amp; Nakamura, M. (2002). Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes.&nbsp;<em>Fish Physiology and Biochemistry</em>,&nbsp;26,&nbsp;13&ndash;29. https://doi.org/10.1023/A:1023343023556</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Thorpe, K. L., Marca Pereira, M. L., Schiffer, H., Burkhardt-Holm, P., Weber, K., &amp; Wheeler, J. R. (2011). Mode of sexual differentiation and its influence on the relative sensitivity of the fathead minnow and zebrafish in the fish sexual development test. <em>Aquatic Toxicology</em>, 105(3&ndash;4), 412&ndash;420. https://doi.org/10.1016/j.aquatox.2011.07.012</span></span></span></p>
  • <p style="text-align:start">Thresher, R., Gurney, R., &amp; Canning, M. (2011). Effects of lifetime chemical inhibition of aromatase on the sexual differentiation, sperm characteristics and fertility of medaka (Oryzias latipes) and zebrafish (Danio rerio). Aquatic toxicology (Amsterdam, Netherlands), 105(3-4), 355&ndash;360.</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Uchida, D., Yamashita, M., Kitano, T., &amp; Iguchi, T. (2004). An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal.&nbsp;Comparative biochemistry and physiology. <em>Part A, Molecular &amp; integrative physiology</em>,&nbsp;137(1), 11&ndash;20. https://doi.org/10.1016/s1095-6433(03)00178-8</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Uller, T., &amp; Helanter&auml;, H. (2011). From the origin of sex-determining factors to the evolution of sex-determining systems.&nbsp;</span></span><em><span style="color:#212121">The Quarterly review of biology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">86</span></em><span style="color:#212121"><span style="background-color:white">(3), 163&ndash;180. https://doi.org/10.1086/661118</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Wilson, J. Y., McArthur, A. G., &amp; Stegeman, J. J. (2005). Characterization of a cetacean aromatase (CYP19) and the phylogeny and functional conservation of vertebrate aromatase.&nbsp;</span></span><em><span style="color:#212121">General and comparative endocrinology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">140</span></em><span style="color:#212121"><span style="background-color:white">(1), 74&ndash;83. https://doi.org/10.1016/j.ygcen.2004.10.004</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Yin, Y., Tang, H., Liu, Y., Chen, Y., Li, G., Liu, X., &amp; Lin, H. (2017). Targeted Disruption of Aromatase Reveals Dual Functions of cyp19a1a During Sex Differentiation in Zebrafish. Endocrinology, 158(9), 3030&ndash;3041. https://doi.org/10.1210/en.2016-1865</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Zhang, X., Li, M., Ma, H., Liu, X., Shi, H., Li, M., &amp; Wang, D. (2017). Mutation of foxl2 or cyp19a1a Results in Female to Male Sex Reversal in XX Nile Tilapia.&nbsp;</span></span><em><span style="color:#212121">Endocrinology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">158</span></em><span style="color:#212121"><span style="background-color:white">(8), 2634&ndash;2647. https://doi.org/10.1210/en.2017-00127</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • </div>
  • <div id="appendicies">
  • <h2>Appendix 1</h2>
  • <h3>List of MIEs in this AOP</h3>
  • <h4><a href="/events/36">Event: 36: Inhibition, Aromatase</a></h4>
  • <h5>Short Name: Inhibition, Aromatase</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>aromatase activity</td>
  • <td>aromatase</td>
  • <td>decreased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/25">Aop:25 - Aromatase inhibition leading to reproductive dysfunction</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/346">Aop:346 - Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/549">Aop:549 - Aromatase inhibition leads to reproductive toxicity (including growth and developmental toxicity) in adult female zebrafish</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Fadrozole</td></tr>
  • <tr><td>Letrozole</td></tr>
  • <tr><td>Prochloraz</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Molecular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Cell term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Cell term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>granulosa cell</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Organ term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Organ term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>ovary growing follicle</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h3>Evidence for Perturbation by Stressor</h3>
  • <h4>Overview for Molecular Initiating Event</h4>
  • <p>Characterization of chemical properties: Chemicals are known to inhibit aromatase activity through two primary molecular mechanisms. Steroid-like structures can inhibit the enzyme at its active site, with structures having ∆4 positioned double bonds generally acting as stronger inhibitors than those with ∆5 positioned double bonds (Petkov et al. 2009). Non-steroidal aromatase inhibitors generally act by interfering with electron transfer via the cytochrome P450 heme group of the aromatase enzyme, with greater nucleophilicity of the heteroatom contributing to greater potency as an inhibitor (Petkov et al. 2009). Petkov et al. (Petkov et al. 2009) have provided a detailed analysis of structural categorization of chemicals as potential steroidal or non-steroidal aromatase inhibitors.</p>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Vertebrates</td>
  • <td>Vertebrates</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>All life stages</td>
  • <td></td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td></td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p><strong>Taxonomic applicability</strong>: Aromatase (CYP19) orthologs are known to be present among most of the vertebrate lineage, at least down to the cartilaginous fishes. Orthologs have generally not been found in invertebrates, however, CYP19 was detected in the invertebrate chordate, amphioxus and analysis of conservation of gene order and content suggests a possible origin among primitive chordates (Castro et al. 2005).</p>
  • <p>Fishes generally have two aromatase isoforms, cyp19a1a which is predominantly expressed in ovary and cyp19b, predominantly expressed in brain (Callard et al. 2001). Given that cyp19a1a is dominant isoform expressed in ovary and both isoforms appear to show similar sensitivity to aromatase inhibitors (Hinfray et al., 2006), for the purpose of this key event which focuses on gonadal aromatase activty, distinction of effects on one isoform versus the other are considered negligible. Total activity, without regard to isoform can be considered.</p>
  • <p>Life stage applicability:&nbsp; Aromatase activity can be measured at any life stage after the onset of endogenous steroid biosynthesis, generally shortly after birth or hatch.</p>
  • <p>Sex applicability:&nbsp; Although expression and activity tends to be greater in females, aromatase activity can be measured in both male and female vertebrates.&nbsp;</p>
  • <h4>Key Event Description</h4>
  • <p>Inhibition of cytochrome P450 aromatase (CYP19; specifically cyp19a1a in fish).</p>
  • <p style="text-align:justify">Inhibition of cytochrome P450 aromatase (CYP19; specifically cyp19a1a in fish).&nbsp;</p>
  • <p>Site of action: The site of action for the molecular initiating event is the ovarian granulosa cells.</p>
  • <p style="text-align:justify">While many vertebrates have a single isoform of aromatase, fish are known to have two isoforms. CYP19a1a is predominantly expressed in ovary while cyp19a1b is predominantly expressed in brain (Callard et al. 2001; Cheshenko et al. 2008). For the purposes of this MIE, when applied to fish, the assumed effect is on cyp19a1a. However, given that both isoforms show similar sensitivity to&nbsp;</p>
  • <p>While many vertebrates have a single isoform of aromatase, fish are known to have two isoforms. CYP19a1a is predominantly expressed in ovary while cyp19a1b is predominantly expressed in brain (Callard et al. 2001; Cheshenko et al. 2008). For the purposes of this MIE, when applied to fish, the assumed effect is on cyp19a1a. However, given that both isoforms show similar sensitivity to aromatase inhibitors (Hinfray et al. 2006) and catalyze the same reaction, discrimination of specific isoforms is not viewed as critical in relative to determining downstream key events resulting from aromatase inhibition in ovarian granulosa cells.</p>
  • <p style="text-align:justify">aromatase inhibitors (Hinfray et al. 2006) and catalyze the same reaction, discrimination of specific isoforms is not viewed as critical in relative to determining downstream key events resulting from aromatase inhibition in ovarian granulosa cells.&nbsp;</p>
  • <p>Responses at the macromolecular level: Aromatase catalyzes three sequential oxidation steps (i.e., KEGG reactions R02501, R04761, R03087 or R01840, R04759, R02351; <a class="external free" href="http://www.genome.jp/kegg/pathway.html" rel="nofollow" target="_blank">http://www.genome.jp/kegg/pathway.html</a>) involved in the conversion of C-19 androgens (e.g., testosterone, androstenedione) to C-18 estrogens (e.g., 17&beta;-estradiol, estrone). Aromatase inhibitors interfere with one or more of these reactions, leading to reduced efficiency in converting C-19 androgens into C-18 estrogens. Therefore, inhibition of aromatase activity results in decreased rate of 17&beta;-estradiol (and presumably estrone) production by the ovary.</p>
  • <p style="text-align:justify">Human aromatase is expressed in ovary, testis, brain, adipose tissue, placenta, blood vessels and bone (Simpson, 2004; Bulun, 2005; Blakemore, 2016; Wang, 2019; Ghosh, 2023).&nbsp;</p>
  • <p style="text-align:justify">Responses at the macromolecular level: Aromatase catalyzes three sequential oxidation steps (i.e., KEGG reactions R02501, R04761, R03087 or R01840, R04759, R02351; http://www.genome.jp/kegg/pathway.html) involved in the conversion of C-19 androgens (e.g., testosterone, androstenedione) to C-18 estrogens (e.g., 17&beta;-estradiol, estrone). Aromatase inhibitors interfere with one or more of these reactions, leading to reduced efficiency in converting C-19 androgens into C-18 estrogens. Therefore, inhibition of aromatase activity results in decreased rate of 17&beta;-estradiol (and presumably estrone) production by the ovary.&nbsp;</p>
  • <p style="text-align:justify">Aromatase inhibitors can inhibit the enzyme activity. Aromatase inhibitors such as the steroidal exemestane and the non-steroidal letrozole and anastrozole are used in treatment of hormone dependent breast cancer (Wang, 2019; Shoombuatong, 2018; Ghosh, 2023).&nbsp;</p>
  • <p style="text-align:justify">Reduced activity or levels of aromatase resulting in reduced levels of estrogen will affect estrogen dependent functions such as reproduction but also estrogen effects in bone, cardiovascular system and central nervous system (Bulun, 2005; Blakemore, 2016).</p>
  • <h4>How it is Measured or Detected</h4>
  • <p>Measurement/detection: Aromatase activity is typically measured by evaluating the production of tritiated water released upon the aromatase catalyzed conversion of radio-labeled androstenedione to estrone (Lephart and Simpson 1991). Aromatase activity can be measured in cell lines exposed in vitro (e.g., human placental JEG-3 cells and JAR choriocarcinoma cells, (Letcher et al. 1999); H295R human adrenocortical carcinoma cells (Sanderson et al. 2000)). Aromatase activity can also be quantified in tissue (i.e., ovary or brain) from vertebrates exposed in vivo (e.g., (Villeneuve et al. 2006; Ankley et al. 2002). In vitro aromatase assays are amenable to high throughput and have been included in nascent high throughput screening programs like the US EPA ToxcastTM program. Specific ToxCast assays indicative of potential aromatase inhibition include:</p>
  • <h1><a href="https://comptox.epa.gov/dashboard/assay-endpoints/NVS_ADME_hCYP19A1"><span style="font-size:12px">NVS_ADME_hCYP19A1</span></a></h1>
  • <h1><a href="https://comptox.epa.gov/dashboard/assay-endpoints/ERF_ENZ_hCYP19A1_dn"><span style="font-size:12px">ERF_ENZ_hCYP19A1_dn</span></a></h1>
  • <h1><a href="https://comptox.epa.gov/dashboard/assay-endpoints/TOX21_Aromatase_Inhibition"><span style="font-size:12px">TOX21_Aromatase_Inhibition</span></a></h1>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify">&nbsp;</p>
  • <p style="text-align:justify">Aromatase activity can be measured using the US EPA test guideline assay OPPTS 890.1200. The assay uses recombinant microsomes containing human aromatase and measures 3H20 that is released by conversion of 3H-androstenedione to estrone (EPA, 2009).&nbsp;</p>
  • <p style="text-align:justify">OECD Test Guideline No. 456 H295R Steroidogenesis Assay can be used to indirectly assess aromatase activity by measuring estradiol production by the H295R cells (OECD, 2013). A high throughput H295R Steroidogenesis Assay measuring additional estrogens has also been developed (Karmus, 2016).</p>
  • <h4>References</h4>
  • <ul>
  • <li>Petkov PI, Temelkov S, Villeneuve DL, Ankley GT, Mekenyan OG. 2009. Mechanism-based categorization of aromatase inhibitors: a potential discovery and screening tool. SAR QSAR Environ Res 20(7-8): 657-678.</li>
  • </ul>
  • <ul>
  • <li>Lephart ED, Simpson ER. 1991. Assay of aromatase activity. Methods Enzymol 206: 477-483.</li>
  • </ul>
  • <ul>
  • <li>Letcher RJ, van Holsteijn I, Drenth H-J, Norstrom RJ, Bergman A, Safe S, et al. 1999. Cytotoxicity and aromatase (CYP19) activity modulation by organochlorines in human placental JEG-3 and JAR choriocarcinoma cells. Toxico App Pharm 160: 10-20.</li>
  • </ul>
  • <ul>
  • <li>Sanderson J, Seinen W, Giesy J, van den Berg M. 2000. 2-chloro-triazine herbicides induce aromatase (CYP19) activity in H295R human adrenocortical carcinoma cells: a novel mechanism for estrogenicity. Toxicol Sci 54: 121-127.</li>
  • </ul>
  • <ul>
  • <li>Villeneuve DL, Knoebl I, Kahl MD, Jensen KM, Hammermeister DE, Greene KJ, et al. 2006. Relationship between brain and ovary aromatase activity and isoform-specific aromatase mRNA expression in the fathead minnow (Pimephales promelas). Aquat Toxicol 76(3-4): 353-368.</li>
  • </ul>
  • <ul>
  • <li>Ankley GT, Kahl MD, Jensen KM, Hornung MW, Korte JJ, Makynen EA, et al. 2002. Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicol Sci 67: 121-130.</li>
  • </ul>
  • <ul>
  • <li>Castro LF, Santos MM, Reis-Henriques MA. 2005. The genomic environment around the Aromatase gene: evolutionary insights. BMC Evol Biol 5: 43.</li>
  • </ul>
  • <ul>
  • <li>Callard GV, Tchoudakova AV, Kishida M, Wood E. 2001. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. J Ster Biochem Mol Biol 79: 305-314.</li>
  • </ul>
  • <ul>
  • <li>Cheshenko K, Pakdel F, Segner H, Kah O, Eggen RI. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. Gen Comp Endocrinol. 2008 Jan 1;155(1):31-62.</li>
  • </ul>
  • <ul>
  • <li>Hinfray N, Porcher JM, Brion F. Inhibition of rainbow trout (Oncorhynchus mykiss) P450 aromatase activities in brain and ovarian microsomes by various environmental substances. Comp Biochem Physiol C Toxicol Pharmacol. 2006 Nov;144(3):252-62</li>
  • <li>
  • <p>Simpson, E. R. (2004). Aromatase: biologic relevance of tissue-specific expression. Seminars in Reproductive Medicine, 22(1), 11&ndash;23. doi:10.1055/s-2004-823023</p>
  • </li>
  • <li>
  • <p>Bulun, S. E., Lin, Z., Imir, G., Amin, S., Demura, M., Yilmaz, B., &hellip; Deb, S. (2005). Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacological Reviews, 57(3), 359&ndash;83.&nbsp;</p>
  • </li>
  • <li>
  • <p>J, Blakemore, and Naftolin F. 2016. &lsquo;Aromatase: Contributions to Physiology and Disease in Women and Men.&rsquo; Physiology (Bethesda, Md.) 31 (4): 258&ndash;69. https://doi.org/10.1152/physiol.00054.2015.&nbsp;</p>
  • </li>
  • <li>
  • <p>Y, Wang, Pan P, Li X, Zhu Q, Huang T, and Ge RS. 2019. &lsquo;Food Components and Environmental Chemicals of Inhibiting Human Placental Aromatase.&rsquo; Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 128 (June): 46&ndash;53. https://doi.org/10.1016/j.fct.2019.03.043.&nbsp;</p>
  • </li>
  • <li>
  • <p>D, Ghosh. 2023. &lsquo;Structures and Functions of Human Placental Aromatase and Steroid Sulfatase, Two Key Enzymes in Estrogen Biosynthesis.&rsquo; Steroids 196 (August): 109249. https://doi.org/10.1016/j.steroids.2023.109249.&nbsp;</p>
  • </li>
  • <li>
  • <p>W, Shoombuatong, Schaduangrat N, and Nantasenamat C. 2018. &lsquo;Towards Understanding Aromatase Inhibitory Activity via QSAR Modeling.&rsquo; EXCLI Journal 17: 688&ndash;708. https://doi.org/10.17179/excli2018-1417.&nbsp;</p>
  • </li>
  • <li>
  • <p>EPA, 2009. Endocrine Disruptor Screening Program Test Guidelines OPPTS 890.1200: Aromatase (Human Recombinant) https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0576-0004&nbsp;</p>
  • </li>
  • <li>
  • <p>OECD (2023), Test No. 456: H295R Steroidogenesis Assay, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, https://doi.org/10.1787/9789264122642-en.&nbsp;</p>
  • </li>
  • <li>
  • <p>Karmaus, Agnes L., Colleen M. Toole, Dayne L. Filer, Kenneth C. Lewis, and Matthew T. Martin. 2016. &lsquo;High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells&rsquo;. Toxicological Sciences 150 (2): 323&ndash;32. https://doi.org/10.1093/toxsci/kfw002.</p>
  • </li>
  • </ul>
  • <p>&nbsp;</p>
  • <h3>List of Key Events in the AOP</h3>
  • <h4><a href="/events/1789">Event: 1789: Reduction, 17beta-estradiol synthesis by the undifferentiated gonad </a></h4>
  • <h5>Short Name: Reduction, E2 Synthesis by the undifferentiated gonad </h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>estrogen biosynthetic process</td>
  • <td>17beta-estradiol</td>
  • <td>decreased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/346">Aop:346 - Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Cellular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Cell term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Cell term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>primordial germ cell</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Organ term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Organ term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>gonad</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Vertebrates</td>
  • <td>Vertebrates</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Development</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Low</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p>Taxonomic applicability:&nbsp; Most of the key&nbsp;enzymes involved in the process of E2&nbsp;biosynthesis are well conserved among vertebrates&nbsp;(Callard et al.&nbsp;2001; Thornton et al.&nbsp;2001; Eick et al.&nbsp;2011; Coumailleau et al.&nbsp;2015).&nbsp;Estrogens play a key role in embryonic development particularly during gonadogenesis for most vertebrates (Coumailleauet al., 2015; Callard et al., 2015). Therefore, it is possible that this key event is applicable to most vertebrate taxa. In contrast, this key event is not applicable to organisms that lack the necessary enzymes for estrogen synthesis such as invertebrates and plants (Jones et al.&nbsp;2017).&nbsp;</p>
  • <p>Life stage applicability:&nbsp; Endogenous steroid biosynthesis generally begins shortly after birth or hatch.</p>
  • <p>Sex applicability:&nbsp; This key event applies to the undifferentiated gonad. Therefore, sex is non-specific.&nbsp;</p>
  • <h4>Key Event Description</h4>
  • <p>Estrogens are essential for normal ovarian differentiation, growth and maintenance. When estrogens bind to estrogen receptors (ER), these then regulate the transcription of downstream estrogen-responsive genes necessary for proper gonad development&nbsp;(Guiguen et al.&nbsp;2010; Gorelick et al.&nbsp;2011).&nbsp;Among the different forms of estrogens, 17&beta;-estradiol (E2) is considered the most fundamental in gonad differentiation in most vertebrates, as it is responsible for inducing and maintaining ovarian development (Bondesson et al.&nbsp;2015; Li et al.&nbsp;2019). Consequently, disruption of the E2 synthesis by the undifferentiated gonad has been linked to altered gonad differentiation and development in many vertebrates.&nbsp;</p>
  • <h4>How it is Measured or Detected</h4>
  • <p>Estrogen concentrations can be measured via radioimmunoassay (e.g., US EPA 2002) or by analytical methods such as LC/MS/MS (e.g., Gravitte et al. 2021; Jalabert et al. 2021; Nouri et al. 2020).&nbsp; Measurement in the undifferentiated gonad would generally require extraction of tissue homogenates. This tissue mass can be very limited during primordial stages.</p>
  • <h4>References</h4>
  • <p>Bondesson, M., Hao, R., Lin, C. Y., Williams, C., &amp; Gustafsson, J. &Aring;. (2015). Estrogen receptor signaling during vertebrate development.&nbsp;Biochimica et biophysica acta,&nbsp;1849(2), 142&ndash;151.&nbsp;</p>
  • <p>Callard, G. V., Tarrant, A. M., Novillo, A., Yacci, P., Ciaccia, L., Vajda, S., Chuang, G. Y., Kozakov, D., Greytak, S. R., Sawyer, S., Hoover, C., &amp; Cotter, K. A. (2011). Evolutionary origins of the estrogen signaling system: insights from amphioxus.&nbsp;The Journal of steroid biochemistry and molecular biology,&nbsp;127(3-5), 176&ndash;188.&nbsp;</p>
  • <p>Cheshenko, K., Pakdel, F., Segner, H., Kah, O., &amp; Eggen, R. I. (2008). Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish.&nbsp;<em>General and comparative endocrinology</em>,&nbsp;<em>155</em>(1), 31&ndash;62.&nbsp;</p>
