• <!DOCTYPE html>
  • <html lang="en">
  • <div class="pull-right">
  • <h1>SNAPSHOT</h1>
  • <h4>Created at: 2020-11-11 13:00</h4>
  • </div>
  • <!-- Title Section, includes id, name and short name -->
  • <div id="title">
  • <h2>AOP ID and Title:</h2>
  • <hr>
  • <div class="title">
  • AOP 360: Chitin synthase 1 inhibition leading to mortality
  • </div>
  • <div class="title">AOP 360: Chitin synthase 1 inhibition leading to mortality</div>
  • <strong>Short Title: CHS-1 inhibition leading to mortality</strong>
  • <br>
  • </div>
  • <!-- graphical representation -->
  • <h2>Graphical Representation</h2>
  • <img src="https://aopwiki.org/system/dragonfly/production/2020/10/23/e3mrfd7ek_AOP_Graphic_Template_ChitinSynthase.png" , height="500" , width="700"> </img>
  • <!-- end graphical representation -->
  • <hr>
  • <h2>Graphical Representation</h2>
  • <img src="https://aopwiki.org/system/dragonfly/production/2021/02/24/588ujq3hyt_AOP_Graphic_Template_ChitinSynthase.png" height="500" width="700" alt=""/>
  • <!-- Author section, includes text of author names as they have been entered by the user -->
  • <div id="authors">
  • <h2>Authors</h2>
  • <hr>
  • <p><span style="font-size:14px">Simon Schmid <sup>1,2</sup>, You Song <sup>1</sup>, and Knut Erik Tollefsen <sup>1,2</sup></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Simon Schmid <sup>1,2</sup>, You Song <sup>1</sup>, and Knut Erik Tollefsen <sup>1,2,3</sup></span></span></p>
  • <p><span style="font-size:14px"><sup>1</sup> Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><sup>1</sup> Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, &Oslash;kernveien 94, N-0579, Oslo, Norway</span></span></p>
  • <p><span style="font-size:14px"><sup>2</sup>&nbsp;Faculty of Environmental Science and Resource Management, Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), N-1432, &Aring;s, Norway</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><sup>2</sup>&nbsp;</span></span><span style="font-size:11.0pt"><span style="font-family:&quot;Arial&quot;,sans-serif">Faculty of Environmental Science and Resource Management<span style="background-color:white"><span style="color:#212121">&nbsp;(MINA)</span></span>, Norwegian University of Life Sciences (NMBU), N-1432, &Aring;s, Norway</span></span></p>
  • <p><span style="font-size:14px">Contact: Simon.Schmid@niva.no</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><sup>3</sup>&nbsp;</span></span><span style="font-size:11.0pt"><span style="background-color:white"><span style="font-family:&quot;Arial&quot;,sans-serif"><span style="color:#212121">Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), N-1432 &Aring;s, Norway</span></span></span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Contact: Simon.Schmid@niva.no</span></span></p>
  • <p><u><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Acknowledgements:</span></span></u><br />
  • <span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><span style="background-color:white"><span style="color:black">This project has received funding from the European Union&rsquo;s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 859891&nbsp;and was supported by NIVA&rsquo;s Computational Toxicology Program, NCTP (<a href="https://www.niva.no/en/projectweb/nctp" style="color:blue; text-decoration:underline">www.niva.no/nctp</a>).</span></span></span></span></p>
  • <br>
  • </div>
  • <!-- Status Section, lists status of aop -->
  • <div id="status">
  • <h2>Status</h2>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <th>Author status</th>
  • <th>OECD status</th>
  • <th>OECD project</th>
  • <th>SAAOP status</th>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Author status</th>
  • <th scope="col">OECD status</th>
  • <th scope="col">OECD project</th>
  • <th scope="col">SAAOP status</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Open for comment. Do not cite</td>
  • <td></td>
  • <td></td>
  • <td></td>
  • <td>Open for citation &amp; comment</td>
  • <td>WPHA/WNT Endorsed</td>
  • <td>1.94</td>
  • <td>Included in OECD Work Plan</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- Abstract Section, text as generated by author -->
  • <div id="abstract">
  • <h2>Abstract</h2>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><span style="font-size:10.5pt"><span style="background-color:white"><span style="color:#212529">In order to grow and develop, arthropods need to shed their exoskeleton (or cuticle) periodically and replace it with a new one in a process called molting. Successful molting, and therefore a successful development necessitates stability and integrity of the cuticle to support muscular contractions involved in the shedding of the old cuticle. The integrity of the cuticle is largely dependent on the <em>N</em>-acetylglucosamine (GlcNAc) polymer chitin. Therefore, arthropods heavily rely on chitin synthesis as chitin is one of the main constituents of the cuticle. The cuticular chitin synthase (CHS-1) is the key enzyme in the biosynthetic pathway and arthropods are therefore especially dependent on its proper function. The present AOP describes the effects of chemical inhibition of the cuticular chitin synthase (CHS-1) on the molting process leading to increased mortality in arthropods. Inhibition of CHS-1 is the molecular initiating event and leads to a decreased chitin content in the arthropod cuticle which leaves the organism immature at the stage for ecdysis. This phenomenon can be described as premature molting. The organism eventually dies due to being stuck in the old cuticle or due to the consequences of a weak exoskeleton after ecdysis. The AOP is considered to be very consistent. Essentiality of key events was rated as high for every key event and the biological plausibility was rated as high for the whole AOP. However, there does not exist very much empirical evidence that allows to draw a representative conclusion on dose concordance along the AOP whereas time concordance can be supported by knockdown studies of CHS-1. Therefore, empirical evidence was considered to be moderate and the quantitative understanding was considered to be low. The overall confidence in the AOP was valued as moderate. The present AOP will guide assay development for further experimental studies by revealing data and knowledge gaps. One of its primary applications will also be providing guidance in screening strategies in order to identify chemicals directly interacting with CHS-1.</span></span></span></span></span></p>
  • <h2>Abstract</h2>
  • <hr>
  • <p><span style="font-size:14px">Arthropods heavily rely on chitin synthesis as chitin is one of the main constituents of the cuticle. Successful molting, and therefore a successful development necessitates stability and integrity of the cuticle. The cuticular chitin synthase (CHS1) is the key enzyme in the biosynthetic pathway and arthropods are therefore especially dependent on its proper function.<br />
  • The present AOP describes the effects of chemical inhibition of the cuticular chitin synthase (CHS1) on the molting process leading to increased mortality in arthropods. Inhibition of CHS1 is the molecular initiating event and leads to a decreased chitin content in the arthropod cuticle which leaves the organism immature at the stage for ecdysis. This phenomenon can be described as premature molting. The organism eventually dies due to being stuck in the old cuticle or due to the consequences of a weak exoskeleton after ecdysis.<br />
  • The AOP is considered to be very consistent. Essentiality of key events was rated as high for every key event and the biological plausibility was rated as high for the whole AOP. However, there does not exist very much empirical evidence that allows to draw a representative conclusion on dose and time concordance along the AOP. Therefore, empirical evidence and also the quantitative understanding was considered to be low. The overall confidence in the AOP was valued as moderate.<br />
  • The present AOP will guide assay development for further experimental studies by revealing data and knowledge gaps. One of its primary applications will also be providing guidance in screening strategies in order to broaden its chemical applicability domain.</span></p>
  • <br>
  • </div>
  • <!-- Background Section, text as generated by author -->
  • <div id="background">
  • <h3>Background</h3>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Arthropods (including insects, crustaceans and arachnids) need to shed their exoskeleton in order to grow and reproduce. This process, also called molting or ecdysis, is mediated by behavioural mechanisms which involve the skeletal muscles (Ayali 2009; Song et al. 2017a). In order to properly shed its cuticle, the organism needs to possess a newly synthesized cuticle that possesses a certain integrity to support this process. Since chitin is a major constituent of the cuticle, it contributes substantially to its integrity (Cohen 2001; Vincent and Wegst 2004). Chitin is synthesized from uridine diphosphate-<em>N</em>-Acetylglucosamine (UDP-GlcNAc) in a polymerization reaction by the transmembrane enzyme chitin synthase isoform 1 (CHS-1). CHS-1 is localized on the apical side in the cuticular epithelium.<br />