  • <p>Coumailleau, P., Pellegrini, E., Adrio, F., Diotel, N., Cano-Nicolau, J., Nasri, A., Vaillant, C., &amp; Kah, O. (2015). Aromatase, estrogen receptors and brain development in fish and amphibians.&nbsp;<em>Biochimica et biophysica acta</em>,&nbsp;<em>1849</em>(2), 152&ndash;162.&nbsp;</p>
  • <p>Eick, G. N., &amp; Thornton, J. W. (2011). Evolution of steroid receptors from an estrogen-sensitive ancestral receptor.&nbsp;Molecular and cellular endocrinology,&nbsp;334(1-2), 31&ndash;38.&nbsp;</p>
  • <p>Gorelick, D. A., &amp; Halpern, M. E. (2011). Visualization of estrogen receptor transcriptional activation in zebrafish.&nbsp;Endocrinology,&nbsp;152(7), 2690&ndash;2703. https://doi.org/10.1210/en.2010-1257</p>
  • <p><span style="font-size:11.0pt"><span style="background-color:white"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">Gravitte A, Archibald T, Cobble A, Kennard B, Brown S. Liquid chromatography-mass spectrometry applications for quantification of endogenous sex hormones. Biomed Chromatogr. 2021 Jan;35(1):e5036. doi: 10.1002/bmc.5036. </span></span></span></span></p>
  • <p>Guiguen, Y., Fostier, A., Piferrer, F., &amp; Chang, C. F. (2010). Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish.&nbsp;<em>General and comparative endocrinology</em>,&nbsp;<em>165</em>(3), 352&ndash;366.&nbsp;</p>
  • <p><span style="font-size:11.0pt"><span style="background-color:white"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">Jalabert C, Ma C, Soma KK. Profiling of systemic and brain steroids in male songbirds: Seasonal changes in neurosteroids. J Neuroendocrinol. 2021 Jan;33(1):e12922. doi: 10.1111/jne.12922. </span></span></span></span></p>
  • <p>Jones, B. L., Walker, C., Azizi, B., Tolbert, L., Williams, L. D., &amp; Snell, T. W. (2017). Conservation of estrogen receptor function in invertebrate reproduction.&nbsp;BMC evolutionary biology,&nbsp;17(1), 65.&nbsp;</p>
  • <p>Li, M., Sun, L., &amp; Wang, D. (2019). Roles of estrogens in fish sexual plasticity and sex differentiation.&nbsp;<em>General and comparative endocrinology</em>,&nbsp;<em>277</em>, 9&ndash;16. https://doi.org/10.1016/j.ygcen.2018.11.015</p>
  • <p><span style="font-size:11.0pt"><span style="background-color:white"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">Nouri MZ, Kroll KJ, Webb M, Denslow ND. Quantification of steroid hormones in low volume plasma and tissue homogenates of fish using LC-MS/MS. Gen Comp Endocrinol. 2020 Sep 15;296:113543. doi: 10.1016/j.ygcen.2020.113543. </span></span></span></span></p>
  • <p>Ruksana, S., Pandit, N. P., &amp; Nakamura, M. (2010). Efficacy of exemestane, a new generation of aromatase inhibitor, on sex differentiation in a gonochoristic fish.&nbsp;Comparative biochemistry and physiology. Toxicology &amp; pharmacology : CBP,&nbsp;152(1), 69&ndash;74.&nbsp;</p>
  • <p>Schroeder, A. L., Ankley, G. T., Habib, T., Garcia-Reyero, N., Escalon, B. L., Jensen, K. M., Kahl, M. D., Durhan, E. J., Makynen, E. A., Cavallin, J. E., Martinovic-Weigelt, D., Perkins, E. J., &amp; Villeneuve, D. L. (2017). Rapid effects of the aromatase inhibitor fadrozole on steroid production and gene expression in the ovary of female fathead minnows (Pimephales promelas).&nbsp;General and comparative endocrinology,&nbsp;252, 79&ndash;87.&nbsp;</p>
  • <p>Thornton J. W. (2001). Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions.&nbsp;Proceedings of the National Academy of Sciences of the United States of America,&nbsp;98(10), 5671&ndash;5676.&nbsp;</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="background-color:white"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">US EPA. 2002. A Short-term test method for assessing the reproductive toxicity of endocrine-disrupting chemicals using the Fathead Minnow (<em>Pimephales promelas</em>). EPA/600/R-01/067. Appendix C.</span></span></span></span></span></p>
  • <p>Warner, D. A., Addis, E., Du, W. G., Wibbels, T., &amp; Janzen, F. J. (2014). Exogenous application of estradiol to eggs unexpectedly induces male development in two turtle species with temperature-dependent sex determination.&nbsp;<em>General and comparative endocrinology</em>,&nbsp;<em>206</em>, 16&ndash;23.&nbsp;</p>
  • <p>Yin, Y., Tang, H., Liu, Y., Chen, Y., Li, G., Liu, X., &amp; Lin, H. (2017). Targeted Disruption of Aromatase Reveals Dual Functions of cyp19a1a During Sex Differentiation in Zebrafish.&nbsp;<em>Endocrinology</em>,&nbsp;<em>158</em>(9), 3030&ndash;3041.&nbsp;</p>
  • <h4><a href="/events/1790">Event: 1790: Increased, Differentiation to Testis </a></h4>
  • <h5>Short Name: Increased, Differentiation to Testis </h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>male gonad development</td>
  • <td>immature gonad</td>
  • <td>increased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/346">Aop:346 - Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/376">Aop:376 - Androgen receptor agonism leading to male-biased sex ratio</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Tissue</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Organ term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Organ term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>testis</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Vertebrates</td>
  • <td>Vertebrates</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Development</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Male</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <div>
  • <p>The primordial bipotential gonad and basic molecular machinery/pathways responsible for differentiation of testis and ovary are well conserved across all vertebrates (Cutting et al. 2013; DeFalco and Capel 2009). Although timing/expression of key genes controlling pathways involved in male versus female gonadal differentiation can vary across taxa (Cutting et al. 2013), actual structural morphology of the testes is similar across&nbsp;vertebrates&nbsp;(DeFalco and Capel 2009; McLaren 1998). Consequentially, this KE is applicable to most vertebrate taxa.&nbsp;</p>
  • </div>
  • <p>&nbsp;</p>
  • <h4>Key Event Description</h4>
  • <p>Prior to gonadal sex determination in vertebrates, the developing organism has&nbsp;a primordial bipotential gonad that can be fated to either sex depending on the&nbsp;genetic makeup of the embryo (genetic sex determination) or environmental conditions (environmental sex determination) or a combination of both factors.</p>
  • <p>During male development, the embryonic stem cells can differentiate to primordial germ cells, which in turn proliferate and differentiate into precursor spermatogonia stem cells. Sertoli cells are the first to differentiate into the different fetal gonad seminiferous cords surrounded by peritubular myoid cells enclosing fetal germ cells.&nbsp;Sertoli cells can also differentiate into Leydig cells. Successively, the interstitial Leydig cells differentiate and produce sex steroids such as testosterone to maintain the testis and control aspects of masculinization including secondary sex characteristics (McLaren 1998; DeFalco and Capel 2009; Trukina et al. 2013).&nbsp;&nbsp;</p>
  • <p>Although the timing and location of gene expression leading to the&nbsp;morphological development of the testis may differ among vertebrate taxa, the basic molecular machinery and pathways involved are well conserved (Cutting et al. 2013). Similarly, the cell types and basic morphological structure of the testis across vertebrates are&nbsp;well-conserved (McLaren 1998; DeFalco and Capel 2009).</p>
  • <h4>How it is Measured or Detected</h4>
  • <p>Depending upon the size of the test organism and life stage it may be possible to identify the presence of developed testes versus ovaries visually or with low-power magnification without a need for gonad removal, fixation and processing. This would require, of course, experienced personnel well-versed in the biology of the species of interest.&nbsp;</p>
  • <p>In instances where organisms are small, at early life-stages and/or have poorly differentiated gonads, it will be necessary to employ histological examination by light microscopy to identify nature of the gonad.&nbsp;&nbsp;In all vertebrates, the gonads of phenotypic males in early development have three main differentiating cell types; the gamete forming germ cells (spermatogonia), support cells (Sertoli cells), and hormone-secreting Leydig or interstitial cells (DeFalco and Capel 2009; McLaren 1998).</p>
  • <p>There are many standardized techniques available for fixation, processing and staining of tissues of concern, including gonads (e.g., Carson and Cappellano 2014). There also are species-specific resources available&nbsp;to aid interpretation of histological images; for example, the National Toxicology Program maintains an on-line Atlas of Non-Neoplastic lesions for a variety of organs, including gonads, in rodents<span style="font-size:16px"><span style="font-family:Times New Roman,Times,serif"> (</span></span><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:16px"><span style="font-family:Times New Roman,Times,serif"><a href="https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fntp.niehs.nih.gov%2Fnnl%2Findex.htm&amp;data=05%7C01%7CAnkley.Gerald%40epa.gov%7Cc0c4638e5c5043c29b3908da27b4efe4%7C88b378b367484867acf976aacbeca6a7%7C0%7C0%7C637865955328508217%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&amp;sdata=MKifbYLASbpCsI3gQTZKaXPQtd3VZoficWONs38pdgE%3D&amp;reserved=0" style="color:#0563c1; text-decoration:underline">https://ntp.niehs.nih.gov/nnl/index.htm</a>)</span></span>.</span></span></p>
  • <p>Although there are fewer publicly-accessible resources available for interpretation of histological images in other vertebrate classes, there is often published reference material suitable for this purpose (e.g., Spitzbergen et al. 2009).</p>
  • <p>Although there are fewer publicly-accessible resources available for interpretation of histological images in other vertebrate classes, there is often published reference material suitable for this purpose (e.g., Spitsbergen et al. 2009).</p>
  • <h4>References</h4>
  • <p><span style="font-size:11.0pt"><span style="font-family:&quot;Calibri&quot;,sans-serif">Carson, F. and C.H. Cappellano. 2014. Histotechnology: A Self-Instructional Text. 4<sup>th</sup> Ed., ASCP.</span></span></p>
  • <p>Cutting, A., Chue, J., &amp; Smith, C. A. (2013). Just how conserved is vertebrate sex determination?.&nbsp;Developmental dynamics : an official publication of the American Association of Anatomists,&nbsp;242(4), 380&ndash;387.&nbsp;</p>
  • <p>&nbsp;DeFalco T, Capel B. Gonad morphogenesis in vertebrates: divergent means to a convergent end.&nbsp;Annu Rev Cell Dev Biol. 2009;25:457-482. doi:10.1146/annurev.cellbio.042308.13350</p>
  • <p>McLaren A. (1998). Gonad development: assembling the mammalian testis.&nbsp;<em>Current biology : CB</em>,&nbsp;<em>8</em>(5), R175&ndash;R177. https://doi.org/10.1016/s0960-9822(98)70104-6</p>
  • <p>Spitsbergen JM, Blazer VS, Bowser PR, Cheng KC, Cooper KR, Cooper TK, Frasca Jr S,&nbsp;&nbsp;Groman DB, Harper CM, Lawk JM, Marty&nbsp;GD,<br />
  • Smolowitz RM, Leger J, Wolf DC, Wolf JC. 2009.&nbsp;Finfish and aquatic invertebrate pathology resources for now and the future. Comparative Biochemistry and Physiology 149C, 249-257.</p>
  • <p>Trukhina, A. V., Lukina, N. A., Wackerow-Kouzova, N. D., &amp; Smirnov, A. F. (2013). The variety of vertebrate mechanisms of sex determination.&nbsp;BioMed research international,&nbsp;2013, 587460. https://doi.org/10.1155/2013/587460</p>
  • <h4><a href="/events/1791">Event: 1791: Increased, Male Biased Sex Ratio</a></h4>
  • <h5>Short Name: Increased, Male Biased Sex Ratio</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>male sex differentiation</td>
  • <td>population of organisms</td>
  • <td>increased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/346">Aop:346 - Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/376">Aop:376 - Androgen receptor agonism leading to male-biased sex ratio</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Population</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Adults</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Male</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Any sexually reproducing organism can theoretically experience a male-biased population, although the phenomenon certainly has not been demonstrated empirically in all species of potential concern.</span></span></span></span></p>
  • <h4>Key Event Description</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Sex ratio is the ratio of males to females in a population. A male biased sex ratio for a given species is defined as a significant increase in the number of males, relative to the average ratio found in most populations of that species. </span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Sex ratio is the ratio of males to females in a population. A male-biased sex ratio for a given species is defined as a significant increase in the number of males, relative to the average ratio found in most populations of that species. </span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">While simple in concept, the &ldquo;normal&rdquo; sex ratio for a given species can be challenging to define.</span></span></span></span></p>
  • <ul>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">In organisms with genetic sex determination (GSD) such as mammals and birds, as well as many poikilothermic vertebrates, the male to female ratio often is 1:1. In these instances it is easy to define a deviation from normal in terms of either a relatively greater number of males or females.</span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">When considering organisms with environmental sex determination (ESD), such as many reptiles and some amphibians and fish, deviations from a 1:1 relationship can and do occur that nonetheless may be normal in the context of the organism&rsquo;s life history. For example, some reptile species have temperature-dependent sex determination where differentiation of developing organisms to males versus females predominates at different temperatures (Norris and Carr 2020).</span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Further complicating a generalized definition of normal sex ratios are situations where sexual differentiation is determined by a combination of genetic and environmental variables, such is the case in many fish species.</span></span></span></span></li>
  • </ul>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Even in species potentially requiring fewer males than females to maintain a viable population, at some point a male-biased population could become problematic in terms of having an adequate number of males to fertilize eggs produced by females or, in the longer term, ensure a robust level of genetic diversity in a population. Further, in situations where a population is male-biased relative to conditions considered normal for a given species, overall productivity may be negatively impacted due to fewer females being available to produce eggs. </span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Even in species potentially requiring fewer males than females to maintain a viable population, at some point a female-biased population could become problematic in terms of having an adequate number of males to fertilize eggs produced by females or, in the longer term, ensure a robust level of genetic diversity in a population. Further, in situations where a population is male-biased relative to conditions considered normal for a given species, overall productivity may be negatively impacted due to fewer females being available to produce eggs. </span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">A variety of external factors can produce populations that would be characterized as abnormally male-biased based on analysis of phenotypic sex ratios (examples, not comprehensive):</span></span></span></span></p>
  • <ul>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Differential mortality can occur in males versus females. This might include situations where predation or harvest techniques geared toward larger individuals, which could be either males or females depending upon species may effectively skew the apparent male to female ratio higher. </span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Endocrine disruption during early development, most prominently, during gonadal differentiation. For example, in some fish species, exposure during gonadal differentiation to androgen receptor antagonists or inhibitors of cytochrome P450 19a1 (aromatase), an enzyme involved in the synthesis of 17&beta;-estradiol, can caused male-biased populations (Delbes et al. 2022).&nbsp;&nbsp; </span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Endocrine disruption during early development, most prominently, during gonadal differentiation. For example, in some fish species, exposure during gonadal differentiation to androgen receptor agonists or inhibitors of cytochrome P450 19a1 (aromatase), an enzyme involved in the synthesis of 17&beta;-estradiol, can caused male-biased populations (Delbes et al. 2022).&nbsp;&nbsp; </span></span></span></span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <h4>How it is Measured or Detected</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Fundamentally, determination of sex ratio (and consequently male-biased sex ratio) is based on counts of the number of males and/or females in a population, or some statistically representative sub-sample of a population.</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Fundamentally, determination of sex ratio (and consequently male-biased sex ratio) is based on counts of the number of males and/or non males in a population, or some statistically representative sub-sample of a population.</span></span></span></span></p>
  • <ul>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">For mature animals that are sexually dimorphic, direct observation of phenotypic secondary sex characteristics is a common method for assessing sex ratios. </span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">In animals that are not sexually dimorphic or those in pubertal/juvenile stages examination of the gonad, either via gross observation or histological examination is required to determine phenotypic sex.</span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">There can be instances where gonads cannot be clearly identified histologically as either testis or ovary because&nbsp;cell types indicative of both are simultaneously present. This type of intersex condition has been observed in some amphibians and fish, and may require a third classification category (Abdul-moneim et al. 2015).</span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">For animals with GSD, genotyping or the use of genetic markers can also be employed to determine genotypic sex ratio.&nbsp; However, it is noted that there are cases where genotypic sex ratio and phenotypic sex ratio may not be equivalent. </span></span></span></span></li>
  • </ul>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Considerations when evaluating measurements of sex ratio:</span></span></span></span></p>
  • <ul>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Care needs to be taken to collect an adequate number of animals to ensure that statistical power of the sex ratio point estimates is sufficient to address whether true deviations from normal conditions exist. It is not uncommon for published papers to report skewed sex ratios based on sample sizes far too small to result in meaningful conclusions.</span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Care needs to be taken to collect an adequate number of animals to ensure that statistical power of the sex ratio point estimates is sufficient to address whether true deviations from normal conditions exist. It is not uncommon for published papers to report skewed sex ratios based on sample sizes far too small to result in environmentally meaningful conclusions.</span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Determination of sex ratios is generally straight-forward in a laboratory environment where all (or a defined proportion of) animals from a particular experimental treatment of interest can be collected and examined. Under such conditions, determination of a male bias relative to normal is a simple matter of a statistical comparison between the treated and control groups.</span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Determination of sex ratios in the field/wild can often be quite challenging as variables such as sampling gear used, or time and location of collection could bias samples toward one sex versus another. Additionally, often more difficult than ascertaining phenotypic male to female ratio is determining whether observations deviate from what would be considered normal for a particular species of interest. As discussed above (<em>Key Event Description</em>), the relative number of males normally expected will be taxa-dependent, and in some cases may also vary by region and/or environmental conditions. In cases where a male bias is being proposed for a population in the field, compelling scientific support for the &ldquo;normal&rdquo; sex ratio expected in the field and for the unbiased nature of the sampling should be made.</span></span></span></span></li>