  • Since chitin and the process of chitin synthesis does not occur in vertebrates, it can and has been exploited for the design of pest controlling agents. Inhibitors of chitin synthesis may not only be of use for the control of unwanted arthropods and fungi, they may also pose a risk for beneficial arthropods such as insects and crustaceans. Disruption of chitin synthesis or the endocrine mechanisms controlling molting generally lead to a disruption of ecdysis (Merzendorfer et al. 2012; Song et al. 2017a; Song et al. 2017b). If the amount of chitin in the cuticle decreases, the affected organism may not be able to molt properly and will most probably die of starvation or suffocation (Camp et al. 2014; Song et al. 2017a). Alternatively, if molting is completed despite an immature cuticle, the organism may be deformed and die as a consequence of a weak cuticle.</span><br />
  • <span style="font-size:14px">Therefore, the present AOP should build the basis of a mechanistic approach for the systematic evaluation and the risk assessment of chemicals interfering with chitin synthesis by directly inhibiting CHS-1.</span></span></p>
  • <h3>Background</h3>
  • <hr>
  • <p><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px">Arthropods need to shed their exoskeleton in order to grow and reproduce. This process, also called molting or ecdysis, is mediated by behavioural mechanisms which involve the skeletal muscles (Ayali 2009; Song et al. 2017a). In order to properly shed its cuticle, the organism needs to possess a newly synthesized cuticle that possesses a certain integrity to support this process. Since chitin is a major constituent of the cuticle, it contributes substantially to its integrity (Cohen 2001; Vincent and Wegst 2004). Chitin is synthesized from uridine diphosphate-<em>N</em>-Acetylglucosamine (UDP-GlcNAc) in a polymerization reaction by the transmembrane enzyme chitin synthase isoform 1 (CHS-1). CHS-1 is localized on the apical side in the cuticular epithelium.<br />
  • Since chitin and the process of chitin synthesis does not occur in vertebrates, it can and has been exploited for the design of pest controlling agents. Inhibitors of chitin synthesis may not only be of use for the control of unwanted arthropods and fungi, they may also pose a risk for beneficial arthropods such as insects and crustaceans. Disruption of chitin synthesis or the endocrine mechanisms controlling molting generally lead to a disruption of ecdysis (Merzendorfer et al. 2012; Song et al. 2017a; Song et al. 2017b). If the amount of chitin in the cuticle decreases, the affected organism may not be able to molt properly and will most probably die of starvation or suffocation (Camp et al. 2014; Song et al. 2017a). Alternatively, if molting is completed despite an immature cuticle, the organism may be deformed and die as a consequence of a weak cuticle.</span></span><br />
  • <span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px">Therefore, the present AOP should build the basis of a mechanistic approach for the systematic evaluation and the risk assessment of chemicals interfering with chitin synthesis by directly inhibiting CHS-1.</span></span></p>
  • <br>
  • </div>
  • <!-- AOP summary, includes summary of each of the events associated with this aop -->
  • <div id="aop_summary">
  • <h2>Summary of the AOP</h2>
  • <!-- event table -->
  • <h3>Events</h3>
  • <h3>Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)</h3>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Sequence</th>
  • <th>Type</th>
  • <th>Event ID</th>
  • <th>Title</th>
  • <th>Short name</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>1</td>
  • <td>MIE</td>
  • <td>1522</td>
  • <td><a href="/events/1522">Increase, Chitin synthase 1 inhibition</a></td>
  • <td>Increase, CHS-1 inhibition</td>
  • </tr>
  • <tr><td></td><td></td><td></td><td></td><td></td></tr>
  • <tr>
  • <td>2</td>
  • <td>KE</td>
  • <td>1523</td>
  • <td><a href="/events/1523">Decrease, Cuticular chitin content</a></td>
  • <td>Decrease, Cuticular chitin content</td>
  • </tr>
  • <tr>
  • <td>3</td>
  • <td>KE</td>
  • <td>1524</td>
  • <td><a href="/events/1524">Increase, Premature molting</a></td>
  • <td>Increase, Premature molting</td>
  • </tr>
  • <tr><td></td><td></td><td></td><td></td><td></td></tr>
  • <tr>
  • <td>4</td>
  • <td>AO</td>
  • <td>350</td>
  • <td><a href="/events/350">Increase, Mortality</a></td>
  • <td>Increase, Mortality</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <!-- rel table -->
  • <h3>Key Event Relationships</h3>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <h3>Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)</h3>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sequence</th>
  • <th scope="col">Type</th>
  • <th scope="col">Event ID</th>
  • <th scope="col">Title</th>
  • <th scope="col">Short name</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <th>Upstream Event</th>
  • <th>Relationship Type</th>
  • <th>Downstream Event</th>
  • <th>Evidence</th>
  • <th>Quantitative Understanding</th>
  • <td>1</td>
  • <td>MIE</td>
  • <td>1522</td>
  • <td><a href="/events/1522">Inhibition, Chitin synthase 1</a></td>
  • <td>Inhibition, CHS-1</td>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td><a href="/relationships/1742">Increase, Chitin synthase 1 inhibition</a></td>
  • <td>adjacent</td>
  • <td>Decrease, Cuticular chitin content</td>
  • <td>Moderate</td>
  • <td>Low</td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/1743">Decrease, Cuticular chitin content</a></td>
  • <td>adjacent</td>
  • <td>Increase, Premature molting</td>
  • <td>Moderate</td>
  • <td>Low</td>
  • </tr>
  • <tr>
  • <td><a href="/relationships/1744">Increase, Premature molting</a></td>
  • <td>adjacent</td>
  • <td>Increase, Mortality</td>
  • <td>Moderate</td>
  • <td>Low</td>
  • </tr>
  • <tr><td></td><td></td><td></td><td></td><td></td></tr>
  • </tbody>
  • </table>
  • </div>
  • <!-- stressor table -->
  • <h3>Stressors</h3>
  • <br>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Name</th>
  • <th>Evidence</th>
  • <td>2</td>
  • <td>KE</td>
  • <td>1523</td>
  • <td><a href="/events/1523">Decrease, Cuticular chitin content</a></td>
  • <td>Decrease, Cuticular chitin content</td>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Polyoxin B</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Polyoxin D</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Nikkomycins</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Captan</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td>Captafol</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td>Folpet</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end summary -->
  • <!-- Overall assessment section, *** what is included here? *** -->
  • <div id="overall_assessment">
  • <h2>Overall Assessment of the AOP</h2>
  • <hr>
  • <h3>Domain of Applicability</h3>
  • <strong>Life Stage Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Life Stage</th>
  • <th>Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • <td>3</td>
  • <td>KE</td>
  • <td>1524</td>
  • <td><a href="/events/1524">Increase, Premature molting</a></td>
  • <td>Increase, Premature molting</td>
  • </tr>
  • <tr><td></td><td></td><td></td><td></td><td></td></tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • <td>4</td>
  • <td>AO</td>
  • <td>350</td>
  • <td><a href="/events/350">Increase, Mortality</a></td>
  • <td>Increase, Mortality</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </tbody>
  • </table>
  • </div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Term</th>
  • <th>Scientific Term</th>
  • <th>Evidence</th>
  • <th>Links</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Pieris brassicae</td>
  • <td>Pieris brassicae</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7116" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Anopheles gambiae</td>
  • <td>Anopheles gambiae</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7165" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Lucilia cuprina</td>
  • <td>Lucilia cuprina</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7375" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Tribolium castaneum</td>
  • <td>Tribolium castaneum</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7070" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Bombyx mori</td>
  • <td>Bombyx mori</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7091" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Anopheles quadrimaculatus</td>
  • <td>Anopheles quadrimaculatus</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7166" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Trichoplusia ni</td>
  • <td>Trichoplusia ni</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7111" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Artemia salina</td>
  • <td>Artemia salina</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=85549" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Daphnia magna</td>