  • </ul>
  • <h4>References</h4>
  • <p>Abul-moneim, A, DP Coulter, CT Mahapatra and MS Sepulveda. 2015. Intersex in fishes and amphibians: Population implications, prevalance, mechanisms and molecular biomarkers. J Appl Toxicol 35:1228-1240.</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Delbes, G, M Bl&aacute;zquez, JI Fernandino, P Grigorova, BF Hales, C Metcalfe, L. Navarro-Mart&iacute;n, L Parent, B Robairee, A Rwigemera, G Van Der Kraak, M Wade and V Marlatt. 2022. Effects of endocrine-disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. Environ Res 204B, &nbsp;</span></span><a href="https://doi.org/10.1016/j.envres.2021.112040" style="color:blue; text-decoration:underline" target="_blank" title="Persistent link using digital object identifier"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#0070c0">https://doi.org/10.1016/j.envres.2021.112040</span></span></span></a></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Norris, DO and JA. Carr. 2020. <em>Vertebrate Endocrinology</em>, 6<sup>th</sup> Edition. Elsevier.</span></span></span></span></p>
  • <h3>List of Adverse Outcomes in this AOP</h3>
  • <h4><a href="/events/360">Event: 360: Decrease, Population growth rate</a></h4>
  • <h5>Short Name: Decrease, Population growth rate</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>population growth rate</td>
  • <td>population of organisms</td>
  • <td>decreased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/23">Aop:23 - Androgen receptor agonism leading to reproductive dysfunction (in repeat-spawning fish)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/25">Aop:25 - Aromatase inhibition leading to reproductive dysfunction</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/29">Aop:29 - Estrogen receptor agonism leading to reproductive dysfunction</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/30">Aop:30 - Estrogen receptor antagonism leading to reproductive dysfunction</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/100">Aop:100 - Cyclooxygenase inhibition leading to reproductive dysfunction via inhibition of female spawning behavior</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/122">Aop:122 - Prolyl hydroxylase inhibition leading to reproductive dysfunction via increased HIF1 heterodimer formation</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/123">Aop:123 - Unknown MIE leading to reproductive dysfunction via increased HIF-1alpha transcription</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/155">Aop:155 - Deiodinase 2 inhibition leading to increased mortality via reduced posterior swim bladder inflation</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/156">Aop:156 - Deiodinase 2 inhibition leading to increased mortality via reduced anterior swim bladder inflation</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/157">Aop:157 - Deiodinase 1 inhibition leading to increased mortality via reduced posterior swim bladder inflation </a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/158">Aop:158 - Deiodinase 1 inhibition leading to increased mortality via reduced anterior swim bladder inflation</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/159">Aop:159 - Thyroperoxidase inhibition leading to increased mortality via reduced anterior swim bladder inflation</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/101">Aop:101 - Cyclooxygenase inhibition leading to reproductive dysfunction via inhibition of pheromone release</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/102">Aop:102 - Cyclooxygenase inhibition leading to reproductive dysfunction via interference with meiotic prophase I /metaphase I transition</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/63">Aop:63 - Cyclooxygenase inhibition leading to reproductive dysfunction</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/103">Aop:103 - Cyclooxygenase inhibition leading to reproductive dysfunction via interference with spindle assembly checkpoint</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/292">Aop:292 - Inhibition of tyrosinase leads to decreased population in fish</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/310">Aop:310 - Embryonic Activation of the AHR leading to Reproductive failure, via epigenetic down-regulation of GnRHR</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/16">Aop:16 - Acetylcholinesterase inhibition leading to acute mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/312">Aop:312 - Acetylcholinesterase Inhibition leading to Acute Mortality via Impaired Coordination &amp; Movement​</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/334">Aop:334 - Glucocorticoid Receptor Agonism Leading to Impaired Fin Regeneration</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/336">Aop:336 - DNA methyltransferase inhibition leading to population decline (1)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/337">Aop:337 - DNA methyltransferase inhibition leading to population decline (2)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/338">Aop:338 - DNA methyltransferase inhibition leading to population decline (3)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/339">Aop:339 - DNA methyltransferase inhibition leading to population decline (4)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/340">Aop:340 - DNA methyltransferase inhibition leading to transgenerational effects (1)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/341">Aop:341 - DNA methyltransferase inhibition leading to transgenerational effects (2)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/289">Aop:289 - Inhibition of 5α-reductase leading to impaired fecundity in female fish</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/297">Aop:297 - Inhibition of retinaldehyde dehydrogenase leads to population decline</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/346">Aop:346 - Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/326">Aop:326 - Thermal stress leading to population decline (3)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/325">Aop:325 - Thermal stress leading to population decline (2)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/324">Aop:324 - Thermal stress leading to population decline (1)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/363">Aop:363 - Thyroperoxidase inhibition leading to altered visual function via altered retinal layer structure</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/349">Aop:349 - Inhibition of 11β-hydroxylase leading to decresed population trajectory </a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/348">Aop:348 - Inhibition of 11β-Hydroxysteroid Dehydrogenase leading to decreased population trajectory </a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/376">Aop:376 - Androgen receptor agonism leading to male-biased sex ratio</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/386">Aop:386 - Deposition of ionizing energy leads to leading to population decline via inhibition of photosynthesis</a></td>
  • <td><a href="/aops/386">Aop:386 - Deposition of ionizing energy leading to population decline via inhibition of photosynthesis</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/387">Aop:387 - Deposition of ionising energy leading to population decline via mitochondrial dysfunction</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/388">Aop:388 - Deposition of ionising energy leading to population decline via programmed cell death</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/389">Aop:389 - Oxygen-evolving complex damage leading to population decline via inhibition of photosynthesis</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/364">Aop:364 - Thyroperoxidase inhibition leading to altered visual function via decreased eye size</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/365">Aop:365 - Thyroperoxidase inhibition leading to altered visual function via altered photoreceptor patterning</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/399">Aop:399 - Inhibition of Fyna leading to increased mortality via decreased eye size (Microphthalmos)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/410">Aop:410 - GSK3beta inactivation leading to increased mortality via defects in developing inner ear</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/216">Aop:216 - Deposition of energy leading to population decline via DNA strand breaks and follicular atresia</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/238">Aop:238 - Deposition of energy leading to population decline via DNA strand breaks and oocyte apoptosis</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/299">Aop:299 - Deposition of energy leading to population decline via DNA oxidation and follicular atresia</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/311">Aop:311 - Deposition of energy leading to population decline via DNA oxidation and oocyte apoptosis</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/444">Aop:444 - Ionizing radiation leads to reduced reproduction in Eisenia fetida via reduced spermatogenesis and cocoon hatchability</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/138">Aop:138 - Organic anion transporter (OAT1) inhibition leading to renal failure and mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/177">Aop:177 - Cyclooxygenase 1 (COX1) inhibition leading to renal failure and mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/97">Aop:97 - 5-hydroxytryptamine transporter (5-HTT; SERT) inhibition leading to population decline</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/203">Aop:203 - 5-hydroxytryptamine transporter inhibition leading to decreased reproductive success and population decline</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/218">Aop:218 - Inhibition of CYP7B activity leads to decreased reproductive success via decreased locomotor activity</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/219">Aop:219 - Inhibition of CYP7B activity leads to decreased reproductive success via decreased sexual behavior</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/323">Aop:323 - PPARalpha Agonism Impairs Fish Reproduction</a></td>
  • <td><a href="/aops/323">Aop:323 - PPARalpha Agonism Leading to Decreased Viable Offspring via Decreased 11-Ketotestosterone</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/536">Aop:536 - Estrogen receptor agonism leading to reduced survival and population growth due to renal failure</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/540">Aop:540 - Oxidative Stress in the Fish Ovary Leads to Reproductive Impairment via Reduced Vitellogenin Production</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/564">Aop:564 - DBDPE-induced inhibition of mitochondrial complex Ⅰ leading to population decline via neurotoxicity and metabotoxicity.</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/567">Aop:567 - Binding of plastoquinone B leading to decrease, population growth rate via decrease, photosystem II efficiency</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/592">Aop:592 - DBDPE-induced DNA strand breaks and LDH activity inhibition leading to population growth rate decline via energy metabolism disrupt and apoptosis</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/605">Aop:605 - Thyroid Peroxidase Inhibition Leading to Reduced, Swimming Performance via Hypomyelination</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/608">Aop:608 - Thyroid Hormone Excess Leading to Reduced, Swimming Performance via Hypomyelination</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Population</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>all species</td>
  • <td>all species</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>All life stages</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Not Specified</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p>Consideration of population size and changes in population size over time is potentially relevant to all living organisms.</p>
  • <h4>Key Event Description</h4>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">A population can be defined as a group of interbreeding organisms, all of the same species, occupying a specific space during a specific time (Vandermeer and Goldberg 2003, Gotelli 2008).&nbsp; As the population is the biological level of organization that is often the focus of ecological risk</span>&nbsp;<span style="color:black">assessments, population growth rate (and hence population size over time) is important to consider within the context of applied conservation practices.</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">If N is the size of the population and t is time, then the population growth rate (dN/dt) is proportional to the instantaneous rate of increase, r, which measures the per capita rate of population increase over a short time interval.&nbsp;Therefore, r, is a difference between the instantaneous birth rate (number of births per individual per unit of time; b) and the instantaneous death rate (number of deaths per individual per unit of time; d) [Equation 1]. Because&nbsp; r is an instantaneous rate, its units can be changed via division.&nbsp; For example, as there are 24 hours in a day, an r of 24 individuals/(individual x day) is equal to an r of 1 individual/(individual/hour) (Caswell 2001, Vandermeer and Goldberg 2003, Gotelli 2008, Murray and Sandercock 2020).&nbsp;</span></span></span></span></p>
  • <p style="margin-left:144px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Equation 1:&nbsp; r = b - d</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">This key event refers to scenarios where r &lt; 0 (instantaneous death rate exceeds instantaneous birth rate).</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Examining r in the context of population growth rate:</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● A population will decrease to extinction when the instantaneous death rate exceeds the instantaneous birth rate (r &lt; 0).&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;● The smaller the value of r below 1, the faster the population will decrease to zero.&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● A population will increase when resources are available and the instantaneous birth rate exceeds the instantaneous death rate (r &gt; 0)</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;● The larger the value that r exceeds 1, the faster the population can increase over time&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● A population will neither increase or decrease when the population growth rate equals 0 (either due to N = 0, or if the per capita birth and death rates are exactly balanced).&nbsp; For example, the per capita birth and death rates could become exactly balanced due to density dependence and/or to the effect of a stressor that reduces survival and/or reproduction (Caswell 2001, Vandermeer and Goldberg 2003, Gotelli 2008, Murray and Sandercock 2020).&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Effects incurred on a population from a chemical or non-chemical stressor could have an impact directly upon birth rate (reproduction) and/or death rate (survival), thereby causing a decline in population growth rate.&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● Example of direct effect on r:&nbsp; Exposure to 17b-trenbolone reduced reproduction (i.e., reduced b) in the fathead minnow over 21 days at water concentrations ranging from 0.0015 to about 41 mg/L (Ankley et al. 2001; Miller and Ankley 2004). &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Alternatively, a stressor could indirectly impact survival and/or reproduction.&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● Example of indirect effect on r:&nbsp; Exposure of non-sexually differentiated early life stage fathead minnow to the fungicide prochloraz has been shown to produce male-biased sex ratios based on gonad differentiation, and resulted in projected change in population growth rate (decrease in reproduction due to a decrease in females and thus recruitment) using a population model. (Holbech et al., 2012; Miller et al. 2022)</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Density dependence can be an important consideration:</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● The effect of density dependence depends upon the quantity of resources present within a landscape.&nbsp; A change in available resources could increase or decrease the effect of density dependence and therefore cause a change in population growth rate via indirectly impacting survival and/or reproduction.&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● This concept could be thought of in terms of community level interactions whereby one species is not impacted but a competitor species is impacted by a chemical stressor resulting in a greater availability of resources for the unimpacted species.&nbsp; In this scenario, the impacted species would experience a decline in population growth rate. The unimpacted species would experience an increase in population growth rate (due to a smaller density dependent effect upon population growth rate for that species).&nbsp; </span>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Closed versus open systems:</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● The above discussion relates to closed systems (there is no movement of individuals between population sites) and thus a declining population growth rate cannot be augmented by immigration.&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● When individuals depart (emigrate out of a population) the loss will diminish population growth rate.&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Population growth rate applies to all organisms, both sexes, and all life stages.</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <h4>How it is Measured or Detected</h4>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Population growth rate (instantaneous growth rate) can be measured by sampling a population over an interval of time (i.e. from time t = 0 to time t = 1).&nbsp; The interval of time should be selected to correspond to the life history of the species of interest (i.e. will be different for rapidly growing versus slow growing populations).&nbsp;The population growth rate, r, can be determined by taking the difference (subtracting) between the initial population size, N</span><sub><span style="font-size:9pt"><span style="color:black">t=0&nbsp;</span></span></sub><span style="color:black">(population size at time t=0), and the population size at the end of the interval, N</span><sub><span style="font-size:9pt"><span style="color:black">t=1&nbsp;</span></span></sub><span style="color:black">(population size at time t = 1), and then subsequently dividing by the initial population size.&nbsp;</span></span></span></span></p>
  • <p style="margin-left:96px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Equation 2:&nbsp; r = (N</span><sub><span style="font-size:9pt"><span style="color:black">t=1&nbsp;</span></span></sub><span style="color:black">- N</span><sub><span style="font-size:9pt"><span style="color:black">t=0</span></span></sub><span style="color:black">) / N</span><sub><span style="font-size:9pt"><span style="color:black">t=0</span></span></sub></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">The diversity of forms, sizes, and life histories among species has led to the development of a vast number of field techniques for estimation of population size and thus population growth over time (Bookhout 1994, McComb et al. 2021).&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● For stationary species an observational strategy may involve dividing a habitat into units. After setting up the units, samples are performed throughout the habitat at a select number of units (determined using a statistical sampling design) over a time interval (at time t = 0 and again at time t = 1), and the total number of organisms within each unit are counted.&nbsp;The numbers recorded are assumed to be representative for the habitat overall, and can be used to estimate the population growth rate within the entire habitat over the time interval.&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● For species that are mobile throughout a large range, a strategy such as using a mark-recapture method may be employed (i.e. tags, bands, transmitters) to determine a count over a time interval (at time = 0 and again at time =1).&nbsp; &nbsp;</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Population growth rate can also be estimated using mathematical model constructs (for example, ranging from simple differential equations to complex age or stage structured matrix projection models and individual based modeling approaches), and may assume a linear or nonlinear population increase over time (Caswell 2001, Vandermeer and Goldberg 2003, Gotelli 2008, Murray and Sandercock 2020).&nbsp;The AOP framework can be used to support the translation of pathway-specific mechanistic data into responses relevant to population models and output from the population models, such as changing (declining) population growth rate, can be used to assess and manage risks of chemicals (Kramer et al. 2011). As such, this translational capability can increase the capacity and efficiency of safety assessments both for single chemicals and chemical mixtures (Kramer et al. 2011).&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Some examples of modeling constructs used to investigate population growth rate:</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● A modeling construct could be based upon laboratory toxicity tests to determine effect(s) that are then linked to the population model and used to estimate decline in population growth rate.&nbsp; Miller et al. (2007) used concentration&ndash;response data from short term reproductive assays with fathead minnow (<em>Pimephales promelas</em>) exposed to endocrine disrupting chemicals in combination with a population model to examine projected alterations in population growth rate.&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● A model construct could be based upon a combination of effects-based monitoring at field sites (informed by an AOP) and a population model.&nbsp; Miller et al. (2015) applied a population model informed by an AOP to project declines in population growth rate for white suckers (Catostomus commersoni) using observed changes in sex steroid synthesis in fish exposed to a complex pulp and paper mill effluent in Jackfish Bay, Ontario, Canada. Furthermore, a model construct could be comprised of a series of quantitative models using KERs that culminates in the estimation of change (decline) in population growth rate.&nbsp;&nbsp;</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● A quantitative adverse outcome pathway (qAOP) has been defined as a mathematical construct that models the dose&ndash;response or response&ndash;response relationships of all KERs described in an AOP (Conolly et al. 2017, Perkins et al. 2019).&nbsp;Conolly et al. (2017) developed a qAOP using data generated with the aromatase inhibitor fadrozole as a stressor and then used it to predict potential population‐level impacts (including decline in population growth rate). The qAOP modeled aromatase inhibition (the molecular initiating event) leading to reproductive dysfunction in fathead minnow (Pimephales promelas) using 3 computational models: a hypothalamus&ndash;pituitary&ndash;gonadal axis model (based on ordinary differential equations) of aromatase inhibition leading to decreased vitellogenin production (Cheng et al. 2016), a stochastic model of oocyte growth dynamics relating vitellogenin levels to clutch size and spawning intervals (Watanabe et al. 2016), and a population model (Miller et al. 2007).</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● Dynamic energy budget (DEB) models offer a methodology that reverse engineers stressor effects on growth, reproduction, and/or survival into modular characterizations related to the acquisition and processing of energy resources (Nisbet et al. 2000, Nisbet et al. 2011).&nbsp; Murphy et al. (2018) developed a conceptual model to link DEB and AOP models by interpreting AOP key events as measures of damage-inducing processes affecting DEB variables and rates.</span></span></span></span></p>
  • <p style="margin-left:48px; text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">● Endogenous Lifecycle Models (ELMs), capture the endogenous lifecycle processes of growth, development, survival, and reproduction and integrate these to estimate and predict expected fitness (Etterson and Ankley, 2021).&nbsp; AOPs can be used to inform ELMs of effects of chemical stressors on the vital rates that determine fitness, and to decide what hierarchical models of endogenous systems should be included within an ELM (Etterson and Ankley, 2021).</span></span></span></span></p>
  • <p>&nbsp;</p>
  • <h4>Regulatory Significance of the AO</h4>
  • <p>Maintenance of sustainable fish and wildlife populations (i.e., adequate to ensure long-term delivery of valued ecosystem services) is a widely accepted regulatory goal upon which risk assessments and risk management decisions are based.</p>
  • <h4>References</h4>
  • <ul>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Ankley&nbsp;GT, Jensen&nbsp;KM, Makynen&nbsp;EA, Kahl&nbsp;MD, Korte&nbsp;JJ, Hornung&nbsp;MW, Henry&nbsp;TR, Denny JS, Leino&nbsp;RL, Wilson VS, Cardon&nbsp;MD, Hartig&nbsp;PC, Gray&nbsp;LE.&nbsp;2003. Effects of the androgenic growth promoter 17b-trenbolone on fecundity and reproductive endocrinology of the fathead minnow. Environ. Toxicol. Chem. 22:&nbsp;1350&ndash;1360.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Bookhout&nbsp;TA. 1994. Research and management techniques for wildlife and habitats. The Wildlife Society, Bethesda, Maryland. 740 pp.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Caswell&nbsp;H.&nbsp;2001. Matrix Population Models. Sinauer Associates, Inc., Sunderland, MA, USA</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Cheng WY, Zhang Q, Schroeder A, Villeneuve DL, Ankley GT, Conolly R.&nbsp; 2016.&nbsp; Computational modeling of plasma vitellogenin alterations in response to aromatase inhibition in fathead minnows. Toxicol Sci 154: 78&ndash;89.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Conolly RB, Ankley GT, Cheng W-Y, Mayo ML, Miller DH, Perkins EJ, Villeneuve DL, Watanabe KH. 2017. Quantitative adverse outcome pathways and their application to predictive toxicology. Environ. Sci. Technol. 51:&nbsp; 4661-4672.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Etterson MA, Ankley GT.&nbsp; 2021.&nbsp; Endogenous Lifecycle Models for Chemical Risk Assessment. Environ. Sci. Technol. 55: &nbsp;15596-15608.&nbsp;</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Gotelli&nbsp;NJ, 2008. A Primer of Ecology. Sinauer Associates, Inc., Sunderland, MA, USA.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Holbech H, Kinnberg KL, Brande-Lavridsen N, Bjerregaard P, Petersen GI, Norrgren L, Orn S, Braunbeck T, Baumann L, Bomke C, Dorgerloh M, Bruns E, Ruehl-Fehlert C, Green JW, Springer TA, Gourmelon A. 2012 Comparison of zebrafish (<em>Danio rerio</em>) and fathead minnow&nbsp;<em>(Pimephales promelas</em>) as test species in the Fish Sexual Development Test (FSDT). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 155:&nbsp; 407&ndash;415.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Kramer&nbsp;VJ, Etterson MA, Hecker M, Murphy CA, Roesijadi G, Spade DJ, Stromberg JA, Wang M, Ankley GT.&nbsp; </span><span style="color:black">2011.&nbsp; Adverse outcome pathways and risk assessment: Bridging to population level effects.&nbsp; Environ. Toxicol. Chem. 30, 64-76.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">McComb B, Zuckerberg B, Vesely D, Jordan C. &nbsp;2021.&nbsp; Monitoring Animal Populations and their Habitats: A Practitioner&#39;s Guide.&nbsp; Pressbooks, Oregon State University, Corvallis, OR Version 1.13, 296 pp.&nbsp;</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Miller DH, Villeneuve DL, Santana Rodriguez KG, Ankley GT. 2022.&nbsp; A multidimensional matrix model for predicting the effect of male biased sex ratios on fish populations. Environmental Toxicology and Chemistry 41(4):&nbsp;1066-1077.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Miller DH, Villeneuve DL, Santana Rodriguez KJ, Ankley GT. 2022.&nbsp; A multidimensional matrix model for predicting the effect of male biased sex ratios on fish populations. Environmental Toxicology and Chemistry 41(4):&nbsp;1066-1077.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Miller DH, Tietge JE, McMaster ME, Munkittrick KR, Xia X, Griesmer DA, Ankley GT. 2015. </span><span style="color:black">Linking mechanistic toxicology to population models in forecasting recovery from chemical stress: A case study from Jackfish Bay, Ontario, Canada. Environmental Toxicology and Chemistry 34(7):&nbsp; 1623-1633.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Miller DH, Jensen KM, Villeneuve DE, Kahl MD, Makynen EA, Durhan EJ, Ankley GT. 2007. </span><span style="color:black">Linkage of biochemical responses to population-level effects: A case study with vitellogenin in the fathead minnow (<em>Pimephales promelas</em>). Environ Toxicol Chem 26:&nbsp; 521&ndash;527.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Miller DH, Ankley GT. 2004. Modeling impacts on populations: Fathead minnow (<em>Pimephales promelas</em>) exposure to the endocrine disruptor 17b-trenbolone as a case study. Ecotox Environ Saf 59: 1&ndash;9.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Murphy CA, Nisbet RM, Antczak P, Garcia-Reyero N, Gergs A, Lika K, Mathews T, Muller EB, Nacci D, Peace A, Remien CH, Schultz IR, Stevenson LM, Watanabe KH.&nbsp; 2018.&nbsp; Incorporating suborganismal processes into dynamic energy budget models for ecological risk assessment.&nbsp; Integrated Environmental Assessment and Management 14(5):&nbsp; 615&ndash;624.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Murray DL, Sandercock BK (editors).&nbsp; 2020.&nbsp; Population ecology in practice.&nbsp; Wiley-Blackwell, Oxford UK, 448 pp.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Nisbet RM, Jusup M, Klanjscek T, Pecquerie L.&nbsp; 2011.&nbsp; Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models.&nbsp; The Journal of Experimental Biology 215: 892-902.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Nisbet RM, Muller EB, Lika K, Kooijman SALM. 2000. </span><span style="color:black">From molecules to ecosystems through dynamic energy budgets. J Anim Ecol 69:&nbsp; 913&ndash;926.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Perkins EJ, &nbsp;Ashauer R, Burgoon L, Conolly R, Landesmann B,, Mackay C, Murphy CA, Pollesch N, Wheeler JR, Zupanic A, Scholzk S.&nbsp; 2019.&nbsp; Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment.&nbsp; Environmental Toxicology and Chemistry 38(9): 1850&ndash;1865.&nbsp;</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Vandermeer JH, Goldberg DE. 2003.&nbsp; Population ecology: first principles.&nbsp; Princeton University Press, Princeton NJ, 304 pp.</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lattieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M. Adverse outcome pathway (AOP) development 1: Strategies and principles. Toxicol Sci. 2014:&nbsp;142:312&ndash;320</span></span></span></li>
  • <li><span style="font-size:12pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">Watanabe KH, Mayo M, Jensen KM, Villeneuve DL, Ankley GT, Perkins EJ.&nbsp; 2016. &nbsp;Predicting fecundity of fathead minnows (<em>Pimephales promelas</em>) exposed to endocrine‐disrupting chemicals using a MATLAB(R)‐based model of oocyte growth dynamics. PLoS One 11:&nbsp; e0146594.</span></span></span></li>
  • </ul>
  • <h2>Appendix 2</h2>
  • <h2>List of Key Event Relationships in the AOP</h2>
  • <div id="evidence_supporting_links">
  • <h3>List of Adjacent Key Event Relationships</h3>
  • <div>
  • <h4><a href="/relationships/2144">Relationship: 2144: Inhibition, Aromatase leads to Reduction, E2 Synthesis by the undifferentiated gonad </a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/346">Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Oreochromis niloticus</td>
  • <td>Oreochromis niloticus</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=8128" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>zebrafish</td>
  • <td>Danio rerio</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7955" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>before or during gonadal sex differentiation</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><strong>Life Stage</strong></p>
  • <p>The life stage applicable to this KER&nbsp;is developing embryos and juveniles during the gonadal differentiation. This KER&nbsp;is not applicable to sexually differentiated adults.&nbsp;</p>
  • <p><strong><span style="color:#515151"><span style="font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff">Sex</span></span></span></strong></p>
  • <p>Because this KER occurs during differentiation, the relationship is relevant to animals with an undetermined (non-specific) sex.</p>
  • <p><strong>Taxonomic Applicability&nbsp;</strong></p>
  • <p>Sequencing studies studies with&nbsp;mammalian, amphibian, reptile, bird, and fish species have&nbsp;shown that aromatase is well conserved among all vertebrates (Wilson et al.&nbsp;2005; LaLone et al. 2018).</p>
  • <p><span style="font-size:16px"><span style="background-color:#ffffff">However, i<span style="color:#515151; font-family:Arial,Helvetica,sans-serif">t is difficult to predict the biological domain of applicability of this KER&nbsp;based on phylogenetic characteristics. There is considerable within class variability, for example, among&nbsp;both fish and reptile species as to the role of aromatase expression and estrogen signaling in determining gonadal sex (</span></span><span style="background-color:#ffffff; font-family:Arial,Helvetica,sans-serif">Angelopoulou et al. 2012;&nbsp;Sarre et al. 2004</span><span style="color:#515151; font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff">).&nbsp;Thus susceptibility and relative sensitivities may vary considerably between species.</span></span></span></p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <p>&nbsp;</p>
  • <h4>Key Event Relationship Description</h4>
  • <p>Aromatase (cyp191a) is a cytochrome P450-based enzyme that is rate limiting for the synthesis of 17&szlig;-estradiol (E2) from testosterone in vertebrates (Simpson et al. 1994; Miller 1988; Payne and Hale&nbsp;2004).&nbsp; The expression and activity of aromatase in the bipotential gonad of developing organisms, and subsequent autocrine and/or paracrine signaling mediated by E2 interactions with the estrogen receptor (or lack thereof), are&nbsp;thought to be key regulators of sex determination and gonadal differentation in vertebrates (Angelopoulou et al. 2012; Nakamura 2010).&nbsp;</p>
  • <h4>Evidence Supporting this KER</h4>
  • <p>&nbsp; &nbsp;See below</p>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:16px"><span style="font-family:Calibri,sans-serif"><span style="font-family:&quot;Times New Roman&quot;,serif">There is little direct evidence of&nbsp;E2&nbsp;production by&nbsp;the bipotential gonad, or that inhibition of aromatase decreases in E2 production in same. However, given the well-established role of aromatase in E2 production (Simpson et al. 1994; Payne and Hale, 2004) and the close association between aromatase expression and activity and gonadal sex determination/differentiation (Angelopoulou et al. 2012; Nakamura 2010), it is highly plausible that local estrogen production in the bipotential gonad plays a significant role in gonadal differentiation.&nbsp;&nbsp;However, particularly for species with genetic sex determination, it is just one of multiple determinants that ultimately influences differentiation of the gonad (Angelopoulou et al. 2012).</span></span></span></p>
  • <strong>Empirical Evidence</strong>
  • <p>Multiple lines of empirical evidence support a link between aromatase inhibition and decreased E2 synthesis in bipotential gonads of developing fish.</p>
  • <ul>
  • <li><span style="font-size:16px"><span style="font-family:Arial,Helvetica,sans-serif">In Nile Tilapia (<em>Oreochromis niloticus</em>) reared at the 27<strong>&deg;</strong>C, genetic males exhibited lower levels of aromatase gene expression and E2 levels&nbsp;during the critical period of sexual differentiation (18-26 days post fertilization) than genetic females. This correlation suggests that aromatase repression at the onset of sexual differentiation reduces the biosynthesis of E2 in the undifferentiated gonad.&nbsp;(D&#39;Cotta et al.&nbsp;2001)</span></span></li>
  • <li><span style="font-size:16px"><span style="font-family:Arial,Helvetica,sans-serif">Generation of <em>cyp19a1a</em> and <em>cyp19a1b</em>&nbsp;(gonadal and brain forms of aromatase, respectively) gene mutant lines and a <em>cyp19a1a;cyp19a1b</em> double knockout line in zebrafish using transcription activator like effector nucleases (TALENs) showed that in both <em>cyp19a1a</em>-deficient and double knockout fish, E2 levels were significantly lower than in wild-type and <em>cyp19a1b</em>-deficient fish (Yin et al. 2017). </span></span></li>
  • <li><span style="font-size:16px"><span style="font-family:Arial,Helvetica,sans-serif">Control XY and <em>cyp19a1a</em> -/- (deficient and double knockout) XX Nile tilapia had significantly lower levels of serum E2 when compared to the control XX and <em>cyp19a1a</em>+/- XX fish suggesting a decrease in E2 due to the<em> cyp19a1a</em> deficiency. (Zhang et al. 2017)</span></span></li>
  • </ul>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p style="margin-left:15px; text-align:justify"><span style="color:#515151; font-family:Arial,Helvetica,sans-serif"><span style="background-color:#ffffff">As noted below it is difficult to predict the full suite of vertebrate species this KER might&nbsp;apply to. In addition, studies directly examining synthesis of E2 by bipotential gonads in organisms exposed to aromatase inhibitors are lacking.</span></span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <p><span style="font-size:16px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="color:#515151">Quantitative understanding of this linkage is currently weak.</span></span></span></p>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:16px"><span style="color:#444444">To date, none of the studies reviewed have offered insights into the quantitative relationship between the degree of aromatase inhibition and E2&nbsp;synthesis by the undifferentiated, bipotential&nbsp;gonad.</span></span></span></p>
  • <strong>Time-scale</strong>
  • <ul>
  • <li><span style="font-size:16px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="color:#515151">Based on studies in mature adult fish (fathead minnows, <em>Pimephales promelas</em>) effects of model aromatase inhibitors on E2&nbsp;production (e.g., plasma concentrations)&nbsp;can be detected within a few hours of exposure in vivo (Schroeder et al. 2017; Skolness et al. 2011).</span></span></span></li>
  • <li><span style="font-size:16px"><span style="font-family:Arial,Helvetica,sans-serif"><span style="color:#515151">Based on in vitro studies, significant reductions in aromatase activity and associated&nbsp;E2 synthesis can be detected in 90 min or less (Villeneuve et al. 2006). </span></span></span></li>
  • </ul>
  • <strong>Known modulating factors</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:16px"><span style="color:#444444">Aromatase expression during gonadal differentiation is subject to both environmental and genetic controls to various degrees depending on species (</span>Angelopoulou et al. 2012, Sarre et al. 2004). However, generalizable relationships that account for effects of specific parameters in the response-response relationships underlying this KER are currently unknown.</span></span></p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:16px"><span style="color:#515151">Aromatase expression and E2 synthesis in adult fish of several species are subject to&nbsp;feedback regulation via the brain-pituitary-gonadal axis (e.g., Villeneuve et al. 2009; 2013; Ankley et al. 2009; Yu et al. 2020; Norris 1997; Miller 1988; Callard et al. 2001).</span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:16px"><span style="color:#515151">However, it is unclear whether these feedback mechanisms are active during gonadal differentiation.</span></span></span></p>