  • <td>Daphnia magna</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35525" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Hyalophora cecropia</td>
  • <td>Hyalophora cecropia</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7123" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Ostrinia nubilalis</td>
  • <td>Ostrinia nubilalis</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=29057" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Bradysia hygida</td>
  • <td>Bradysia hygida</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35572" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Mamestra brassicae</td>
  • <td>Mamestra brassicae</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=55057" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <h3>Key Event Relationships</h3>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Upstream Event</th>
  • <th scope="col">Relationship Type</th>
  • <th scope="col">Downstream Event</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Chilo suppressalis</td>
  • <td>Chilo suppressalis</td>
  • <td><a href="/relationships/1742">Inhibition, Chitin synthase 1</a></td>
  • <td>adjacent</td>
  • <td>Decrease, Cuticular chitin content</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=168631" , target="_blank">NCBI</a>
  • </td>
  • <td>Low</td>
  • </tr>
  • <tr>
  • <td>Locusta migratoria</td>
  • <td>Locusta migratoria</td>
  • <td><a href="/relationships/1743">Decrease, Cuticular chitin content</a></td>
  • <td>adjacent</td>
  • <td>Increase, Premature molting</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7004" , target="_blank">NCBI</a>
  • </td>
  • <td>Low</td>
  • </tr>
  • <tr>
  • <td>Nilaparvata lugens</td>
  • <td>Nilaparvata lugens</td>
  • <td><a href="/relationships/1744">Increase, Premature molting</a></td>
  • <td>adjacent</td>
  • <td>Increase, Mortality</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=108931" , target="_blank">NCBI</a>
  • </td>
  • <td>Low</td>
  • </tr>
  • <tr>
  • <td></td>
  • <td></td>
  • <td></td>
  • <td></td>
  • <td></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h3>Stressors</h3>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Name</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Aphis glycines</td>
  • <td>Aphis glycines</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=307491" , target="_blank">NCBI</a>
  • </td>
  • <td>Polyoxin B</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Lepeophtheirus salmonis</td>
  • <td>Lepeophtheirus salmonis</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=72036" , target="_blank">NCBI</a>
  • </td>
  • <td>Polyoxin D</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Panonychus citri</td>
  • <td>Panonychus citri</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=50023" , target="_blank">NCBI</a>
  • </td>
  • <td>Nikkomycins</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Grapholita molesta</td>
  • <td>Grapholita molesta</td>
  • <td>Captan</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=192188" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Ectropis obliqua</td>
  • <td>Ectropis obliqua</td>
  • <td>Captafol</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=248899" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Tigriopus japonicus</td>
  • <td>Tigriopus japonicus</td>
  • <td>Folpet</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=158387" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • </tbody>
  • </table>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <div id="overall_assessment">
  • <h2>Overall Assessment of the AOP</h2>
  • <strong>Sex Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <h3>Domain of Applicability</h3>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Sex</th>
  • <th>Evidence</th>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p><span style="font-size:14px"><strong><span style="background-color:#FFFFFF">Taxonomic:&nbsp;</span></strong><span style="background-color:#FFFFFF">E</span>ffect data along the AOP exist from Dipteran, Lepidopteran and Coleopteran insect species as well as from Branchiopods and Anostracans of the crustacea . Sequence alignment of CHS1 protein sequences using the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS, <a href="https://seqapass.epa.gov/seqapass/info.xhtml">https://seqapass.epa.gov/seqapass</a>) tool, yielded susceptibility predictions for various insect species, arachnids and crustacean taxa such as branchiopods, hexanauplia, malocostraca and merostomata. However, most of the protein sequences were not identified as CHS-1. The alignment of amino acid residues believed to be critical for ligand binding were therefore carried out with sequences identified as CHS1. Evidence was rated as high for species with a susceptibility prediction and/or effect data. Evidence was rated as moderate when only alignment data were available. Although most of the sequences are not annotated as CHS-1, all arthropods rely on the synthesis of cuticular chitin therefore it is extremely likely that the AOP is applicable to all arthropods.</span></p>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Pieris brassicae</td>
  • <td>Pieris brassicae</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7116" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Anopheles gambiae</td>
  • <td>Anopheles gambiae</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7165" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Lucilia cuprina</td>
  • <td>Lucilia cuprina</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7375" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Tribolium castaneum</td>
  • <td>Tribolium castaneum</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7070" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Bombyx mori</td>
  • <td>Bombyx mori</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7091" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Anopheles quadrimaculatus</td>
  • <td>Anopheles quadrimaculatus</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7166" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Trichoplusia ni</td>
  • <td>Trichoplusia ni</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7111" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Artemia salina</td>
  • <td>Artemia salina</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=85549" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Daphnia magna</td>
  • <td>Daphnia magna</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35525" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Hyalophora cecropia</td>
  • <td>Hyalophora cecropia</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7123" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Ostrinia nubilalis</td>
  • <td>Ostrinia nubilalis</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=29057" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Bradysia hygida</td>
  • <td>Bradysia hygida</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35572" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Mamestra brassicae</td>
  • <td>Mamestra brassicae</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=55057" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Chilo suppressalis</td>
  • <td>Chilo suppressalis</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=168631" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Locusta migratoria</td>
  • <td>Locusta migratoria</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7004" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Nilaparvata lugens</td>
  • <td>Nilaparvata lugens</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=108931" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Aphis glycines</td>
  • <td>Aphis glycines</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=307491" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Lepeophtheirus salmonis</td>
  • <td>Lepeophtheirus salmonis</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=72036" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Panonychus citri</td>
  • <td>Panonychus citri</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=50023" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Grapholita molesta</td>
  • <td>Grapholita molesta</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=192188" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Ectropis obliqua</td>
  • <td>Ectropis obliqua</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=248899" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Tigriopus japonicus</td>