  • <h4>References</h4>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Angelopoulou, R., Lavranos, G., &amp; Manolakou, P. (2012). Sex determination strategies in 2012: towards a common regulatory model?.&nbsp;</span></span><em><span style="color:#212121">Reproductive biology and endocrinology : RB&amp;E</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">10</span></em><span style="color:#212121"><span style="background-color:white">, 13. https://doi.org/10.1186/1477-7827-10-13</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Ankley, G. T., Bencic, D. C., Cavallin, J. E., Jensen, K. M., Kahl, M. D., Makynen, E. A., Martinovic, D., Mueller, N. D., Wehmas, L. C., &amp; Villeneuve, D. L. (2009). Dynamic nature of alterations in the endocrine system of fathead minnows exposed to the fungicide prochloraz.&nbsp;</span></span><em><span style="color:#212121">Toxicological sciences : an official journal of the Society of Toxicology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">112</span></em><span style="color:#212121"><span style="background-color:white">(2), 344&ndash;353. https://doi.org/10.1093/toxsci/kfp227</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Callard, G. V., Tchoudakova, A. V., Kishida, M., &amp; Wood, E. (2001). Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish.&nbsp;</span></span><em><span style="color:#212121">The Journal of steroid biochemistry and molecular biology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">79</span></em><span style="color:#212121"><span style="background-color:white">(1-5), 305&ndash;314. https://doi.org/10.1016/s0960-0760(01)00147-9</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">D&#39;Cotta, H., Fostier, A., Guiguen, Y., Govoroun, M., &amp; Baroiller, J. F. (2001). Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus.&nbsp;</span></span><em><span style="color:#212121">Molecular reproduction and development</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">59</span></em><span style="color:#212121"><span style="background-color:white">(3), 265&ndash;276. https://doi.org/10.1002/mrd.1031</span></span></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="font-family:&quot;Times New Roman&quot;,serif">LaLone, C.A., D.L. Villeneuve, J.A. Doering, B.R. Blackwell, T.R. Transue, C.W. Simmons, J. Swintek, S.J. Degitz, A.J. Williams and G.T. Ankley. 2018. Evidence for cross-species extrapolation of mammalian-based high-throughput screening assay results. Environ. Sci. Technol. 52, 13960-13971.</span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Miller W. L. (1988). Molecular biology of steroid hormone synthesis.&nbsp;</span></span><em><span style="color:#212121">Endocrine reviews</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">9</span></em><span style="color:#212121"><span style="background-color:white">(3), 295&ndash;318. https://doi.org/10.1210/edrv-9-3-295</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Nakamura M. (2010). The mechanism of sex determination in vertebrates-are sex steroids the key-factor?.&nbsp;</span></span><em><span style="color:#212121">Journal of experimental zoology. Part A, Ecological genetics and physiology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">313</span></em><span style="color:#212121"><span style="background-color:white">(7), 381&ndash;398. https://doi.org/10.1002/jez.616</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212529">Norris, D. O.&nbsp;<em><span style="font-family:Calibri,sans-serif">Vertebrate Endocrinology</span></em>, 3rd ed.; Academic Press: San Diego, CA, 1997.</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Payne, A. H., &amp; Hales, D. B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones.&nbsp;</span></span><em><span style="color:#212121">Endocrine reviews</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">25</span></em><span style="color:#212121"><span style="background-color:white">(6), 947&ndash;970. https://doi.org/10.1210/er.2003-0030</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Sarre, S. D., Georges, A., &amp; Quinn, A. (2004). The ends of a continuum: genetic and temperature-dependent sex determination in reptiles.&nbsp;</span></span><em><span style="color:#212121">BioEssays : news and reviews in molecular, cellular and developmental biology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">26</span></em><span style="color:#212121"><span style="background-color:white">(6), 639&ndash;645. https://doi.org/10.1002/bies.20050</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Schroeder, A. L., Ankley, G. T., Habib, T., Garcia-Reyero, N., Escalon, B. L., Jensen, K. M., Kahl, M. D., Durhan, E. J., Makynen, E. A., Cavallin, J. E., Martinovic-Weigelt, D., Perkins, E. J., &amp; Villeneuve, D. L. (2017). Rapid effects of the aromatase inhibitor fadrozole on steroid production and gene expression in the ovary of female fathead minnows (Pimephales promelas).&nbsp;</span></span><em><span style="color:#212121">General and comparative endocrinology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">252</span></em><span style="color:#212121"><span style="background-color:white">, 79&ndash;87. https://doi.org/10.1016/j.ygcen.2017.07.022</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W., Hinshelwood, M. M., Graham-Lorence, S., Amarneh, B., Ito, Y., Fisher, C. R., &amp; Michael, M. D. (1994). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis.&nbsp;</span></span><em><span style="color:#212121">Endocrine reviews</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">15</span></em><span style="color:#212121"><span style="background-color:white">(3), 342&ndash;355. https://doi.org/10.1210/edrv-15-3-342</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Skolness, S. Y., Durhan, E. J., Garcia-Reyero, N., Jensen, K. M., Kahl, M. D., Makynen, E. A., Martinovic-Weigelt, D., Perkins, E., Villeneuve, D. L., &amp; Ankley, G. T. (2011). Effects of a short-term exposure to the fungicide prochloraz on endocrine function and gene expression in female fathead minnows (Pimephales promelas).&nbsp;</span></span><em><span style="color:#212121">Aquatic toxicology (Amsterdam, Netherlands)</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">103</span></em><span style="color:#212121"><span style="background-color:white">(3-4), 170&ndash;178. https://doi.org/10.1016/j.aquatox.2011.02.016</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Villeneuve, D. L., Breen, M., Bencic, D. C., Cavallin, J. E., Jensen, K. M., Makynen, E. A., Thomas, L. M., Wehmas, L. C., Conolly, R. B., &amp; Ankley, G. T. (2013). Developing predictive approaches to characterize adaptive responses of the reproductive endocrine axis to aromatase inhibition: I. Data generation in a small fish model.&nbsp;</span></span><em><span style="color:#212121">Toxicological sciences : an official journal of the Society of Toxicology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">133</span></em><span style="color:#212121"><span style="background-color:white">(2), 225&ndash;233. https://doi.org/10.1093/toxsci/kft068</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Villeneuve, D. L., Knoebl, I., Kahl, M. D., Jensen, K. M., Hammermeister, D. E., Greene, K. J., Blake, L. S., &amp; Ankley, G. T. (2006). Relationship between brain and ovary aromatase activity and isoform-specific aromatase mRNA expression in the fathead minnow (Pimephales promelas).&nbsp;</span></span><em><span style="color:#212121">Aquatic toxicology (Amsterdam, Netherlands)</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">76</span></em><span style="color:#212121"><span style="background-color:white">(3-4), 353&ndash;368. https://doi.org/10.1016/j.aquatox.2005.10.016</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Villeneuve, D. L., Mueller, N. D., Martinović, D., Makynen, E. A., Kahl, M. D., Jensen, K. M., Durhan, E. J., Cavallin, J. E., Bencic, D., &amp; Ankley, G. T. (2009). Direct effects, compensation, and recovery in female fathead minnows exposed to a model aromatase inhibitor.&nbsp;</span></span><em><span style="color:#212121">Environmental health perspectives</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">117</span></em><span style="color:#212121"><span style="background-color:white">(4), 624&ndash;631. https://doi.org/10.1289/ehp.11891</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Wilson, J. Y., McArthur, A. G., &amp; Stegeman, J. J. (2005). Characterization of a cetacean aromatase (CYP19) and the phylogeny and functional conservation of vertebrate aromatase.&nbsp;</span></span><em><span style="color:#212121">General and comparative endocrinology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">140</span></em><span style="color:#212121"><span style="background-color:white">(1), 74&ndash;83. https://doi.org/10.1016/j.ygcen.2004.10.004</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Yin, Y., Tang, H., Liu, Y., Chen, Y., Li, G., Liu, X., &amp; Lin, H. (2017). Targeted Disruption of Aromatase Reveals Dual Functions of cyp19a1a During Sex Differentiation in Zebrafish. Endocrinology, 158(9), 3030&ndash;3041. https://doi.org/10.1210/en.2016-1865</span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Yu, Q., Peng, C., Ye, Z., Tang, Z., Li, S., Xiao, L., Liu, S., Yang, Y., Zhao, M., Zhang, Y., &amp; Lin, H. (2020). An estradiol-17&beta;/miRNA-26a/cyp19a1a regulatory feedback loop in the protogynous hermaphroditic fish, Epinephelus coioides.&nbsp;</span></span><em><span style="color:#212121">Molecular and cellular endocrinology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">504</span></em><span style="color:#212121"><span style="background-color:white">, 110689. https://doi.org/10.1016/j.mce.2019.110689</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Zhang, X., Li, M., Ma, H., Liu, X., Shi, H., Li, M., &amp; Wang, D. (2017). Mutation of foxl2 or cyp19a1a Results in Female to Male Sex Reversal in XX Nile Tilapia.&nbsp;</span></span><em><span style="color:#212121">Endocrinology</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">158</span></em><span style="color:#212121"><span style="background-color:white">(8), 2634&ndash;2647. https://doi.org/10.1210/en.2017-00127</span></span></span></span></span></p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2145">Relationship: 2145: Reduction, E2 Synthesis by the undifferentiated gonad leads to Increased, Differentiation to Testis </a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/346">Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>zebrafish</td>
  • <td>Danio rerio</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7955" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Oreochromis niloticus</td>
  • <td>Oreochromis niloticus</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=8128" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Development</td>
  • <td>Low</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Mixed</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><strong>Life stage</strong></p>
  • <p>The upstream event in for this KER is associated with the undifferentiated bipotential gonad. Therefore, this relationship is relevant to early life-stages prior to sexual development/differentation.</p>
  • <p><strong>Sex</strong></p>
  • <p>Because the upstream event in this relationship pertains to the undifferentiated gonad, the sex applicability of this relationship is non-specific.</p>
  • <p>&nbsp;</p>
  • <p><strong>Taxonomic applicability</strong></p>
  • <p>This relationship is most applicable to vertebrates subject to environmental sex determination. The relevance to species with predominantly genetic sex determination is less clear, likely depending&nbsp;on species-specific plasticity.</p>
  • <h4>Key Event Relationship Description</h4>
  • <p>Prior to sex determination, vertebrates have a bipotential gonad that can develop into testis or ovary depending on genetic makeup (genetic sex determination), environmental conditions during development (environmental sex determination) or a combination of both (Graves et al. 2010; Trukhina et al. 2013<span style="font-size:13.3333px">).</span></p>
  • <p>A key variable influencing gonad differentiation is the production of sex steroids such as 17&szlig;-estradiol (E2) and testosterone (T). In many vertebrates, including a variety of&nbsp;fish species, the &quot;default&quot; gonadal sex is male, with the presence of E2 (or perhaps the relative relationship between E2 and T production/levels) controlling the alternative path to development of ovaries.</p>
  • <h4>Evidence Supporting this KER</h4>
  • <p>See below</p>
  • <strong>Biological Plausibility</strong>
  • <p>Among the different forms of estrogens,&nbsp;E2&nbsp;is considered the most fundamental to&nbsp;gonad differentiation in most vertebrates, as it is responsible for inducing and maintaining ovarian development (Bondesson et al., 2015; Li et al., 2019). Estrogens bind to estrogen receptors (ER), that regulate the transcription of estrogen-responsive genes necessary for proper gonad development of for a female pathway&nbsp;(Guiguen et al., 2010; Gorelick et al., 2011). However, reductions in E2&nbsp;biosynthesis during the critical period of sexual differentiation of the bipotential gonad would logically lead to decreased E2 signaling necessary for ovarian development, thereby leading to morphological development of testis. Therefore, it is plausible that E2&nbsp;reduction in the undifferentiated gonad at the onset of sexual differentiation promotes the preferential occurrence of testis.&nbsp;</p>
  • <strong>Empirical Evidence</strong>
  • <p>There are multiple lines of indirect empirical evidence for this KER.&nbsp;</p>
  • <ul>
  • <li>During sexual differentiation (10-40 days post-fertilization), depression of E2 production through inhibition&nbsp;of&nbsp;aromatase (cytochrome P450 19a [<em>cyp 19a1</em>]] was associated&nbsp;with temperature-induced masculinization (35<strong>&deg;</strong>C<strong>)</strong>&nbsp;of genetic male and female Nile tilapia (<em>Oreochromis niloticus</em>) indicating the critical role of estrogen synthesis in causing sexual differentiation to testis (D&#39;cotta et al.&nbsp;2001).</li>
  • <li>Zhang et al. (2017) found that control XY and cyp19a1a -/- (deficient and double knockout) XX Nile tilapia&nbsp;had significantly lower levels of serum E2 &nbsp;compared to the control XX and cyp19a1a+/- XX fish, which corresponded with increased differentiation to testis.&nbsp;</li>
  • <li>Rucksana et al. (2010) treated&nbsp;early life stage Nile tilapia with&nbsp;the aromatase inhibitor exemestane and found at 120 days posthatch in exposed fish complete testes differentiation with efferent ducts and with all stages of spermatogenic germ cells, from spermatogonia to spermatozoa.</li>
  • <li>In zebrafish (<em>Danio rerio</em>), generation of <em>cyp19a1a</em> and <em>cyp19a1b</em> (gonad and brain aromatase isoforms, respectively) gene mutant lines and a <em>cyp19a1a;cyp19a1b</em> double knockout using transcription activator like effector nucleases (TALENs) showed that all <em>cyp19a1a</em>-deficient and double knockout fish were phenotypic males, corresponding with significantly lower levels of E2 than in wild-type and <em>cyp19a1b</em>-deficient fish (Yin et al. 2017).</li>
  • <li>Rashid et al. (2007) reported that dietary expsoure to fadrozole decreased ovary cavity formation and increased testicular differentiation in fugu (<em>Takifugu rubripes</em>).</li>
  • </ul>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p>Even for vertebrate classes known to be subject to environmental sex determination, the relative importance of genetic versus environmental factors in terms of influencing&nbsp;local production of steroids by&nbsp;the bipotential gonad&nbsp;is not well characterized, nor readily predicted based on phylogeny&nbsp;(Angelopoulou et al. 2012, Sarre et al. 2004). Consequently, both the occurrence and importance of this relationship may vary considerably among species.</p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <p>At present, the quantitative understanding of this relationship is weak.</p>
  • <strong>Response-response relationship</strong>
  • <p>There are not sufficient data to support derivation of a generalizable relationship between levels of E2 in differentiating gonad tissue and development&nbsp;to a testis phenotype.</p>
  • <strong>Time-scale</strong>
  • <p>The timeframe for differentiation of the bipotential gonad is species-dependent occurring, for example, over the course of days to weeks in most fishes.</p>
  • <strong>Known modulating factors</strong>
  • <p>Various environmental and genetic factors are known to influence differentiation of the bipotential gonad. However, quantitative understanding of this relationship is inadequate to precisely define the effect of such factors on the concentrations of E2 required to support differentiation to testis versus ovary, particularly in a manner that could be generalized across multiple species.</p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p>Undefined at present.</p>
  • <h4>References</h4>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">Angelopoulou, R., Lavranos, G., &amp; Manolakou, P. (2012). Sex determination strategies in 2012: towards a common regulatory model?.&nbsp;</span></span></span><em><span style="font-family:Calibri,sans-serif"><span style="color:#212121">Reproductive biology and endocrinology : RB&amp;E</span></span></em><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span></span><em><span style="font-family:Calibri,sans-serif"><span style="color:#212121">10</span></span></em><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">, 13. https://doi.org/10.1186/1477-7827-10-13</span></span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">Bondesson, M., Hao, R., Lin, C. Y., Williams, C., &amp; Gustafsson, J. &Aring;. (2015). Estrogen receptor signaling during vertebrate development.&nbsp;</span></span></span><em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">Biochimica et biophysica acta</span></span></em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span></span><em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">1849</span></span></em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">(2), 142&ndash;151. https://doi.org/10.1016/j.bbagrm.2014.06.005.</span></span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">D&#39;Cotta, H., Fostier, A., Guiguen, Y., Govoroun, M., &amp; Baroiller, J. F. (2001). Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus.&nbsp;</span></span></span><em><span style="font-family:Calibri,sans-serif"><span style="color:#212121">Molecular reproduction and development</span></span></em><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span></span><em><span style="font-family:Calibri,sans-serif"><span style="color:#212121">59</span></span></em><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">(3), 265&ndash;276. https://doi.org/10.1002/mrd.1031</span></span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif">Gorelick, D. A., &amp; Halpern, M. E. (2011). Visualization of estrogen receptor transcriptional activation in zebrafish.&nbsp;<em>Endocrinology</em>,&nbsp;152(7), 2690&ndash;2703. https://doi.org/10.1210/en.2010-1257</span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">Guiguen, Y., Fostier, A., Piferrer, F., &amp; Chang, C. F. (2010). Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish.&nbsp;General and comparative endocrinology,&nbsp;165(3), 352&ndash;366. https://doi.org/10.1016/j.ygcen.2009.03.002</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">Marshall Graves, J. A., &amp; Peichel, C. L. (2010). Are homologies in vertebrate sex determination due to shared ancestry or to limited options?.&nbsp;</span></span></span><em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">Genome biology</span></span></em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span></span><em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">11</span></span></em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">(4), 205. https://doi.org/10.1186/gb-2010-11-4-205.</span></span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">Rashid, H., Kitano, H., Lee, K. H., Nii, S., Shigematsu, T., Kadomura, K., Yamaguchi, A., &amp; Matsuyama, M. (2007). Fugu (Takifugu rubripes) sexual differentiation: CYP19 regulation and aromatase inhibitor induced testicular development. Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation, 1(5), 311&ndash;322.</span></span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">Ruksana, S., Pandit, N. P., &amp; Nakamura, M. (2010). Efficacy of exemestane, a new generation of aromatase inhibitor, on sex differentiation in a gonochoristic fish. Comparative biochemistry and physiology. Toxicology &amp; pharmacology : CBP, 152(1), 69&ndash;74. https://doi.org/10.1016/j.cbpc.2010.02.014.</span></span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">Sarre, S. D., Georges, A., &amp; Quinn, A. (2004). The ends of a continuum: genetic and temperature-dependent sex determination in reptiles.&nbsp;</span></span></span><em><span style="font-family:Calibri,sans-serif"><span style="color:#212121">BioEssays : news and reviews in molecular, cellular and developmental biology</span></span></em><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span></span><em><span style="font-family:Calibri,sans-serif"><span style="color:#212121">26</span></span></em><span style="font-family:Calibri,sans-serif"><span style="color:#212121"><span style="background-color:white">(6), 639&ndash;645. https://doi.org/10.1002/bies.20050</span></span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">Trukhina, A. V., Lukina, N. A., Wackerow-Kouzova, N. D., &amp; Smirnov, A. F. (2013). The variety of vertebrate mechanisms of sex determination.&nbsp;BioMed research international,&nbsp;2013, 587460. https://doi.org/10.1155/2013/587460</span></span></span></span></span></p>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">Yin, Y., Tang, H., Liu, Y., Chen, Y., Li, G., Liu, X., &amp; Lin, H. (2017). Targeted Disruption of Aromatase Reveals Dual Functions of cyp19a1a During Sex Differentiation in Zebrafish.&nbsp;</span></span></span><em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">Endocrinology</span></span></em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span></span><em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">158</span></span></em><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">(9), 3030&ndash;3041. https://doi.org/10.1210/en.2016-1865.</span></span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121"><span style="background-color:white">Zhang, Xianbo &amp; Li, Mengru &amp; Ma, He &amp; Liu, Xingyong &amp; Shi, Hongjuan &amp; Li, Minghui &amp; Wang, Deshou. (2017). Mutation of foxl2 or cyp19a1a Results in Female to Male Sex Reversal in XX Nile Tilapia. Endocrinology. 158. 10.1210/en.2017-00127.&nbsp;</span></span></span></span></span></span></p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2146">Relationship: 2146: Increased, Differentiation to Testis leads to Increased, Male Biased Sex Ratio</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/346">Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/aops/376">Androgen receptor agonism leading to male-biased sex ratio</a></td>
  • <td>adjacent</td>
  • <td></td>
  • <td></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Odontesthes bonariensis</td>
  • <td>Odontesthes bonariensis</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=219752" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Oreochromis niloticus</td>
  • <td>Oreochromis niloticus</td>
  • <td></td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=8128" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>zebrafish</td>
  • <td>Danio rerio</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7955" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>fathead minnow</td>
  • <td>Pimephales promelas</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=90988" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Juvenile</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td>Development</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Male</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p>This KER is applicable to any species in which males are defined by the occurrence of testis and/or associated male secondary sexual characteristics.&nbsp;</p>
  • <h4>Key Event Relationship Description</h4>
  • <p>Prior to gonadal sex determination in vertebrates, the developing organism has&nbsp;a primordial bipotential gonad that can be fated to either sex depending on the&nbsp;genetic makeup of the embryo (genetic sex determination; GSD) or environmental conditions (environmental sex determination; ESD) or a combination of both factors.</p>
  • <p>Regardless of whether gonadal development is&nbsp;controlled via&nbsp;GSD or ESD (or both), the operational&nbsp;definition of male versus female&nbsp;in terms of function usually is defined by the presence, respectively, of testes versus ovaries. For species exhibiting sex-specific secondary sexual characteristics preferential&nbsp;differentiation to testis can be accompanied by easily discerned external phenotypic changes as well. If there is increased differentiation to testis in individuals of a population of organisms this will by default produce a male biased sex ratio as defined by what would be considered normal for that species.&nbsp;</p>
  • <h4>Evidence Supporting this KER</h4>
  • <p>See below.</p>
  • <strong>Biological Plausibility</strong>
  • <p>It is highly plausible that as a gonadal phenotype increases toward testis formation, male-biased sex ratios in a defined&nbsp;cohort of organisms will&nbsp;occur. If this condition&nbsp;persists for repeated or prolonged periods of times within the habitat of given species, this will result in a male-biased sex ratio.</p>
  • <p>&nbsp;</p>
  • <strong>Empirical Evidence</strong>
  • <p>There are a variety of examples in multiple fish species where histological evidence of increased gonad differentiation/development to testis results in male-biased sex ratios. These studies in many instances employed chemical inhibitors of aromatase, a key enzyme involved in estrogen synthesis (Simpson et al. 1994), to intentionally alter gonad development.</p>
  • <p>Zebrafish (<em>Danio rerio</em>) exposed to dietary fadrozole (500 ug/g) from 35-71 days posthatch (dph) were 100% masculinized, consistent with histological documentation&nbsp;of gonad tissue containing prominent numbers of testicular cells (Frenske et al. 2004).</p>
  • <p>Zebrafish (<em>Danio rerio</em>) exposed to dietary fadrozole (500 ug/g) from 35-71 days posthatch (dph) were 100% masculinized, consistent with histological documentation&nbsp;of gonad tissue containing prominent numbers of testicular cells (Fenske et al. 2004).</p>
  • <p>Histological evidence in zebrafish of gonadal transition from ovary-type tissue (early default state in this species) to testis at 29-31 dph was observed in fish exposed via the diet to fadrozole from 15-45 dph. By&nbsp;the end of the experiment, exposure to 10, 100 or 1000 ug fadrozole/g diet resulted in male-biased sex ratios&nbsp;of 62.5, 100 and 100%, respectively (Uchida et al. 2004).</p>
  • <p>Luzio et al. (2015; 2016a; 2016b) conducted a series of studies in which zebrafish were exposed to fadrozole for varying&nbsp;periods of time starting at 2 hours post-hatch&nbsp;up to 90 dph. In all studies fadrozole caused enhanced&nbsp;histological evidence of testis development, with a greater than 90% occurrence of males by test conclusion, a condition that persisted up to 150 dph.</p>
  • <p>Nile tilapia (<em>Oreochromis niloticus</em>) exposed to dietary exemestane (500, 1000, 2000 ug/g) from 9-35 dph exhibited histological evidence of complete differentiation to testis in 100% of the animals classified as males in the 1000 and 2000 ug/g treatments (Ruksana et al. 2010).</p>
  • <p>Histological evidence of testis development in yellow catfish (<em>Pelteobagrus fulvidraco</em>) exposed to letrozole for 45 dph was associated with&nbsp;male-biased sex ratios (Shen et al. 2013).</p>
  • <p>Gonadal development in zebrafish exposed to fadrozole (10, 32, 100 ug/L water) from 0-63 dph exhibited accelerated &nbsp;differentiation to testis, resulting in male-biased sex ratios at all test concentrations (Muth-Kohne et al. 2016).</p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p>A major uncertainty for this KER involves what would be defined as &quot;normal&quot; for degree of testis differentiation and by extension&nbsp;sex ratio. There needs to be knowledge as to baseline expectations&nbsp;for testis differentiation for a given species in a given habitiat (or lab setting) to ascertain whether increases are occurring. Baseline information of this type is available or can be inferred for some species but certainly not for all that might be considered.</p>
  • <p>A second significant uncertainty involves situations where the gonad cannot be clearly defined as either testis or ovary. This can occur in some fish and amphibian species, where the gonad has cell types indicative of both testes and ovaries (Abdul-moneim et al. 2015). In these&nbsp;instances classification of individuals as male versus female may not be possible, requiring&nbsp;a third category related to an intersex condition. There are seemingly&nbsp;multiple underlying causes of&nbsp;intersex,&nbsp;one of which appears to be exposure to estrogenic chemicals during gonad differentiation (Jobling et al. 1998; Norris et al. 2018; Grim et al. 2020).</p>
  • <p>A third&nbsp;uncertainty involves whether all individuals&nbsp;defined as males based on gonad phenotype will have the same degree of function in terms of producing viable gametes. It is possible, for example, that genotypic females which&nbsp;develop&nbsp;a male phenotype due to an environmental factor such as exposure to an endocrine-active chemical&nbsp;may not be functionally equivalent to a genetic male relative to sperm production/viability. This could be an important consideration relative to the types of predictions attempted based on a male-biased sex ratio in a population.</p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <p>Because the degree of testis occurrence in a given population dictates the relative number of organisms defined as males, there is a direct quantitative relationship between the two KEs.&nbsp;</p>
  • <strong>Response-response relationship</strong>
  • <p>Not applicable.</p>
  • <strong>Time-scale</strong>
  • <p>Timescales will vary based on species-specific developmental rates, but since one KE often will define the second (i.e., an animal is defined as a male based on the presence of testis) timescale may not be a relevant consideration.&nbsp;&nbsp;</p>
  • <strong>Known modulating factors</strong>
  • <p>Not applicable.</p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p>Not applicable.&nbsp;</p>
  • <h4>References</h4>
  • <p>Abul-moneim, A, DP Coulter, CT Mahapatra and MS Sepulveda. 2015. Intersex in fishes and amphibians: Population implications, prevalance, mechanisms and molecular biomarkers. J Appl Toxicol 35:1228-1240.</p>
  • <p>Fenske, M. &amp; Segner, H. (2004). Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquatic toxicology (Amsterdam, Netherlands). 67. 105-26. DOI 10.1016/j.aquatox.2003.10.008.&nbsp;</p>
  • <p>Grim, KC, EE Henderson, MJ Wolfe and JC Wolfe. 2020. Histopathological prevalance and severity of testicualr oocytes in smallmouth bass from two archival collections. J Aquat Anim Health 32:32-43.</p>
  • <p>Jobling, M Nolan, CR Tyler, G. Brighty and JP Sumpter. 1998. Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498-2506.</p>
  • <p>Luzio, A.,Monteiro, S., Garcia Santos, S., Rocha, E., Fontainhas-Fernandes, A.,&amp; Coimbra, A. (2015). Zebrafish sex differentiation and gonad development after exposure to 17&alpha;-ethinylestradiol, fadrozole and their binary mixture: A stereological study. Aquatic Toxicology. 166. 83-95. DOI 10.1016/j.aquatox.2015.07.015.</p>
  • <p>Luzio, A., Matos, M., Santos, D., Fonta&iacute;nhas-Fernandes, A. A., Monteiro, S. M., &amp; Coimbra, A. M. (2016a). Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17&alpha;-ethinylestradiol and fadrozole exposures. Aquatic toxicology (Amsterdam, Netherlands), 177, 269&ndash;284. https://doi.org/10.1016/j.aquatox.2016.05.029.</p>
  • <p>Luzio, A., Monteiro, S. M., Rocha, E., Fonta&iacute;nhas-Fernandes, A. A., &amp; Coimbra, A. M. (2016b). Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17&alpha;-ethinylestradiol and fadrozole). Aquatic toxicology (Amsterdam, Netherlands), 175, 90&ndash;105. https://doi.org/10.1016/j.aquatox.2016.03.014.</p>
  • <p>Muth-K&ouml;hne, E., Westphal-Settele, K., Br&uuml;ckner, J., Konradi, S., Schiller, V., Sch&auml;fers, C., Teigeler, M., &amp; Fenske, M. (2016). Linking the response of endocrine regulated genes to adverse effects on sex differentiation improves comprehension of aromatase inhibition in a Fish Sexual Development Test. Aquatic toxicology (Amsterdam, Netherlands), 176, 116&ndash;127. https://doi.org/10.1016/j.aquatox.2016.04.018</p>
  • <p>Norris, DO, AL Bolden and AM Vajda. 2018. The occurrence of intersex fishes in Boulder Creek, Colorado is a recent phenomenon. Gen. Comp. Endocrinol. 265:56-60.</p>
  • <p>Ruksana, S., Pandit, N. P., &amp; Nakamura, M. (2010). Efficacy of exemestane, a new generation of aromatase inhibitor, on sex differentiation in a gonochoristic fish. Comparative biochemistry and physiology. Toxicology &amp; pharmacology : CBP, 152(1), 69&ndash;74. https://doi.org/10.1016/j.cbpc.2010.02.014</p>
  • <p>Shen ZG, Fan QX, Yang W, Zhang YL, Hu PP, Xie CX. Effects of non-steroidal aromatase inhibitor letrozole on sex inversion and spermatogenesis in yellow catfish Pelteobagrus fulvidraco. Biol Bull. 2013 Sep;225(1):18-23. doi: 10.1086/BBLv225n1p18. PMID: 24088793.</p>
  • <p>Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W., Hinshelwood, M. M., Graham-Lorence, S., Amarneh, B., Ito, Y., Fisher, C. R., and&nbsp;Michael, M. D. (1994). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis.&nbsp;<em>Endocrine reviews</em>,&nbsp;<em>15</em>(3), 342&ndash;355. https://doi.org/10.1210/edrv-15-3-342.</p>
  • <p>Uchida, D., Yamashita, M., Kitano, T., &amp; Iguchi, T. (2004). An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comparative biochemistry and physiology. Part A, Molecular &amp; integrative physiology, 137(1), 11&ndash;20. https://doi.org/10.1016/s1095-6433(03)00178-8</p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2147">Relationship: 2147: Increased, Male Biased Sex Ratio leads to Decrease, Population growth rate</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/346">Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>adjacent</td>
  • <td>Low</td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/aops/376">Androgen receptor agonism leading to male-biased sex ratio</a></td>
  • <td>adjacent</td>
  • <td></td>
  • <td></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>zebrafish</td>
  • <td>Danio rerio</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7955" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Sphenodon punctatus</td>
  • <td>Sphenodon punctatus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=8508" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Strigops habroptilus</td>
  • <td>Strigops habroptilus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=57251" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Lacerta vivipara</td>
  • <td>Zootoca vivipara</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=8524" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Adults</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Male</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p>Any sexually-reproducing species theoretically could experience male-biased sex ratios and consequent population-level effects.</p>
  • <h4>Key Event Relationship Description</h4>
  • <div>
  • <p><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">Long-term maintenance of viable populations is dependent on the nature of interactions between males and females. One commonly used metric for capturing these interactions&nbsp;is evaluation of deviations from normal of the relative number of males versus females in a population. T</span></span><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Times New Roman&quot;,serif">he ratio of males versus females needed for successful sexual reproduction varies by taxa, with some species requiring a one-to-one relationship, while in other species far fewer males than females may suffice in terms of producing an adequate number of fertile embryos to maintain a population. However, even in species potentially requiring fewer males than females to maintain a viable population, at some point a male-biased population could become problematic in terms of having an adequate number of males to fertilize eggs produced by females or, in the longer term, ensure a robust level of genetic diversity in a population. Further, in situations where a population is male-biased relative to conditions considered normal for a given species, overall productivity may be negatively impacted due to fewer females being available to produce eggs.</span></span></span></span></p>
  • </div>
  • <p>&nbsp;</p>
  • <h4>Evidence Supporting this KER</h4>
  • <p>As described below there are&nbsp;both empirical data and population modeling/simulation approaches that provide evidence for this KER.</p>
  • <ul>
  • </ul>
  • <strong>Biological Plausibility</strong>
  • <p>The plausibility that a male-biased sex ratio would affect population status of different species is strong. For any given population, a male-biased sex ratio suggests that the number of available breeding females is reduced. If the male-biased sex ratio persists and/or increases over time, the offspring production will decrease and population size&nbsp;would be reduced. Additionally, for certain species, an increasing number of males could cause negative&nbsp;behavioral&nbsp;responses, for example, a&nbsp;higher competition for mating leading to more aggressive behaviors that can result in reduced adult survival rates for both male and females.&nbsp;&nbsp;A reduced effective population also affects genetic diversity, which can further reduce population viability.&nbsp;</p>
  • <strong>Empirical Evidence</strong>
  • <p>There have been limited examples of field evaluation&nbsp;of the consequences of male-biased sex ratios on population status, as well as several&nbsp;modeling efforts focused on aspects of population viability in situations where a male-skewed situation could occur. These analyses have focused on avian, reptile or fish species, several of which undergo at least some degree of environmental sex determination.</p>
  • <ul>
  • <li>Surveys and viability analyses of a&nbsp;Tuatara (<em>Sphenodon punctatus</em>)&nbsp;population by Grayson et al. (2014) showed that a&nbsp;current population of&nbsp;56% males at hatching would result in a 12% probability of extinction within the timeframe of the analysis (60 of 500 simulated populations become extinct, mean time to extinction=1183.3 years).&nbsp;</li>
  • <li>Using a behavioral approach&nbsp;Le Galliard et al. (2005) looked at how male-biased sex ratios in the common lizard (<em>Lacerta vivipara</em>)can negatively impacted mating to reduce population viability.</li>
  • <li>Using a behavioral approach&nbsp;Le Galliard et al. (2005) looked at how male-biased sex ratios in the common lizard (<em>Lacerta vivipara</em>) can negatively impacted mating to reduce population viability.</li>
  • <li>In Kakapo (<em>Strigops habroptilus</em>), an endangered parrot&nbsp;species, male-biased production was shown to result&nbsp;in a prolonged species recovery, which risks conservation efforts to build a sustainable population and prevent the&nbsp;species from going extinct (Clout et al 2002; Robertson et al. 2006).&nbsp;</li>
  • <li>A model-based viability analysis by Brown et al. (2015) showed that a male-biased&nbsp;population due&nbsp;to environmental stressors could lead to a sharp decline in zebrafish (<em>Danio rerio</em>) population levels.</li>
  • <li>Miller&nbsp;et al. (2022) developed a matrix model for fathead minnow (<em>Pimephales promelas</em>) that demonstrated how even minor increases in the proportion of males in this species could substantially affect population status over time due to a loss of breeding females.</li>
  • </ul>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p>Studies at the population level can be quite challenging in terms of required resources and, given the number of variables that might simultaneously influence a population, interpretation of results. Consequently, evaluation of population status in the context of adverse outcome pathways often relies upon model predictions that almost always are applicable only to a limited number of--sometimes&nbsp;one--species because of requirements associated with model parameterization. Given this, although it is entirely reasonable from an evolutionary perspective that male-biased sex ratios will negatively impact populations of a given species, it can be difficult to fully assess what this impact may be.&nbsp;&nbsp;</p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <p>For a given species the linkage between a male-biased population and impacts on overall status of that population can be highly quantitative. For example, the model described by Miller et al. (2022) is designed specifically to provide quantitative forecasts of the effects of different male:female sex ratios on population status in fathead minnows. However, parameterization of any population&nbsp;model for vital rates (survival, reproductive output) is necessarily species-specific&nbsp;so, even if a given model construct is potentially suitable for a wide range of species, a significant amount of taxa-specific biological information might be needed to produce reliable quantitative predictions of effects.&nbsp;</p>
  • <strong>Response-response relationship</strong>
  • <p>Brown et al. (2015) and Miller et al. (2022) provide examples for zebrafish and fathead minnows, respectively, of approaches used to establish quantitative response-response relationships between male-biased sex ratios and population size/trends. In general, however, population models almost always rely on female productivity rather than&nbsp;male contributions to forecast population status.</p>
  • <strong>Time-scale</strong>
  • <p>The time-scale for this KER is entirely dependent&nbsp;on the life-cyle of the organism of interest. Small, short-lived animal species could&nbsp;experience population-level alterations due to biased sex ratios in days to weeks, while impacts on larger, long-lived species may take years to decades.&nbsp;</p>
  • <strong>Known modulating factors</strong>
  • <p>Population status can be impacted by a multitude of interacting biotic and abiotic variables, some of which could entirely supersede the effects of a male-biased sex ratio. For example, under conditions of severe food limitations or a regime of extreme temperature there may be no&nbsp;production of young irrespective of male:female sex ratios.</p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p>It is difficult to define what form a feedforward/feedback loop might take&nbsp;for this KER. This would likely largely be a function of the stressor causing a male-biased population. If the stressor was short-term (e.g., affecting one age cohort)&nbsp;the situation might be self-correcting, as opposed to a longer-term stressor that continually causes a male-biased sex ratio, which theoretically should usually result in population extirpation.&nbsp;</p>