  • <td>Tigriopus japonicus</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=158387" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong><span style="background-color:#ffffff">Taxonomic: </span></strong><span style="background-color:#ffffff">Since the whole phylum of arthropods is dependent on&nbsp;the synthesis of chitin to molt successfully, it is extremely likely that the AOP is applicable to all arthropods.</span><strong><span style="background-color:#ffffff">&nbsp;</span></strong><span style="background-color:#ffffff">E</span>ffect data along the AOP exist from Dipteran, Lepidopteran and Coleopteran insect species as well as from Branchiopods and Anostracans of the crustacea. Although data is limited, KEs seem to be well conserved across taxa,&nbsp;as shown in available studies with specific stressors known to inhibit CHS and in studies where CHS-1 was knocked down by RNA interference. However, due to limited data availability, it was not possible to cover whole taxa but rather single species in the assessment&nbsp;of KEs. Alignment of amino acid residues in the catalytic center of CHS-1&nbsp;using the Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS, <a href="https://seqapass.epa.gov/seqapass/info.xhtml">https://seqapass.epa.gov/seqapass</a>, </span></span><span style="font-size:14px"><span style="font-family:&quot;Arial&quot;,sans-serif">LaLone et al. 2016</span></span><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">), confirmed structural and functional conservation&nbsp;in various insect,&nbsp;arachnid&nbsp;and crustacean species,&nbsp;strenghtening the evidence for the applicability domain to be the whole phylum of arthropods. However, taxonomic applicability may not only be defined by structural conservation of the protein sequence. So the evidence for the taxonomic applicability for species with support only from sequence alignment was&nbsp;judged as moderate, whereas evidence for species with support&nbsp;from sequence alignment and effect data&nbsp;was judged as high.</span></span></p>
  • <p><span style="font-size:14px"><strong>Life stage: </strong>The AOP is applicable for organisms undergoing continuous molt cycles. As insects do not molt in their adulthood, the AOP is only applicable for larval and pupal stages of insects. Crustaceans and arachnids grow and molt throughout their lifetime (Passano 1961; Uhl et al. 2015), which makes the AOP applicable to all life stages, where juvenile life stages might be more susceptible to chemical perturbations due to higher growth rate and therefore more frequent molting .</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Life stage: </strong>The AOP is applicable for organisms undergoing continuous molt cycles. As insects do not molt in their adulthood, the AOP is only applicable for larval and pupal stages of insects. Crustaceans and arachnids grow and molt throughout their lifetime (Passano 1961; Uhl et al. 2015), which makes the AOP applicable to all life stages, where juvenile life stages might be more susceptible to chemical perturbations due to higher growth rate and therefore more frequent molting.</span></span></p>
  • <p><span style="font-size:14px"><strong>Sex: </strong>The AOP is applicable to all sexes.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Sex: </strong>The AOP is applicable to all sexes.</span></span></p>
  • <p><span style="font-size:14px"><strong>Chemical: </strong>Substances known to trigger the MIE and leading to the AO are of the family of pyrimidine nucleosides (e.g. polyoxin D, polyoxin B and nikkomycin Z) (Osada 2019). There also exists evidence for phthalimides (captan, captafol and folpet) to inhibit CHS-1 activity and to decrease the cuticular chitin content <em>in vitro</em> (Cohen and Casida 1982; Gelman and Borkovec 1986). However, as these substances are known to covalently bind to thiol groups in proteins (Lukens and Sisler 1958), it is not clear if the inhibition is due to specific CHS-1 inhibition or due to unspecific protein binding.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Chemical: </strong>Substances known to trigger the MIE and leading to the AO are of the family of pyrimidine nucleosides (e.g. polyoxin D, polyoxin B and nikkomycin Z) (Osada 2019). There also exists evidence for phthalimides (captan, captafol and folpet) to inhibit CHS-1 activity and to decrease the cuticular chitin content <em>in vitro</em> (Cohen and Casida 1982; Gelman and Borkovec 1986). However, as these substances are known to covalently bind to thiol groups in proteins (Lukens and Sisler 1958), it is not clear if the inhibition is due to specific CHS-1 inhibition or due to unspecific protein binding.</span></span></p>
  • <h3>Essentiality of the Key Events</h3>
  • <p><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px">The essentiality of all key events was considered as high. Essentiality evaluations were mainly based on specifically designed studies demonstrating the expected effect pattern predicted by the AOP to occur after knockdown of CHS-1.</span></span></p>
  • <h3>Essentiality of the Key Events</h3>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">The essentiality of all key events was considered as high. Essentiality evaluations were mainly based on specifically designed studies demonstrating the expected effect pattern predicted by the AOP to occur after knockdown of CHS-1.</span></span></p>
  • <p><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px"><strong>Inhibition, Cuticular chitin synthase (High):&nbsp;</strong></span></span><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px">Knockdown of the cuticular chitin synthase leads to the expected pattern of effects described in this AOP. It decreases the cuticular chitin content and leads to premature molting associated mortality in insects (Arakane et al. 2005; X. Zhang et al. 2010; Li et al. 2017; Zhai et al. 2017)<strong>. </strong>If the cuticular chitin content was not directly measured as endpoint, knockdown of the CHS-1 led directly to the occurrence of premature molting associated increase of mortality (Chen et al. 2008; X. Zhang et al. 2010; Wang et al. 2012; Yang et al. 2013; Shang et al. 2016; Mohammed et al. 2017; Wang et al. 2019; Ye et al. 2019; Ullah et al. 2020)</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Inhibition, Chitin synthase 1 (High):&nbsp;</strong>Knockdown of the cuticular chitin synthase leads to the expected pattern of effects described in this AOP. It decreases the cuticular chitin content and leads to premature molting associated mortality in insects (Arakane et al. 2005; X. Zhang et al. 2010; Li et al. 2017; Zhai et al. 2017)<strong>. </strong>If the cuticular chitin content was not directly measured as endpoint, knockdown of the CHS-1 led directly to the occurrence of premature molting associated increase of mortality (Chen et al. 2008; X. Zhang et al. 2010; Wang et al. 2012; Yang et al. 2013; Shang et al. 2016; Mohammed et al. 2017; Wang et al. 2019; Ye et al. 2019; Ullah et al. 2020)</span></span></p>
  • <p><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px"><strong>Decrease, Cuticular chitin content (High):&nbsp;</strong></span></span><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px">Abolishment of the cuticular chitin synthesis through knockdown of CHS-1 leads to premature molting associated mortality (Arakane et al. 2005; X. Zhang et al. 2010; Li et al. 2017; Zhai et al. 2017). By knocking down the UDP-GlcNAc pyrophosphorylase (UAP), which catalyzes the last sugar conversion before the polymerization to chitin, it was shown that reduced chitin synthesis leads to the same outcome as the knockdown of CHS-1. Namely premature molting and increased mortality (Arakane et al. 2011; Liu et al. 2013). Knockdown of trehalase genes, which constitutes the start of the chitin synthetic pathway and convert trehalose to glucose, leads to a similar pattern of effects, namely premature molting associated mortality (Chen et al. 2010; Shi et al. 2016).</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Decrease, Cuticular chitin content (High):&nbsp;</strong>Abolishment of the cuticular chitin synthesis through knockdown of CHS-1 leads to premature molting associated mortality (Arakane et al. 2005; X. Zhang et al. 2010; Li et al. 2017; Zhai et al. 2017). By knocking down the UDP-GlcNAc pyrophosphorylase (UAP), which catalyzes the last sugar conversion before the polymerization to chitin, it was shown that reduced chitin content leads to the same outcome as the knockdown of CHS-1. Namely premature molting and increased mortality (Arakane et al. 2011; Liu et al. 2013). Knockdown of trehalase genes, which constitutes the start of the chitin synthetic pathway and convert trehalose to glucose, leads to a similar pattern of effects, namely decreased cuticular chitin content and premature molting associated mortality (Chen et al. 2010; Shi et al. 2016).</span></span></p>
  • <p><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px"><strong>Increase, Premature molting (High):&nbsp;</strong></span></span><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px">Several studies show that premature molting is a direct consequence of decreased chitin synthesis and leads to increased mortality. The KE is consistently listed as cause for mortality when CHS-1 is knocked down throughout a number of studies (Arakane et al. 2005; Chen et al. 2008; J. Zhang et al. 2010; X. Zhang et al. 2010; Wang et al. 2012; Yang et al. 2013; Shang et al. 2016; Li et al. 2017; Mohammed et al. 2017; Zhai et al. 2017; Wang et al. 2019; Ye et al. 2019; Ullah et al. 2020).</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Increase, Premature molting (High):&nbsp;</strong>Several studies show that premature molting is a direct consequence of decreased chitin synthesis and leads to increased mortality. The KE is consistently listed as cause for mortality when CHS-1 is knocked down throughout a number of studies (Arakane et al. 2005; Chen et al. 2008; J. Zhang et al. 2010; X. Zhang et al. 2010; Wang et al. 2012; Yang et al. 2013; Shang et al. 2016; Li et al. 2017; Mohammed et al. 2017; Zhai et al. 2017; Wang et al. 2019; Ye et al. 2019).</span></span></p>