  • <h4>References</h4>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:#212121"><span style="background-color:white">Brown, A. R., Owen, S. F., Peters, J., Zhang, Y., Soffker, M., Paull, G. C., Hosken, D. J., Wahab, M. A., &amp; Tyler, C. R. (2015). Climate change and pollution speed declines in zebrafish populations.&nbsp;</span></span><em><span style="color:#212121">Proceedings of the National Academy of Sciences of the United States of America</span></em><span style="color:#212121"><span style="background-color:white">,&nbsp;</span></span><em><span style="color:#212121">112</span></em><span style="color:#212121"><span style="background-color:white">(11), E1237&ndash;E1246. https://doi.org/10.1073/pnas.1416269112</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Clout, M. &amp; Elliott, G. &amp; Robertson, B. (2002). Effects of supplementary feeding on the offspring sex ratio of Kakapo: a dilemma for the conservation of a polygynous parrot. <em>Biological Conservation</em>. 107. 13-18. 10.1016/S0006-3207(01)00267-1.&nbsp;</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Grayson, K. L., Mitchell, N. J., Monks, J. M., Keall, S. N., Wilson, J. N., &amp; Nelson, N. J. (2014). Sex ratio bias and extinction risk in an isolated population of Tuatara (<em><span style="font-family:Calibri,sans-serif">Sphenodon punctatus</span></em>).&nbsp;<em><span style="font-family:Calibri,sans-serif">PloS one</span></em>,&nbsp;<em><span style="font-family:Calibri,sans-serif">9</span></em>(4), e94214.&nbsp;</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Le Galliard, J. F., Fitze, P. S., Ferri&egrave;re, R., &amp; Clobert, J. (2005). Sex ratio bias, male aggression, and population collapse in lizards.&nbsp;<em>Proceedings of the National Academy of Sciences of the United States of America,</em>&nbsp;102(50), 18231&ndash;18236.&nbsp;</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Miller, D.H., D.L. Villeneuve, K.J. Santana-Rodriguez and G.T. Ankley. 2022. A multi-dimensional matrix model for predicting the effects of male-biased sex ratios on fish populations. <em>Environmental Toxicology and Chemistry</em>. 41, 1066-1077</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Robertson, B. C., Elliott, G. P., Eason, D. K., Clout, M. N., &amp; Gemmell, N. J. (2006). Sex allocation theory aids species conservation. <em>Biology letters</em>, 2(2), 229&ndash;231.&nbsp;</span></span></span></span></span></p>
  • </div>
  • <h3>List of Non Adjacent Key Event Relationships</h3>
  • <div>
  • <h4><a href="/relationships/2167">Relationship: 2167: Inhibition, Aromatase leads to Increased, Differentiation to Testis </a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/346">Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>non-adjacent</td>
  • <td>High</td>
  • <td></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>zebrafish</td>
  • <td>Danio rerio</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7955" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Oreochromis niloticus</td>
  • <td>Oreochromis niloticus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=8128" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>red-eared slider</td>
  • <td>Trachemys scripta</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=34903" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>African clawed frog</td>
  • <td>Xenopus laevis</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=8355" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Gallus gallus</td>
  • <td>Gallus gallus</td>
  • <td>Low</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9031" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Development</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><strong>Life Stage</strong></p>
  • <p>The life stage applicable to this KER&nbsp;is developing embryos and juveniles during the gonadal differentiation. This KER&nbsp;is not applicable to sexually differentiated adults.&nbsp;</p>
  • <p><strong>Sex</strong></p>
  • <p>Because this KER occurs during differentiation, the relationship is relevant to animals with an undetermined (non-specific) sex.</p>
  • <p><strong>Taxonomic Applicability&nbsp;</strong></p>
  • <p>Sequencing studies studies with&nbsp;mammalian, amphibian, reptile, bird, and fish species have&nbsp;shown that aromatase is well conserved among all vertebrates (Wilson et al.&nbsp;2005; LaLone et al. 2018).</p>
  • <p>However, it is difficult to predict the biological domain of applicability of this KER&nbsp;based on phylogenetic characteristics. There is considerable within class variability, for example, among&nbsp;both fish and reptile species as to the role of aromatase expression and estrogen signaling in determining gonadal sex (Angelopoulou et al. 2012;&nbsp;Sarre et al. 2004).&nbsp;Thus susceptibility and relative sensitivities may vary considerably among&nbsp;species.</p>
  • <p>&nbsp;</p>
  • <h4>Key Event Relationship Description</h4>
  • <div>
  • <p>Prior to sex determination, many vertebrates have a bipotential gonad that can develop into testis or ovary depending on genetic makeup (genetic sex determination), environmental conditions during development (environmental sex determination) or a combination of both (Trukhina et al. 2013).</p>
  • <p>A key variable influencing gonad differentiation is the production of sex steroids such as 17&szlig;-estradiol (E2) and testosterone (T). In many vertebrates, including a variety of&nbsp;fish species, the &quot;default&quot; gonadal sex is male, with the presence of E2 (or perhaps the relative relationship between E2 and T production/levels) controlling the alternative path to development of ovaries (Angelopoulou et al. 2012).</p>
  • <p>Cytochrome P450 aromatase (CYP191a) is the enzyme responsible for the conversion of T to E2 in gonadal tissues of vertebrates (Miller 1988; Simpson et al. 1994). Consequently, inhibition of CYP191a expression/activity during gonadal differentiation can lead&nbsp;to an increased occurrence of testis.&nbsp;</p>
  • </div>
  • <p>&nbsp;</p>
  • <h4>Evidence Supporting this KER</h4>
  • <p>See below.</p>
  • <strong>Biological Plausibility</strong>
  • <p>Plausibility is high. CYP19a1 aromatase is rate-limiting for the&nbsp;&nbsp;synthesis&nbsp;of E2 in vertebrates (Simpson et al. 1994; Payne et al. 2004), so inhibition of the enzyme reduces E2 levels. Gonadal&nbsp;differentiation of many non-mammalian vertebrates, including a number of fish&nbsp;species,&nbsp;is dependent upon signaling associated with the sex steroids T and E2 (Guiguen et al. 2010; Nakamura 2010). In many of these species there exists a bipotential gonad during early development that, based on steroidal signaling, can differentiate&nbsp;into either testis of ovary. &nbsp;When&nbsp;the &quot;default&quot; differentiation pathway is to testis, as is often the case&nbsp;(Angelopoulou et al. 2012), decreases in E2 plausibly favor the development of testis.</p>
  • <strong>Empirical Evidence</strong>
  • <p>There is empirical evidence in several species representing different&nbsp;vertebrate classes that aromatase inhibition leads to increased differentiation to testis.</p>
  • <p><strong>Fish</strong></p>
  • <ul>
  • <li>An established chemical inhibitor of CYP19a1, fadrozole, has been shown to cause a concentration-dependent inhibition of aromatase activity in zebrafish (<em>Danio rerio</em>)&nbsp;during gonadal differentiation resulting in a shift towards male development (Frenske et al. 2004; Luzio et al. 2015; Luzio et al. 2016; Muth-K&ouml;hne et al. 2016; Luzio et al. 2016)</li>
  • <li>An established chemical inhibitor of CYP19a1, fadrozole, has been shown to cause a concentration-dependent inhibition of aromatase activity in zebrafish (<em>Danio rerio</em>)&nbsp;during gonadal differentiation resulting in a shift towards male development (Fenske et al. 2004; Luzio et al. 2015; Luzio et al. 2016; Muth-K&ouml;hne et al. 2016; Luzio et al. 2016)</li>
  • <li>Generation of cyp19a1a (brain&nbsp;form of aromatase) and cyp19a1b (gondadal form of aromatase) gene mutant lines and a cyp19a1a;cyp19a1b double knockout line in zebrafish using transcription activator like effector nucleases (TALENs) has shown that cyp19a1a mutants and cyp19a1a;cyp19a1b double mutants result in all male gonadal phenotypes (Lau et al. 2016; Yin et al. 2017)<sup>&nbsp;</sup>. This was characterized by a high number of apoptotic cells and stromal cells by 29 days post fertilization (dpf) and by 40 dpf&nbsp;a typical testicular structure had appeared showing cystic spermatogeic cells.</li>
  • <li>Nile tilapia (<em>Oreochromis niloticus</em>)&nbsp;treated with the aromatase inhibitor exemestane during sexual differentiation (from 9 through 35 dph) all had well developed testes by 120 dph (Ruksana et al., 2010)</li>
  • <li>Additional studies with the Nile tilapia have shown that aromatase repression in the gonad is required to favor&nbsp;sexual differentiation to testis (Kwon et al., 2000; D&rsquo;Cotta et al., 2001; Kwon et al. 2001)</li>
  • </ul>
  • <p><strong>Birds</strong></p>
  • <ul>
  • <li>Studies with chicken&nbsp;(<em>Gallus g. domesticus</em>)&nbsp;embryos with the aromatase inhibitor letrozole on the first day of embryonic development has shown that the gonad of genetic females had poorly developed seminiferous tubules suggesting that they had undergone testicular sexual differentiation&nbsp;(Trukhina et al.&nbsp;2016)<span style="font-size:13.3333px">.</span></li>
  • <li>Gonads of genetic female chickens treated at embryonic day 3.5 with the&nbsp;aromatase inhibitor Fadrozole&nbsp;were masculinized by the embryonic day 9.5 (Bannister et al., 2011)<span style="font-size:13.3333px">.</span></li>
  • </ul>
  • <p><strong>Reptiles</strong></p>
  • <ul>
  • <li>Administration of aromatase inhibitors CGS16949A and CGS20267&nbsp;to red-eared slider turtle (<em>Trachemys scripta</em>) eggs incubated at female producing temperatures resulted in all male offspring (Crews and Bergeron&nbsp;1994)<span style="font-size:13.3333px">.</span></li>
  • </ul>
  • <p>&nbsp;</p>
  • <p><strong>Amphibians</strong></p>
  • <ul>
  • <li>In vitro exposure of&nbsp;<em>Xenopus&nbsp;laevis</em>&nbsp;(African clawed frog) gonads treated with the aromatase inhibitor CGS 16949A&nbsp;resulted in&nbsp;histological characteristics indicative of a male phenotype (Miyata and&nbsp;Kubo&nbsp;2000)<span style="font-size:13.3333px">.</span></li>
  • </ul>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p>As noted below, it is uncertain as to the full range of species this key event relationship&nbsp;might be applicable due to susbtantial taxonomic variation in the role that steroid signaling plays in gonadal differentiation.</p>
  • <p><span style="font-size:18px"><span style="font-family:Calibri,sans-serif">Due to substantial taxonomic variation in the role that steroid signaling plays in gonadal differentiation, the range of species that this key event relationship applies to is uncertain</span></span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <p>There are too few data to develop a quatitative understanding of the linkage between aromatase inhibition and increased differentiation to testis.&nbsp;&nbsp;</p>
  • <strong>Response-response relationship</strong>
  • <p>Not applicable.</p>
  • <strong>Time-scale</strong>
  • <p>The timeframe for differentiation of the bipotential gonad is species-dependent occurring, for example, over the course of days to weeks in most fishes. However, this period of time could be substantially longer in long-lived species.</p>
  • <strong>Known modulating factors</strong>
  • <p>There are almost certainly many factors&nbsp;that could modulate this&nbsp;KER, but a systematic description of these is not currently possible.</p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p>None known.</p>
  • <h4>References</h4>
  • <p style="text-align:start">&nbsp;</p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Angelopoulou, R., Lavranos, G., &amp; Manolakou, P. (2012). Sex determination strategies in 2012: towards a common regulatory model?.&nbsp;<em><span style="font-family:Calibri,sans-serif">Reproductive biology and endocrinology : RB&amp;E</span></em>,&nbsp;<em><span style="font-family:Calibri,sans-serif">10</span></em>, 13. https://doi.org/10.1186/1477-7827-10-13</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Bannister, S. C., Smith, C. A., Roeszler, K. N., Doran, T. J., Sinclair, A. H., &amp; Tizard, M. L. (2011). Manipulation of estrogen synthesis alters MIR202* expression in embryonic chicken gonads.&nbsp;Biology of reproduction,&nbsp;85(1), 22&ndash;30. https://doi.org/10.1095/biolreprod.110.088476</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Crews, D., &amp; Bergeron, J. M. (1994). Role of reductase and aromatase in sex determination in the red-eared slider (Trachemys scripta), a turtle with temperature-dependent sex determination.&nbsp;The Journal of endocrinology,&nbsp;143(2), 279&ndash;289. https://doi.org/10.1677/joe.0.1430279</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">D&#39;Cotta, H., Fostier, A., Guiguen, Y., Govoroun, M., &amp; Baroiller, J. F. (2001). Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochromis niloticus.&nbsp;Molecular reproduction and development,&nbsp;59(3), 265&ndash;276. https://doi.org/10.1002/mrd.1031</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Fenske, M. &amp; Segner, H. (2004). Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquatic toxicology (Amsterdam, Netherlands). 67. 105-26. DOI 10.1016/j.aquatox.2003.10.008. </span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Guiguen, Y., Fostier, A., Piferrer, F., &amp; Chang, C. F. (2010). Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish.&nbsp;General and comparative endocrinology,&nbsp;165(3), 352&ndash;366. https://doi.org/10.1016/j.ygcen.2009.03.002</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Kwon, J. Y., Haghpanah, V., Kogson-Hurtado, L. M., McAndrew, B. J., &amp; Penman, D. J. (2000). Masculinization of genetic female nile tilapia (Oreochromis niloticus) by dietary administration of an aromatase inhibitor during sexual differentiation.&nbsp;The Journal of experimental zoology,&nbsp;287(1), 46&ndash;53.</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Kwon, J. Y., McAndrew, B. J., &amp; Penman, D. J. (2001). Cloning of brain aromatase gene and expression of brain and ovarian aromatase genes during sexual differentiation in genetic male and female Nile tilapia Oreochromis niloticus.&nbsp;Molecular reproduction and development,&nbsp;59(4), 359&ndash;370. https://doi.org/10.1002/mrd.1042</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">LaLone, C.A., D.L. Villeneuve, J.A. Doering, B.R. Blackwell, T.R. Transue, C.W. Simmons, J. Swintek, S.J. Degitz, A.J. Williams and G.T. Ankley. 2018. Evidence for cross-species extrapolation of mammalian-based high-throughput screening assay results. Environ. Sci. Technol. 52, 13960-13971.</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Lau, E. S., Zhang, Z., Qin, M., &amp; Ge, W. (2016). Knockout of Zebrafish Ovarian Aromatase Gene (cyp19a1a) by TALEN and CRISPR/Cas9 Leads to All-male Offspring Due to Failed Ovarian Differentiation.&nbsp;Scientific reports,&nbsp;6, 37357. https://doi.org/10.1038/srep37357</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Luzio, A.,Monteiro, S., Garcia Santos, S., Rocha, E., Fontainhas-Fernandes, A.,&amp; Coimbra, A. (2015). Zebrafish sex differentiation and gonad development after exposure to 17&alpha;-ethinylestradiol, fadrozole and their binary mixture: A stereological study. Aquatic Toxicology. 166. 83-95. DOI 10.1016/j.aquatox.2015.07.015.</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Luzio, A., Matos, M., Santos, D., Fonta&iacute;nhas-Fernandes, A. A., Monteiro, S. M., &amp; Coimbra, A. M. (2016). Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17&alpha;-ethinylestradiol and fadrozole exposures.&nbsp;Aquatic toxicology (Amsterdam, Netherlands),&nbsp;177, 269&ndash;284. https://doi.org/10.1016/j.aquatox.2016.05.029</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Luzio, A., Monteiro, S. M., Rocha, E., Fonta&iacute;nhas-Fernandes, A. A., &amp; Coimbra, A. M. (2016). Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17&alpha;-ethinylestradiol and fadrozole).&nbsp;Aquatic toxicology (Amsterdam, Netherlands),&nbsp;175, 90&ndash;105. https://doi.org/10.1016/j.aquatox.2016.03.014</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Miller W. L. (1988). Molecular biology of steroid hormone synthesis.&nbsp;<em><span style="font-family:Calibri,sans-serif">Endocrine reviews</span></em>,&nbsp;<em><span style="font-family:Calibri,sans-serif">9</span></em>(3), 295&ndash;318. https://doi.org/10.1210/edrv-9-3-295</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000">Miyata, S., &amp; Kubo, T. (2000). In vitro effects of estradiol and aromatase inhibitor treatment on sex differentiation in Xenopus laevis gonads.&nbsp;General and comparative endocrinology,&nbsp;119(1), 105&ndash;110. https://doi.org/10.1006/gcen.2000.7497</span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Muth-K&ouml;hne, E., Westphal-Settele, K., Br&uuml;ckner, J., Konradi, S., Schiller, V., Sch&auml;fers, C., Teigeler, M., &amp; Fenske, M. (2016). Linking the response of endocrine regulated genes to adverse effects on sex differentiation improves comprehension of aromatase inhibition in a Fish Sexual Development Test.&nbsp;Aquatic toxicology (Amsterdam, Netherlands),&nbsp;176, 116&ndash;127. https://doi.org/10.1016/j.aquatox.2016.04.018</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Nakamura M. (2010). The mechanism of sex determination in vertebrates-are sex steroids the key-factor?.&nbsp;<em><span style="font-family:Calibri,sans-serif">Journal of experimental zoology. Part A, Ecological genetics and physiology</span></em>,&nbsp;<em><span style="font-family:Calibri,sans-serif">313</span></em>(7), 381&ndash;398. https://doi.org/10.1002/jez.616</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Norris, D. O.&nbsp;<em><span style="font-family:Calibri,sans-serif">Vertebrate Endocrinology</span></em>, 3rd ed.; Academic Press: San Diego, CA, 1997.</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Payne, A. H., &amp; Hales, D. B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones.&nbsp;<em><span style="font-family:Calibri,sans-serif">Endocrine reviews</span></em>,&nbsp;<em><span style="font-family:Calibri,sans-serif">25</span></em>(6), 947&ndash;970. https://doi.org/10.1210/er.2003-0030</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Ruksana, S., Pandit, N. P., &amp; Nakamura, M. (2010). Efficacy of exemestane, a new generation of aromatase inhibitor, on sex differentiation in a gonochoristic fish.&nbsp;Comparative biochemistry and physiology. Toxicology &amp; pharmacology : CBP,&nbsp;152(1), 69&ndash;74. https://doi.org/10.1016/j.cbpc.2010.02.014</span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:16px"><span style="font-family:Calibri,sans-serif"><span style="background-color:white"><span style="color:#212121">Sarre, S. D., Georges, A., &amp; Quinn, A. (2004). The ends of a continuum: genetic and temperature-dependent sex determination in reptiles.&nbsp;</span></span><em>BioEssays : news and reviews in molecular, cellular and developmental biology</em>,&nbsp;<em>26</em>(6), 639&ndash;645. https://doi.org/10.1002/bies.20050</span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W., Hinshelwood, M. M., Graham-Lorence, S., Amarneh, B., Ito, Y., Fisher, C. R., &amp; Michael, M. D. (1994). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis.&nbsp;<em><span style="font-family:Calibri,sans-serif">Endocrine reviews</span></em>,&nbsp;<em><span style="font-family:Calibri,sans-serif">15</span></em>(3), 342&ndash;355. https://doi.org/10.1210/edrv-15-3-342</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:#000000"><span style="font-family:Calibri,sans-serif"><span style="color:#212529">Trukhina, A. V., Lukina, N. A., Wackerow-Kouzova, N. D., &amp; Smirnov, A. F. (2013). The variety of vertebrate mechanisms of sex determination.&nbsp;BioMed research international,&nbsp;2013, 587460. https://doi.org/10.1155/2013/587460</span></span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Trukhina, Antonina &amp; Lukina, Natalia &amp; Smirnov, Aleksandr. (2016). Experimental Sex Inversion of Chicken Embryos at Aromatase Inhibition, Estrogen Receptor Modulation, DNA Demethylation and Progesterone Treatment. Natural Science. 08. 451-459. 10.4236/ns.2016.811047. </span></span></span></span></p>
  • <p style="text-align:start"><span style="font-size:16px"><span style="font-family:Calibri,sans-serif"><span style="background-color:white"><span style="color:#212121">Wilson, J. Y., McArthur, A. G., &amp; Stegeman, J. J. (2005). Characterization of a cetacean aromatase (CYP19) and the phylogeny and functional conservation of vertebrate aromatase.&nbsp;</span></span><em>General and comparative endocrinology</em>,&nbsp;<em>140</em>(1), 74&ndash;83. https://doi.org/10.1016/j.ygcen.2004.10.004</span></span></p>
  • <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Yin, Y., Tang, H., Liu, Y., Chen, Y., Li, G., Liu, X., &amp; Lin, H. (2017). Targeted Disruption of Aromatase Reveals Dual Functions of cyp19a1a During Sex Differentiation in Zebrafish. Endocrinology, 158(9), 3030&ndash;3041. https://doi.org/10.1210/en.2016-1865</span></span></span></span></p>
  • </div>
  • <div>
  • <h4><a href="/relationships/2350">Relationship: 2350: Inhibition, Aromatase leads to Increased, Male Biased Sex Ratio</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/346">Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation</a></td>
  • <td>non-adjacent</td>
  • <td>Moderate</td>
  • <td></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>zebrafish</td>
  • <td>Danio rerio</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7955" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>fathead minnow</td>
  • <td>Pimephales promelas</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=90988" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Oreochromis niloticus</td>