  • <p><strong><font face="arial, helvetica, sans-serif"><span style="font-size:14px">Increase, Mortality (High): </span></font></strong><font face="arial, helvetica, sans-serif"><span style="font-size:14px">Increased mortality was observed in all of the abovementioned studies.</span></font></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><strong><span style="font-size:14px">Increase, Mortality (High): </span></strong><span style="font-size:14px">Increased mortality was observed in all of the abovementioned studies.</span></span></p>
  • <h3>Weight of Evidence Summary</h3>
  • <p><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px"><strong>Biological Plausibility: </strong></span></span><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px">The biosynthesis of chitin is well characterized and is conserved among arthropods. Although the exact mode of action of chitin synthases remains elusive, it is widely accepted and well established that the chitin synthase is the key enzyme in the pathway, polymerizing chitin using UDP-<em>N</em>-Acetylglucosamine as substrate (Merzendorfer and Zimoch 2003).<br />
  • <h3>Weight of Evidence Summary</h3>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Biological Plausibility: </strong>The biosynthesis of chitin is well characterized and is conserved among arthropods. Although the exact mode of action of chitin synthases remains elusive, it is widely accepted and well established that the chitin synthase is the key enzyme in the pathway, polymerizing chitin using UDP-<em>N</em>-Acetylglucosamine as substrate (Merzendorfer and Zimoch 2003).<br />
  • Arthropod cuticles mostly consist of chitin embedded into a matrix of cuticular proteins. It is therefore widely accepted that chitin contributes crucially to the quality and function of the cuticle (Reynolds 1987; Muthukrishnan et al. 2012). The molting process requires the new cuticle to be strong enough to withstand the stresses of ecdysis.<br />
  • During ecdysis, arthropods pause food intake and growth. If ecdysis is initiated before the new cuticle is strong enough, the organism likely dies of starvation or growth arrest (Song, Villeneuve, et al. 2017). It was also reported that certain arthropods pause respiration during ecdysis, which may lead to suffocation (Camp et al. 2014).<br />
  • Based on the well-established biological knowledge on the processes this AOP bases on, the biological plausibility for all KER was rated as high.</span></span></p>
  • <p><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px"><strong>Empirical Evidence: </strong>Empirical evidence assessment was conducted on the basis of <em>in vitro </em>and <em>in vivo</em> experiments performed with stressors affecting key events throughout the AOP. Studies showed that the key events are affected by model stressors such as Polyoxin D and Nikkomycin Z, which are able to competitively inhibit CHS1 (Endo et al. 1970). Several studies provide evidence that polyoxin B, polyoxin D and nikkomycin Z trigger the MIE (Cohen 1982; Turnbull and Howells 1982; Kuwano and Cohen 1984; Cohen and Casida 1990; Zhang and Yan Zhu 2013). Also the cuticular chitin content was shown to be decreased by polyoxin D and nikkomycin Z (Gijswijt et al. 1979; Calcott and Fatig 1984; Gelman and Borkovec 1986; Zhuo et al. 2014). The AO is supported by in vivo studies with polyoxin D and nikkomycin Z (Tellam et al. 2000; Tellam and Eisemann 2000; Zhu et al. 2007; Zhang and Yan Zhu 2013; New Zealand Environmental Protection Authority 2015).<br />
  • A major data gap constitutes the absence of data covering the KE &ldquo;Increase, premature molting&rdquo;. This KE is mentioned in some studies but never assessed as an individual endpoint (Gijswijt et al. 1979; Tellam et al. 2000).<br />
  • Another major data gap is the lacking quantitative data connecting KE by KERs. As endpoints were only measured as individual endpoints and not in sequence, it makes it nearly impossible to evaluate the dose and temporal concordance for the KEs and KERs.<br />
  • Based on the major data gaps and therefore the lacking information on dose and temporal concordance of the KER empirical evidence was evaluated to be low for the whole AOP.</span></span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:11pt"><strong><span style="font-size:10.5pt"><span style="background-color:white"><span style="color:#212529">Empirical Evidence:&nbsp;</span></span></span></strong><span style="font-size:10.5pt"><span style="background-color:white"><span style="color:#212529">Empirical evidence assessment was conducted on the basis of&nbsp;<em>in vitro&nbsp;</em>and&nbsp;<em>in vivo</em>&nbsp;experiments performed with stressors affecting key events throughout the AOP. Studies showed that the key events are affected by model stressors such as Polyoxin D and Nikkomycin Z, which are able to competitively inhibit CHS1 (Endo et al. 1970). Several studies provide evidence that polyoxin B, polyoxin D and nikkomycin Z trigger the MIE in cell free systems of coleopteran, lepidopteran and dipteran insect species<span style="font-size:10.5pt"><span style="background-color:white"><span style="color:#212529"> (Cohen 1982; Turnbull and Howells 1982; Kuwano and Cohen 1984; Cohen and Casida 1990; Zhang and Yan Zhu 2013). Also the cuticular chitin content was shown to be decreased by polyoxin D and nikkomycin Z </span></span></span>in lepidopteran and dipteran species as well as in the crustacean <em>Artemia salina</em><span style="font-size:10.5pt"><span style="background-color:white"><span style="color:#212529"> (Gijswijt et al. 1979; Calcott and Fatig 1984; Gelman and Borkovec 1986; Zhuo et al. 2014). The AO is supported by in vivo studies with polyoxin D and nikkomycin Z in dipteran insects and <em>Daphnia magna</em> (Tellam et al. 2000; Tellam and Eisemann 2000; Zhu et al. 2007; Zhang and Yan Zhu 2013; New Zealand Environmental Protection Authority 2015). A major data gap constitutes the absence of data covering the KE &ldquo;Increase, premature molting&rdquo;. This KE is mentioned in some studies but never assessed as an individual endpoint (Gijswijt et al. 1979; Tellam et al. 2000). Another major data gap is the lacking quantitative data for KERs. As endpoints were only measured as individual endpoints and not in sequence, it makes it nearly impossible to evaluate the dose for the KEs and KERs. However, data from studies where CHS-1 was knocked down are able to support temporal concordance for all KERs. Knockdown of CHS-1 led to decreased chitin content and subsequently to premature molting associated mortality (</span></span></span>Arakane et al., 2005; Li et al., 2017)<span style="font-size:10.5pt"><span style="background-color:white"><span style="color:#212529">. Based on the major data gaps and therefore the lacking information on dose concordance as well as the given time concordance, empirical evidence was evaluated to be moderate for the whole AOP.</span></span></span></span></span></span></span></span></p>
  • <p><strong><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px">Overall confidence in the AOP:&nbsp;</span></span></strong><span style="font-family:arial,helvetica,sans-serif"><span style="font-size:14px">Both, essentiality of KEs and the biological plausibility of the whole AOP were considered to be high. However, due to lack of quantitative data, empirical evidence was judged to be low. Therefore the overall confidence in the AOP was evaluated as moderate.</span></span></p>
  • <h3>Quantitative Consideration</h3>
  • <p><span style="font-size:14px">Quantitative data are limited for all KER and therefore the whole AOP. Therefore, predictions on the occurrence of downstream KE and the AO on the basis of the occurrence of upstream KEs is not readily feasible. Quantitative understanding of the AOP was therefore considered to be low.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><strong><span style="font-size:14px">Overall confidence in the AOP:&nbsp;</span></strong><span style="font-size:14px">Both, essentiality of KEs and the biological plausibility of the whole AOP were considered to be high. However, due to missing quantitative data and the lack of evidence for dose concordance, empirical evidence was judged to be moderate. Therefore the overall confidence in the AOP was evaluated as moderate.</span></span></p>
  • <h3>Quantitative Consideration</h3>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Quantitative data are limited for all KER and therefore the whole AOP. Therefore, predictions on the occurrence of downstream KE and the AO on the basis of the occurrence of upstream KEs is not readily feasible. Quantitative understanding of the AOP was therefore considered to be low.</span></span></p>
  • </div>
  • <!-- potential consierations, text as entered by author -->
  • <div id="considerations_for_potential_applicaitons">
  • <h2>Considerations for Potential Applications of the AOP (optional)</h2>
  • <hr>
  • <p><span style="font-size:14px">Arthropods are responsible for many functions in terrestrial as well as aquatic ecosystems and are therefore jointly responsible for ecosystem health (Seastedt and Crossley 1984; Losey and Vaughan 2006; LeBlanc 2007). Therefore, it is important to develop AOPs which enhance the mechanistic knowledge on chemicals, such as chitin synthesis inhibitors, which may pose a risk to non-target arthropods. Those AOPs will contribute to the systematic use of mechanistic data to preserve beneficial arthropod populations and ecosystem health.<br />
  • The present AOP will help to guide future experimental studies by identifying data gaps and missing links. This will lead to the identification and development suitable bioassays in order to populate the AOP with (quantitative) experimental data which may allow for predictions of regulatory relevant endpoints on the basis of the occurrence of the MIE.<br />
  • The present AOP may also guide screening strategies in order to broaden its chemical applicability domain. The identified substances may then be prioritized and undergo a thorough hazard assessment.<br />
  • As there already exist approaches to assess mixture toxicity using the AOP framework (Altenburger et al. 2012; Beyer et al. 2014), the present AOP could be employed for the effect assessment &nbsp;of mixtures of chemicals that share the same KEs (e.g. AOP #361, <a href="https://aopwiki.org/aops/361">aopwiki.org/aops/361</a>, AOP #358, <a href="https://aopwiki.org/aops/358">aopwiki.org/aops/358</a>, and AOP #359, <a href="https://aopwiki.org/aops/359">aopwiki.org/aops/359</a>).</span></p>
  • <h2>Considerations for Potential Applications of the AOP (optional)</h2>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Arthropods are responsible for many functions in terrestrial as well as aquatic ecosystems and are therefore jointly responsible for ecosystem health (Seastedt and Crossley 1984; Losey and Vaughan 2006; LeBlanc 2007). Therefore, it is important to develop AOPs which enhance the mechanistic knowledge on chemicals, such as chitin synthesis inhibitors, which may pose a risk to non-target arthropods. Those AOPs will contribute to the systematic use of mechanistic data to preserve beneficial arthropod populations and ecosystem health.<br />
  • The present AOP will help to guide future experimental studies by identifying data gaps. This will lead to the identification and development suitable bioassays in order to populate the AOP with (quantitative) experimental data which may allow for predictions of regulatory relevant endpoints on the basis of the occurrence of the MIE.<br />
  • The present AOP may also guide screening strategies in order to identify chemicals inhibiting CHS-1. The identified substances may then be prioritized and undergo a thorough hazard assessment.<br />
  • As there already exist approaches to assess mixture toxicity using the AOP framework (Altenburger et al. 2012; Beyer et al. 2014), the present AOP could be employed for the effect assessment &nbsp;of mixtures of chemicals that share the same KEs (e.g. AOP #361, <a href="https://aopwiki.org/aops/361">aopwiki.org/aops/361</a>, AOP #358, <a href="https://aopwiki.org/aops/358">aopwiki.org/aops/358</a>, and AOP #359, <a href="https://aopwiki.org/aops/359">aopwiki.org/aops/359</a>).</span></span></p>
  • </div>
  • <!-- reference section, text as of right now but should be changed to be handled as table -->
  • <div id="references">
  • <h2>References</h2>
  • <hr>
  • <p><span style="font-size:14px">Altenburger R, Scholz S, Schmitt-Jansen M, Busch W, Escher BI. 2012. Mixture toxicity revisited from a toxicogenomic perspective. Environ Sci Technol. 46(5):2508&ndash;2522. doi:10.1021/es2038036.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Altenburger R, Scholz S, Schmitt-Jansen M, Busch W, Escher BI. 2012. Mixture toxicity revisited from a toxicogenomic perspective. Environ Sci Technol. 46(5):2508&ndash;2522. doi:10.1021/es2038036.</span></span></p>
  • <p><span style="font-size:14px">Arakane Y, Baguinon MC, Jasrapuria S, Chaudhari S, Doyungan A, Kramer KJ, Muthukrishnan S, Beeman RW. 2011. Both UDP N-acetylglucosamine pyrophosphorylases of <em>Tribolium castaneum</em> are critical for molting, survival and fecundity. Insect Biochem Mol Biol. 41(1):42&ndash;50. doi:10.1016/j.ibmb.2010.09.011. http://dx.doi.org/10.1016/j.ibmb.2010.09.011.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Arakane Y, Baguinon MC, Jasrapuria S, Chaudhari S, Doyungan A, Kramer KJ, Muthukrishnan S, Beeman RW. 2011. Both UDP N-acetylglucosamine pyrophosphorylases of <em>Tribolium castaneum</em> are critical for molting, survival and fecundity. Insect Biochem Mol Biol. 41(1):42&ndash;50. doi:10.1016/j.ibmb.2010.09.011. http://dx.doi.org/10.1016/j.ibmb.2010.09.011.</span></span></p>
  • <p><span style="font-size:14px">Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. 2005. The <em>Tribolium </em>&nbsp;chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol. 14(5):453&ndash;463. doi:10.1111/j.1365-2583.2005.00576.x.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. 2005. The <em>Tribolium </em>&nbsp;chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol. 14(5):453&ndash;463. doi:10.1111/j.1365-2583.2005.00576.x.</span></span></p>
  • <p><span style="font-size:14px">Ayali A. 2009. The role of the arthropod stomatogastric nervous system in moulting behaviour and ecdysis. J Exp Biol. 212(4):453&ndash;459. doi:10.1242/jeb.023879.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Ayali A. 2009. The role of the arthropod stomatogastric nervous system in moulting behaviour and ecdysis. J Exp Biol. 212(4):453&ndash;459. doi:10.1242/jeb.023879.</span></span></p>
  • <p><span style="font-size:14px">Beyer J, Petersen K, Song Y, Ruus A, Grung M, Bakke T, Tollefsen KE. 2014. Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Mar Environ Res. 96:81&ndash;91. doi:10.1016/j.marenvres.2013.10.008. http://dx.doi.org/10.1016/j.marenvres.2013.10.008.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Beyer J, Petersen K, Song Y, Ruus A, Grung M, Bakke T, Tollefsen KE. 2014. Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Mar Environ Res. 96:81&ndash;91. doi:10.1016/j.marenvres.2013.10.008. http://dx.doi.org/10.1016/j.marenvres.2013.10.008.</span></span></p>
  • <p><span style="font-size:14px">Calcott PH, Fatig RO. 1984. Inhibition of Chitin metabolism by Avermectin in susceptible Organisms. J Antibiot (Tokyo). 37(3):253&ndash;259. doi:10.7164/antibiotics.37.253.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Calcott PH, Fatig RO. 1984. Inhibition of Chitin metabolism by Avermectin in susceptible Organisms. J Antibiot (Tokyo). 37(3):253&ndash;259. doi:10.7164/antibiotics.37.253.</span></span></p>
  • <p><span style="font-size:14px">Camp AA, Funk DH, Buchwalter DB. 2014. A stressful shortness of breath: Molting disrupts breathing in the mayfly <em>Cloeon dipterum</em>. Freshw Sci. 33(3):695&ndash;699. doi:10.1086/677899.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Camp AA, Funk DH, Buchwalter DB. 2014. A stressful shortness of breath: Molting disrupts breathing in the mayfly <em>Cloeon dipterum</em>. Freshw Sci. 33(3):695&ndash;699. doi:10.1086/677899.</span></span></p>
  • <p><span style="font-size:14px">Chen Jie, Tang B, Chen H, Yao Q, Huang X, Chen Jing, Zhang D, Zhang W. 2010. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS One. 5(4). doi:10.1371/journal.pone.0010133.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Chen Jie, Tang B, Chen H, Yao Q, Huang X, Chen Jing, Zhang D, Zhang W. 2010. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS One. 5(4). doi:10.1371/journal.pone.0010133.</span></span></p>
  • <p><span style="font-size:14px">Chen X, Tian H, Zou L, Tang B, Hu J, Zhang W. 2008. Disruption of <em>Spodoptera exigua</em> larval development by silencing chitin synthase gene A with RNA interference. Bull Entomol Res. 98(6):613&ndash;619. doi:10.1017/S0007485308005932.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Chen X, Tian H, Zou L, Tang B, Hu J, Zhang W. 2008. Disruption of <em>Spodoptera exigua</em> larval development by silencing chitin synthase gene A with RNA interference. Bull Entomol Res. 98(6):613&ndash;619. doi:10.1017/S0007485308005932.</span></span></p>
  • <p><span style="font-size:14px">Cohen E. 1982. In vitro chitin synthesis in an insect: formation and structure of microfibrils. Eur J Cell Biol. 26(2):289&ndash;294.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Cohen E. 1982. In vitro chitin synthesis in an insect: formation and structure of microfibrils. Eur J Cell Biol. 26(2):289&ndash;294.</span></span></p>