  • <td>Oreochromis niloticus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=8128" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>before or during gonadal sex differentiation</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <p><span style="font-size:12pt"><span style="background-color:white"><span style="font-family:&quot;Times New Roman&quot;,serif"><strong><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">Life Stage</span></span></strong></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:white"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">The life stage applicable to this KER&nbsp;is developing embryos and juveniles during the gonadal differentiation. This KER&nbsp;is not applicable to sexually differentiated adults.&nbsp;</span></span></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:white"><span style="font-family:&quot;Times New Roman&quot;,serif"><strong><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">Sex </span></span></strong></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:white"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">Because this KER occurs during differentiation, the relationship is relevant to animals with an undetermined (non-specific) sex.</span></span></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:white"><span style="font-family:&quot;Times New Roman&quot;,serif"><strong><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">Taxonomic Applicability&nbsp;</span></span></strong></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:white"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">Sequencing studies with&nbsp;mammalian, amphibian, reptile, bird, and fish species have&nbsp;shown that aromatase is well conserved among all vertebrates (Wilson et al.&nbsp;2005; LaLone et al. 2018).</span></span></span></span></span></p>
  • <p><span style="font-size:12pt"><span style="background-color:white"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">However, it is difficult to predict the biological domain of applicability of this KER&nbsp;based on phylogenetic characteristics. There is considerable within class variability, for example, among&nbsp;both fish and reptile species as to the role of aromatase expression and estrogen signaling in determining gonadal sex (Angelopoulou et al. 2012;&nbsp;Sarre et al. 2004).&nbsp;Thus susceptibility and relative sensitivities may vary considerably among&nbsp;species.</span></span></span></span></span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p>Prior to sex determination, many vertebrates have a bipotential gonad that can develop into testis or ovary depending on genetic makeup (genetic sex determination), environmental conditions during development (environmental sex determination) or a combination of both (Trukhina et al. 2013).</p>
  • <p>A key variable influencing gonad differentiation is the production of sex steroids such as 17&szlig;-estradiol (E2) and testosterone (T). In many vertebrates, including a variety of&nbsp;fish species, the &quot;default&quot; gonadal sex is male, with the presence of E2 (or perhaps the relative relationship between E2 and T production/levels) controlling the alternative path to development of ovaries (Angelopoulou et al. 2012).</p>
  • <p>Cytochrome P450 aromatase (CYP19a1a) is the enzyme responsible for the conversion of T to E2 in gonadal tissues of vertebrates (Miller 1988; Simpson et al. 1994). Consequently, inhibition of CYPa191a expression/activity during gonadal differentiation can lead&nbsp;to an increased occurrence of testis. This can subsequently result in a male-biased sex ratio in the population of interest.</p>
  • <h4>Evidence Supporting this KER</h4>
  • <p>See below.</p>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">This key event relationship is highly plausible. If inhibition of aromatase (E2 production) overlaps with the critical period of sex differentiation in a susceptible species there will be an increase in the number of organisms developing testes, which would produce a male-biased population.&nbsp;</span></span></span></span></p>
  • <strong>Empirical Evidence</strong>
  • <p>Studies with fish deficient in aromatase (knock-out experiments) as well as studies with&nbsp;known inhibitors of aromatase activity have shown increased occurrence of males.</p>
  • <ul>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Several studies with zebrafish (<em>Danio rerio</em>) using&nbsp; the model aromatase inhibitor f</span></span><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:black">adrozole administered via the diet&nbsp;during early development resulted&nbsp;in a predominant male population&nbsp;(Frenske et al. 2004; Uchida et al. 2004; Thresher et al.&nbsp;2011).</span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Several studies with zebrafish (<em>Danio rerio</em>) using&nbsp; the model aromatase inhibitor f</span></span><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:black">adrozole administered via the diet&nbsp;during early development resulted&nbsp;in a predominant male population&nbsp;(Fenske et al. 2004; Uchida et al. 2004; Thresher et al.&nbsp;2011).</span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:black">Other&nbsp;studies exposing early life-stage zebrafish via water to fadrozole also resulted in male-skewed populations (Luzio et al. 2015; Luzio et al. 2016; Luzio et al. 2016; Muth-K&ouml;hne et al. 2016).</span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:black">Dietary exposure of Nile tilapia (<em>Oreochromis niloticus</em>) to the aromatase inhibitor exemetane during early development resulted in 100% males in treated fish (Ruksana et al., 2010)</span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">In knockout studies of the aromatase gene using Nile tilapia and zebrafish, all<em> cyp19a1a</em>-deficient fish developed as males&nbsp;(</span></span><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:black">Lau et al. 2016; Yin et al. 2017; Zhang et al. 2017)</span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:black">Exposure of zebrafish to the aromatase inhibitor clotrimazole induced male-skewed sex ratios</span></span></span><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:black">&nbsp;(Brown et al. 2015)</span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Exposure of fathead minnows (<em>Pimephales promelas</em>)&nbsp;&nbsp;to the aromatase inhibitor prochoraz skewed sex-ratios to&nbsp;males in a dose-dependent manner&nbsp;(</span></span><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:black">Thorpe et al.&nbsp;2011; Holbech et al.&nbsp;2012).</span></span></span></span></span></li>
  • <li><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Exposure of fathead minnows (<em>Pimephales promelas</em>) and zebrafish (<em>Danio rerio</em>)&nbsp;to the aromatase inhibitor prochloraz skewed sex-ratios to&nbsp;males in a dose-dependent manner&nbsp;(<span style="color:black">Thorpe et al.&nbsp;2011; Holbech et al.&nbsp;2012).</span></span></span></span></span></li>
  • </ul>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p>As noted below, it is uncertain as to the full range of species this KER might be applicable due to susbstantial taxonomic variation in the role that steroid signaling plays in gonadal differentiation and, hence, the number of males in a population.</p>
  • <p><span style="font-size:18px"><span style="font-family:&quot;Segoe UI Historic&quot;,sans-serif">Due to substantial taxonomic variation in the role that steroid signaling plays in gonadal differentiation, the range of species that this key event relationship applies to is uncertain</span></span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <p>There are too few data to develop a quatitative understanding of the linkage between aromatase inhibition and increased relative number of males in populations.</p>
  • <strong>Response-response relationship</strong>
  • <p>Not applicable.</p>
  • <strong>Time-scale</strong>
  • <p>The timeframe for differentiation of the bipotential gonad to testis and, consequently, to a male phenotype is species-dependent occurring, for example, over the course of days to weeks in most fishes. However, this period of time could be substantially longer in long-lived species.</p>
  • <strong>Known modulating factors</strong>
  • <p>There are almost certainly many factors&nbsp;that could modulate this&nbsp;KER, but a systematic description of these is not currently possible.</p>
  • <h4>References</h4>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="background-color:white"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">Angelopoulou, R., Lavranos, G., &amp; Manolakou, P. (2012). Sex determination strategies in 2012: towards a common regulatory model?.&nbsp;</span></span></span></span><em><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Reproductive biology and endocrinology : RB&amp;E</span></em>,&nbsp;<em><span style="font-family:&quot;Segoe UI&quot;,sans-serif">10</span></em>, 13. https://doi.org/10.1186/1477-7827-10-13</span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Brown, A. R., Bickley, L. K., Le Page, G., Hosken, D. J., Paull, G. C., Hamilton, P. B., Owen, S. F., Robinson, J., Sharpe, A. D., &amp; Tyler, C. R. (2011). Are toxicological responses in laboratory (inbred) zebrafish representative of those in outbred (wild) populations? - A case study with an endocrine disrupting chemical. Environmental science &amp; technology, 45(9), 4166&ndash;4172. https://doi.org/10.1021/es200122r</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Brown, A. R., Owen, S. F., Peters, J., Zhang, Y., Soffker, M., Paull, G. C., Hosken, D. J., Wahab, M. A., &amp; Tyler, C. R. (2015). Climate change and pollution speed declines in zebrafish populations. Proceedings of the National Academy of Sciences of the United States of America, 112(11), E1237&ndash;E1246. https://doi.org/10.1073/pnas.1416269112</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Fenske, M. &amp; Segner, H. (2004). Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquatic toxicology (Amsterdam, Netherlands). 67. 105-26. DOI 10.1016/j.aquatox.2003.10.008. </span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Holbech, H., Kinnberg, K. L., Brande-Lavridsen, N., Bjerregaard, P., Petersen, G. I., Norrgren, L., &Ouml;rn, S., Braunbeck, T., Baumann, L., Bomke, C., Dorgerloh, M., Bruns, E., Ruehl-Fehlert, C., Green, J. W., Springer, T. A., &amp; Gourmelon, A. (2012). Comparison of zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) as test species in the Fish Sexual Development Test (FSDT). Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 155(2), 407&ndash;415. https://doi.org/10.1016/j.cbpc.2011.11.002</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="background-color:white"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">LaLone, C.A., D.L. Villeneuve, J.A. Doering, B.R. Blackwell, T.R. Transue, C.W. Simmons, J. Swintek, S.J. Degitz, A.J. Williams and G.T. Ankley. 2018. Evidence for cross-species extrapolation of mammalian-based high-throughput screening assay results. Environ. Sci. Technol. 52, 13960-13971.</span></span></span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Lau, E. S., Zhang, Z., Qin, M., &amp; Ge, W. (2016). Knockout of Zebrafish Ovarian Aromatase Gene (cyp19a1a) by TALEN and CRISPR/Cas9 Leads to All-male Offspring Due to Failed Ovarian Differentiation. Scientific reports, 6, 37357. https://doi.org/10.1038/srep37357</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Luzio, A., Matos, M., Santos, D., Fonta&iacute;nhas-Fernandes, A. A., Monteiro, S. M., &amp; Coimbra, A. M. (2016). Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17&alpha;-ethinylestradiol and fadrozole exposures. Aquatic toxicology (Amsterdam, Netherlands), 177, 269&ndash;284. https://doi.org/10.1016/j.aquatox.2016.05.029</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Luzio, A., Monteiro, S. M., Rocha, E., Fonta&iacute;nhas-Fernandes, A. A., &amp; Coimbra, A. M. (2016). Development and recovery of histopathological alterations in the gonads of zebrafish (Danio rerio) after single and combined exposure to endocrine disruptors (17&alpha;-ethinylestradiol and fadrozole). Aquatic toxicology (Amsterdam, Netherlands), 175, 90&ndash;105. https://doi.org/10.1016/j.aquatox.2016.03.014</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Luzio, A.,Monteiro, S., Garcia Santos, S., Rocha, E., Fontainhas-Fernandes, A.,&amp; Coimbra, A. (2015). Zebrafish sex differentiation and gonad development after exposure to 17&alpha;-ethinylestradiol, fadrozole and their binary mixture: A stereological study. Aquatic Toxicology. 166. 83-95. DOI 10.1016/j.aquatox.2015.07.015. </span></span></span></span></p>
  • <p>Miller W. L. (1988). Molecular biology of steroid hormone synthesis.&nbsp;<em>Endocrine reviews</em>,&nbsp;<em>9</em>(3), 295&ndash;318. https://doi.org/10.1210/edrv-9-3-295</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Muth-K&ouml;hne, E., Westphal-Settele, K., Br&uuml;ckner, J., Konradi, S., Schiller, V., Sch&auml;fers, C., Teigeler, M., &amp; Fenske, M. (2016). Linking the response of endocrine regulated genes to adverse effects on sex differentiation improves comprehension of aromatase inhibition in a Fish Sexual Development Test. Aquatic toxicology (Amsterdam, Netherlands), 176, 116&ndash;127. https://doi.org/10.1016/j.aquatox.2016.04.018</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="background-color:white"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">Payne, A. H., &amp; Hales, D. B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones.&nbsp;</span></span></span></span><em><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Endocrine reviews</span></em>,&nbsp;<em><span style="font-family:&quot;Segoe UI&quot;,sans-serif">25</span></em>(6), 947&ndash;970. https://doi.org/10.1210/er.2003-0030</span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Ruksana, S., Pandit, N. P., &amp; Nakamura, M. (2010). Efficacy of exemestane, a new generation of aromatase inhibitor, on sex differentiation in a gonochoristic fish. Comparative biochemistry and physiology. Toxicology &amp; pharmacology : CBP, 152(1), 69&ndash;74. https://doi.org/10.1016/j.cbpc.2010.02.014</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="background-color:white"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">Sarre, S. D., Georges, A., &amp; Quinn, A. (2004). The ends of a continuum: genetic and temperature-dependent sex determination in reptiles.&nbsp;</span></span></span></span><em>BioEssays : news and reviews in molecular, cellular and developmental biology</em>,&nbsp;<em>26</em>(6), 639&ndash;645. https://doi.org/10.1002/bies.20050</span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="background-color:white"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212529">Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W., Hinshelwood, M. M., Graham-Lorence, S., Amarneh, B., Ito, Y., Fisher, C. R., &amp; Michael, M. D. (1994). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis.&nbsp;</span></span></span></span><em><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Endocrine reviews</span></em>,&nbsp;<em><span style="font-family:&quot;Segoe UI&quot;,sans-serif">15</span></em>(3), 342&ndash;355. https://doi.org/10.1210/edrv-15-3-342</span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Thorpe, K. L., Marca Pereira, M. L., Schiffer, H., Burkhardt-Holm, P., Weber, K., &amp; Wheeler, J. R. (2011). Mode of sexual differentiation and its influence on the relative sensitivity of the fathead minnow and zebrafish in the fish sexual development test. Aquatic Toxicology, 105(3&ndash;4), 412&ndash;420. https://doi.org/10.1016/j.aquatox.2011.07.012</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Thresher, R., Gurney, R., &amp; Canning, M. (2011). Effects of lifetime chemical inhibition of aromatase on the sexual differentiation, sperm characteristics and fertility of medaka (Oryzias latipes) and zebrafish (Danio rerio). Aquatic toxicology (Amsterdam, Netherlands), 105(3-4), 355&ndash;360. https://doi.org/10.1016/j.aquatox.2011.07.008</span></span></span></span></p>
  • <p>Trukhina, A. V., Lukina, N. A., Wackerow-Kouzova, N. D., &amp; Smirnov, A. F. (2013). The variety of vertebrate mechanisms of sex determination.&nbsp;BioMed research international,&nbsp;2013, 587460. https://doi.org/10.1155/2013/587460</p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Uchida, D., Yamashita, M., Kitano, T., &amp; Iguchi, T. (2004). An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comparative biochemistry and physiology. Part A, Molecular &amp; integrative physiology, 137(1), 11&ndash;20. https://doi.org/10.1016/s1095-6433(03)00178-8</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="background-color:white"><span style="font-family:&quot;Segoe UI&quot;,sans-serif"><span style="color:#212121">Wilson, J. Y., McArthur, A. G., &amp; Stegeman, J. J. (2005). Characterization of a cetacean aromatase (CYP19) and the phylogeny and functional conservation of vertebrate aromatase.&nbsp;</span></span></span></span><em>General and comparative endocrinology</em>,&nbsp;<em>140</em>(1), 74&ndash;83. https://doi.org/10.1016/j.ygcen.2004.10.004</span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Yin, Y., Tang, H., Liu, Y., Chen, Y., Li, G., Liu, X., &amp; Lin, H. (2017). Targeted Disruption of Aromatase Reveals Dual Functions of cyp19a1a During Sex Differentiation in Zebrafish. Endocrinology, 158(9), 3030&ndash;3041. https://doi.org/10.1210/en.2016-1865</span></span></span></span></p>
  • <p><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:12.0pt"><span style="font-family:&quot;Segoe UI&quot;,sans-serif">Zhang, Xianbo &amp; Li, Mengru &amp; Ma, He &amp; Liu, Xingyong &amp; Shi, Hongjuan &amp; Li, Minghui &amp; Wang, Deshou. (2017). Mutation of foxl2 or cyp19a1a Results in Female to Male Sex Reversal in XX Nile Tilapia. Endocrinology. 158. 10.1210/en.2017-00127.</span></span></span></span></p>
  • </div>
  • </div>
  • </div>
  • </div>
  • </main>
  • <nav class="navbar navbar-expand nav-footer navbar-dark bg-dark mt-auto">
  • <div class="container-fluid">
  • <ul class="navbar-nav mx-auto">
  • <li class="nav-item"><a class="nav-link" href="/info_pages/2" target="_blank">Help</a></li>
  • <li class="nav-item"><a class="nav-link" href="/info_pages/3">About</a></li>
  • <li class="nav-item"><a class="nav-link" href="/info_pages/10">About</a></li>
  • <li class="nav-item"><a class="nav-link" href="/info_pages/4">FAQ</a></li>
  • <li class="nav-item d-none d-sm-block"><a class="nav-link" href="/info_pages/5">Download Options</a></li>
  • <li class="nav-item"><a class="nav-link" href="/metrics_summary">Metrics</a></li>
  • <li class="nav-item"><a class="nav-link" href="/info_pages/3">Release Notes</a></li>
  • </ul>
  • </div>
  • </nav>
  • <script crossorigin="anonymous" integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=" src="https://code.jquery.com/jquery-3.5.1.min.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-VazP97ZCwtekAsvgPBSUwPFKdrwD3unUfSGVYrahUqU=" src="https://code.jquery.com/ui/1.12.1/jquery-ui.min.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-sXPRAPYJk5w3GI/IBiN2AK31ZAMCcJ/5LRpLHpsk5vY=" src="https://cdn.jsdelivr.net/npm/@rails/ujs@6.0.3-2/lib/assets/compiled/rails-ujs.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-9nt4LsWmLI/O24lTW89IzAKuBqEZ47l/4rh1+tH/NY8=" src="https://cdn.jsdelivr.net/npm/bootstrap@4.5.2/dist/js/bootstrap.bundle.min.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-5VhCqFam2Cn+yjw61zbBNrbHVJ6SRydPeKopYlngbiQ=" src="https://cdn.jsdelivr.net/npm/cookieconsent@3.1.1/build/cookieconsent.min.js" data-cfasync="false"></script>
  • <script src="https://aopwiki.org/lib/tablefilter/tablefilter.js"></script>
  • <script src="https://aopwiki.org/lib/ckeditor/ckeditor.js"></script>
  • <link rel="stylesheet" crossorigin="anonymous" integrity="sha256-PaAZL3VjvuBsQSngzjA8dTdYa2mU88xmjd0vw8biXfg=" href="https://cdn.jsdelivr.net/npm/selectize@0.12.6/dist/css/selectize.css">
  • <link rel="stylesheet" crossorigin="anonymous" integrity="sha256-9xc5FBFR3TnnIx/G9SEbdMm0BWyGNRDH1XITfATut8Q=" href="https://cdn.jsdelivr.net/npm/selectize@0.12.6/dist/css/selectize.bootstrap3.css">
  • <script crossorigin="anonymous" integrity="sha256-+C0A5Ilqmu4QcSPxrlGpaZxJ04VjsRjKu+G82kl5UJk=" src="https://cdn.jsdelivr.net/npm/selectize@0.12.6/dist/js/standalone/selectize.min.js"></script>
  • <script src="/assets/application-7b3cb84504d35eec9bbe1ae07fed0195b7d379c3a67920d3f023a4d7514b4060.js"></script>
  • <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
  • <script src="/assets/application-f8e1733bf816bbd5a3bbfc40ccb4218a6097e96e116013b747e9cad961ff4511.js"></script>
  • <script>
  • function getCookie(cookieName) {
  • let cookies = decodeURIComponent(document.cookie).split(';');
  • for (let idx = 0; idx < cookies.length; idx++) {
  • let cookie = cookies[idx].trim().split("=");
  • if (cookie[0] === cookieName) {
  • return cookie[1];
  • }
  • }
  • return "";
  • }
  • function setGtagConfig() {
  • gtag('config','UA-172534727-1',{'send_page_view':getCookie("cookieconsent_status")==="allow"});
  • }
  • window.dataLayer=window.dataLayer||[];
  • function gtag(){dataLayer.push(arguments);}
  • gtag('js',new Date());
  • setGtagConfig();
  • window.cookieconsent.initialise({
  • "palette": { "popup": {"background":"#252e39" }, "button": {"background":"#14a7d0" } },
  • "theme": "classic", "position": "bottom-right", "type": "opt-out",
  • "content": { "dismiss": "I accept cookies", "deny": "I refuse cookies" },
  • onStatusChange: function() { setGtagConfig(); }
  • });
  • </script>
  • <script type="text/javascript" id="flash">
  • </script>
  • </body>
  • </html>