  • <p><span style="font-size:14px">Cohen E. 2001. Chitin synthesis and inhibition: A revisit. Pest Manag Sci. 57(10):946&ndash;950. doi:10.1002/ps.363.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Cohen E. 2001. Chitin synthesis and inhibition: A revisit. Pest Manag Sci. 57(10):946&ndash;950. doi:10.1002/ps.363.</span></span></p>
  • <p><span style="font-size:14px">Cohen E, Casida JE. 1982. Properties and inhibition of insect integumental chitin synthetase. Pestic Biochem Physiol. 17(3):301&ndash;306. doi:10.1016/0048-3575(82)90141-9.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Cohen E, Casida JE. 1982. Properties and inhibition of insect integumental chitin synthetase. Pestic Biochem Physiol. 17(3):301&ndash;306. doi:10.1016/0048-3575(82)90141-9.</span></span></p>
  • <p><span style="font-size:14px">Cohen E, Casida JE. 1990. Insect and Fungal Chitin Synthetase Activity: Specificity of Lectins as Enhancers and Nucleoside Peptides as Inhibitors. Pestic Biochem Physiol. 37(3):249&ndash;253. doi:10.1016/0048-3575(90)90131-K.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Cohen E, Casida JE. 1990. Insect and Fungal Chitin Synthetase Activity: Specificity of Lectins as Enhancers and Nucleoside Peptides as Inhibitors. Pestic Biochem Physiol. 37(3):249&ndash;253. doi:10.1016/0048-3575(90)90131-K.</span></span></p>
  • <p><span style="font-size:14px">Endo A, Kakiki K, Misato T. 1970. Mechanism of action of the antifugal agent polyoxin D. J Bacteriol. 104(1):189&ndash;196. doi:10.1128/jb.104.1.189-196.1970.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Endo A, Kakiki K, Misato T. 1970. Mechanism of action of the antifugal agent polyoxin D. J Bacteriol. 104(1):189&ndash;196. doi:10.1128/jb.104.1.189-196.1970.</span></span></p>
  • <p><span style="font-size:14px">Gelman DB, Borkovec AB. 1986. The pharate adult clasper as a tool for measuring chitin synthesis and for identifying new chitin synthesis inhibitors. Comp Biochem Physiol Part C, Comp. 85(1):193&ndash;197. doi:10.1016/0742-8413(86)90073-3.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Gelman DB, Borkovec AB. 1986. The pharate adult clasper as a tool for measuring chitin synthesis and for identifying new chitin synthesis inhibitors. Comp Biochem Physiol Part C, Comp. 85(1):193&ndash;197. doi:10.1016/0742-8413(86)90073-3.</span></span></p>
  • <p><span style="font-size:14px">Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in <em>Pieris brassicae</em> (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87&ndash;94. doi:10.1016/0048-3575(79)90098-1.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in <em>Pieris brassicae</em> (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87&ndash;94. doi:10.1016/0048-3575(79)90098-1.</span></span></p>
  • <p><span style="font-size:14px">Kuwano E, Cohen E. 1984. The use of a <em>Tribolium</em> chitin synthetase assay in studying the effects of benzimidazoles with a terpene moiety and related compounds. Agric Biol Chem. 48(6):1617&ndash;1620. doi:10.1080/00021369.1984.10866362.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Kuwano E, Cohen E. 1984. The use of a <em>Tribolium</em> chitin synthetase assay in studying the effects of benzimidazoles with a terpene moiety and related compounds. Agric Biol Chem. 48(6):1617&ndash;1620. doi:10.1080/00021369.1984.10866362.</span></span></p>
  • <p><span style="font-size:14px">LeBlanc GA. 2007. Crustacean endocrine toxicology: A review. Ecotoxicology. 16(1):61&ndash;81. doi:10.1007/s10646-006-0115-z.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">LaLone, C.A., Villeneuve, D.L., Lyons, D., Helgen, H.W., Robinson, S.L., Swintek, J.A., Saari, T.W., Ankley, G.T., 2016. Sequence alignment to predict across species susceptibility (seqapass): A web-based tool for addressing the challenges of cross-species extrapolation of chemical toxicity. Toxicol. Sci. 153, 228&ndash;245. https://doi.org/10.1093/toxsci/kfw119</span></span></p>
  • <p><span style="font-size:14px">Li T, Chen J, Fan X, Chen W, Zhang W. 2017. MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect <em>Nilaparvata lugens</em>. Pest Manag Sci. 73(7):1529&ndash;1537. doi:10.1002/ps.4492.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">LeBlanc GA. 2007. Crustacean endocrine toxicology: A review. Ecotoxicology. 16(1):61&ndash;81. doi:10.1007/s10646-006-0115-z.</span></span></p>
  • <p><span style="font-size:14px">Liu X, Li F, Li D, Ma E, Zhang W, Zhu KY, Zhang J. 2013. Molecular and functional analysis of UDP-N-acetylglucosamine Pyrophosphorylases from the Migratory Locust, <em>Locusta migratoria</em>. PLoS One. 8(8). doi:10.1371/journal.pone.0071970.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Li T, Chen J, Fan X, Chen W, Zhang W. 2017. MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect <em>Nilaparvata lugens</em>. Pest Manag Sci. 73(7):1529&ndash;1537. doi:10.1002/ps.4492.</span></span></p>
  • <p><span style="font-size:14px">Losey JE, Vaughan M. 2006. The economic value of ecological services provided by insects. Bioscience. 56(4):311&ndash;323. doi:10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Liu X, Li F, Li D, Ma E, Zhang W, Zhu KY, Zhang J. 2013. Molecular and functional analysis of UDP-N-acetylglucosamine Pyrophosphorylases from the Migratory Locust, <em>Locusta migratoria</em>. PLoS One. 8(8). doi:10.1371/journal.pone.0071970.</span></span></p>
  • <p><span style="font-size:14px">Lukens RJ, Sisler HD. 1958. 2-Thiazolidinethione-4-carboxylic acid from the reaction of captan with cysteine. Science (80- ). 127(3299):650. doi:10.1126/science.127.3299.650.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Losey JE, Vaughan M. 2006. The economic value of ecological services provided by insects. Bioscience. 56(4):311&ndash;323. doi:10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2.</span></span></p>
  • <p><span style="font-size:14px">Merzendorfer H, Kim HS, Chaudhari SS, Kumari M, Specht CA, Butcher S, Brown SJ, Robert Manak J, Beeman RW, Kramer KJ, et al. 2012. Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species <em>Tribolium castaneum</em>. Insect Biochem Mol Biol. 42(4):264&ndash;276. doi:10.1016/j.ibmb.2011.12.008. http://dx.doi.org/10.1016/j.ibmb.2011.12.008.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Lukens RJ, Sisler HD. 1958. 2-Thiazolidinethione-4-carboxylic acid from the reaction of captan with cysteine. Science (80- ). 127(3299):650. doi:10.1126/science.127.3299.650.</span></span></p>
  • <p><span style="font-size:14px">Merzendorfer H, Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol. 206(24):4393 LP &ndash; 4412. doi:10.1242/jeb.00709. http://jeb.biologists.org/content/206/24/4393.abstract.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Merzendorfer H, Kim HS, Chaudhari SS, Kumari M, Specht CA, Butcher S, Brown SJ, Robert Manak J, Beeman RW, Kramer KJ, et al. 2012. Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species <em>Tribolium castaneum</em>. Insect Biochem Mol Biol. 42(4):264&ndash;276. doi:10.1016/j.ibmb.2011.12.008. http://dx.doi.org/10.1016/j.ibmb.2011.12.008.</span></span></p>
  • <p><span style="font-size:14px">Mohammed AMA, DIab MR, Abdelsattar M, Khalil SMS. 2017. Characterization and RNAi-mediated knockdown of Chitin Synthase A in the potato tuber moth, <em>Phthorimaea operculella</em>. Sci Rep. 7(1):1&ndash;12. doi:10.1038/s41598-017-09858-y. http://dx.doi.org/10.1038/s41598-017-09858-y.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Merzendorfer H, Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol. 206(24):4393 LP &ndash; 4412. doi:10.1242/jeb.00709. http://jeb.biologists.org/content/206/24/4393.abstract.</span></span></p>
  • <p><span style="font-size:14px">Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ. 2012. Chitin Metabolism in Insects. Elsevier B.V. http://dx.doi.org/10.1016/B978-0-12-384747-8.10007-8.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Mohammed AMA, DIab MR, Abdelsattar M, Khalil SMS. 2017. Characterization and RNAi-mediated knockdown of Chitin Synthase A in the potato tuber moth, <em>Phthorimaea operculella</em>. Sci Rep. 7(1):1&ndash;12. doi:10.1038/s41598-017-09858-y. http://dx.doi.org/10.1038/s41598-017-09858-y.</span></span></p>
  • <p><span style="font-size:14px">New Zealand Environmental Protection Authority. 2015. Application for approval to import ESTEEM for release. https://www.epa.govt.nz/assets/FileAPI/hsno-ar/APP202334/fbce9a39e6/APP202334-APP202334-Staff-Report-Final-updated.pdf.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ. 2012. Chitin Metabolism in Insects. Elsevier B.V. http://dx.doi.org/10.1016/B978-0-12-384747-8.10007-8.</span></span></p>
  • <p><span style="font-size:14px">Osada H. 2019. Discovery and applications of nucleoside antibiotics beyond polyoxin. J Antibiot (Tokyo). 72(12):855&ndash;864. doi:10.1038/s41429-019-0237-1. http://dx.doi.org/10.1038/s41429-019-0237-1.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">New Zealand Environmental Protection Authority. 2015. Application for approval to import ESTEEM for release. https://www.epa.govt.nz/assets/FileAPI/hsno-ar/APP202334/fbce9a39e6/APP202334-APP202334-Staff-Report-Final-updated.pdf.</span></span></p>
  • <p><span style="font-size:14px">Passano LM. 1961. The regulation of crustacean metamorphosis. Integr Comp Biol. 1(1):89&ndash;95. doi:10.1093/icb/1.1.89.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Osada H. 2019. Discovery and applications of nucleoside antibiotics beyond polyoxin. J Antibiot (Tokyo). 72(12):855&ndash;864. doi:10.1038/s41429-019-0237-1. http://dx.doi.org/10.1038/s41429-019-0237-1.</span></span></p>
  • <p><span style="font-size:14px">Reynolds SE. 1987. The cuticle, growth and moulting in insects: The essential background to the action of acylurea insecticides. Pestic Sci. 20(2):131&ndash;146. doi:10.1002/ps.2780200207.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Passano LM. 1961. The regulation of crustacean metamorphosis. Integr Comp Biol. 1(1):89&ndash;95. doi:10.1093/icb/1.1.89.</span></span></p>
  • <p><span style="font-size:14px">Seastedt TR, Crossley DA. 1984. Influence of on arthropods ecosystems. Bioscience. 34(3):157&ndash;161.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Reynolds SE. 1987. The cuticle, growth and moulting in insects: The essential background to the action of acylurea insecticides. Pestic Sci. 20(2):131&ndash;146. doi:10.1002/ps.2780200207.</span></span></p>
  • <p><span style="font-size:14px">Shang F, Xiong Y, Xia WK, Wei DD, Wei D, Wang JJ. 2016. Identification, characterization and functional analysis of a chitin synthase gene in the brown citrus aphid, <em>Toxoptera citricida</em> (Hemiptera, Aphididae). Insect Mol Biol. 25(4):422&ndash;430. doi:10.1111/imb.12228.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Seastedt TR, Crossley DA. 1984. Influence of on arthropods ecosystems. Bioscience. 34(3):157&ndash;161.</span></span></p>
  • <p><span style="font-size:14px">Shi JF, Xu QY, Sun QK, Meng QW, Mu LL, Guo WC, Li GQ. 2016. Physiological roles of trehalose in <em>Leptinotarsa</em> larvae revealed by RNA interference of trehalose-6-phosphate synthase and trehalase genes. Insect Biochem Mol Biol. 77:52&ndash;68. doi:10.1016/j.ibmb.2016.07.012.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Shang F, Xiong Y, Xia WK, Wei DD, Wei D, Wang JJ. 2016. Identification, characterization and functional analysis of a chitin synthase gene in the brown citrus aphid, <em>Toxoptera citricida</em> (Hemiptera, Aphididae). Insect Mol Biol. 25(4):422&ndash;430. doi:10.1111/imb.12228.</span></span></p>
  • <p><span style="font-size:14px">Song Y, Evenseth LM, Iguchi T, Tollefsen KE. 2017b. Release of chitobiase as an indicator of potential molting disruption in juvenile <em>Daphnia magna</em> exposed to the ecdysone receptor agonist 20-hydroxyecdysone. J Toxicol Environ Heal - Part A Curr Issues. 80(16&ndash;18):954&ndash;962. doi:10.1080/15287394.2017.1352215. https://doi.org/10.1080/15287394.2017.1352215.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Shi JF, Xu QY, Sun QK, Meng QW, Mu LL, Guo WC, Li GQ. 2016. Physiological roles of trehalose in <em>Leptinotarsa</em> larvae revealed by RNA interference of trehalose-6-phosphate synthase and trehalase genes. Insect Biochem Mol Biol. 77:52&ndash;68. doi:10.1016/j.ibmb.2016.07.012.</span></span></p>
  • <p><span style="font-size:14px">Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE. 2017a. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. Environ Sci Technol. 51(8):4142&ndash;4157. doi:10.1021/acs.est.7b00480.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Song Y, Evenseth LM, Iguchi T, Tollefsen KE. 2017b. Release of chitobiase as an indicator of potential molting disruption in juvenile <em>Daphnia magna</em> exposed to the ecdysone receptor agonist 20-hydroxyecdysone. J Toxicol Environ Heal - Part A Curr Issues. 80(16&ndash;18):954&ndash;962. doi:10.1080/15287394.2017.1352215. https://doi.org/10.1080/15287394.2017.1352215.</span></span></p>
  • <p><span style="font-size:14px">Tellam RL, Eisemann C. 2000. Chitin is only a minor component of the peritrophic matrix from larvae of <em>Lucilia cuprina</em>. Insect Biochem Mol Biol. 30(12):1189&ndash;1201. doi:10.1016/S0965-1748(00)00097-7.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE. 2017a. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. Environ Sci Technol. 51(8):4142&ndash;4157. doi:10.1021/acs.est.7b00480.</span></span></p>
  • <p><span style="font-size:14px">Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. 2000. Insect chitin synthase. cDNA sequence, gene organization and expression. Eur J Biochem. 267(19):6025&ndash;6043. doi:10.1046/j.1432-1327.2000.01679.x.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Tellam RL, Eisemann C. 2000. Chitin is only a minor component of the peritrophic matrix from larvae of <em>Lucilia cuprina</em>. Insect Biochem Mol Biol. 30(12):1189&ndash;1201. doi:10.1016/S0965-1748(00)00097-7.</span></span></p>
  • <p><span style="font-size:14px">Turnbull IF, Howells AJ. 1982. Effects of several larvicidal compounds on chitin biosynthesis by isolated larval integuments of the sheep blowfly <em>Lucilia cuprina</em>. Aust J Biol Sci. 35(5):491&ndash;504. doi:10.1071/BI9820491.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. 2000. Insect chitin synthase. cDNA sequence, gene organization and expression. Eur J Biochem. 267(19):6025&ndash;6043. doi:10.1046/j.1432-1327.2000.01679.x.</span></span></p>
  • <p><span style="font-size:14px">Uhl G, Zimmer SM, Renner D, Schneider JM. 2015. Exploiting a moment of weakness: Male spiders escape sexual cannibalism by copulating with moulting females. Sci Rep. 5(July):1&ndash;7. doi:10.1038/srep16928.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Turnbull IF, Howells AJ. 1982. Effects of several larvicidal compounds on chitin biosynthesis by isolated larval integuments of the sheep blowfly <em>Lucilia cuprina</em>. Aust J Biol Sci. 35(5):491&ndash;504. doi:10.1071/BI9820491.</span></span></p>
  • <p><span style="font-size:14px">Ullah F, Gul H, Wang X, Ding Q, Said F, Gao X, Desneux N, Song D. 2020. RNAi-mediated knockdown of chitin synthase 1 (CHS1) gene causes mortality and decreased longevity and fecundity in <em>Aphis gossypii</em>. Insects. 11(1):1&ndash;11. doi:10.3390/insects11010022.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Uhl G, Zimmer SM, Renner D, Schneider JM. 2015. Exploiting a moment of weakness: Male spiders escape sexual cannibalism by copulating with moulting females. Sci Rep. 5(July):1&ndash;7. doi:10.1038/srep16928.</span></span></p>
  • <p><span style="font-size:14px">Vincent JFV, Wegst UGK. 2004. Design and mechanical properties of insect cuticle. Arthropod Struct Dev. 33(3):187&ndash;199. doi:10.1016/j.asd.2004.05.006.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Vincent JFV, Wegst UGK. 2004. Design and mechanical properties of insect cuticle. Arthropod Struct Dev. 33(3):187&ndash;199. doi:10.1016/j.asd.2004.05.006.</span></span></p>
  • <p><span style="font-size:14px">Wang Y, Fan HW, Huang HJ, Xue J, Wu WJ, Bao YY, Xu HJ, Zhu ZR, Cheng JA, Zhang CX. 2012. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, <em>Nilaparvata lugens</em> and <em>Laodelphax striatellus</em> (Hemiptera: Delphacidae). Insect Biochem Mol Biol. 42(9):637&ndash;646. doi:10.1016/j.ibmb.2012.04.009. http://dx.doi.org/10.1016/j.ibmb.2012.04.009.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Wang Y, Fan HW, Huang HJ, Xue J, Wu WJ, Bao YY, Xu HJ, Zhu ZR, Cheng JA, Zhang CX. 2012. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, <em>Nilaparvata lugens</em> and <em>Laodelphax striatellus</em> (Hemiptera: Delphacidae). Insect Biochem Mol Biol. 42(9):637&ndash;646. doi:10.1016/j.ibmb.2012.04.009. http://dx.doi.org/10.1016/j.ibmb.2012.04.009.</span></span></p>
  • <p><span style="font-size:14px">Wang Z, Yang H, Zhou C, Yang WJ, Jin DC, Long GY. 2019. Molecular cloning, expression, and functional analysis of the chitin synthase 1 gene and its two alternative splicing variants in the white-backed planthopper, <em>Sogatella furcifera</em> (Hemiptera: Delphacidae). Sci Rep. 9(1):1&ndash;14. doi:10.1038/s41598-018-37488-5. http://dx.doi.org/10.1038/s41598-018-37488-5.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Wang Z, Yang H, Zhou C, Yang WJ, Jin DC, Long GY. 2019. Molecular cloning, expression, and functional analysis of the chitin synthase 1 gene and its two alternative splicing variants in the white-backed planthopper, <em>Sogatella furcifera</em> (Hemiptera: Delphacidae). Sci Rep. 9(1):1&ndash;14. doi:10.1038/s41598-018-37488-5. http://dx.doi.org/10.1038/s41598-018-37488-5.</span></span></p>
  • <p><span style="font-size:14px">Yang WJ, Xu KK, Cong L, Wang JJ. 2013. Identification, mRNA expression, and functional analysis of chitin synthase 1 gene and its two alternative splicing variants in oriental fruit fly, <em>Bactrocera dorsalis</em>. Int J Biol Sci. 9(4):331&ndash;342. doi:10.7150/ijbs.6022.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Yang WJ, Xu KK, Cong L, Wang JJ. 2013. Identification, mRNA expression, and functional analysis of chitin synthase 1 gene and its two alternative splicing variants in oriental fruit fly, <em>Bactrocera dorsalis</em>. Int J Biol Sci. 9(4):331&ndash;342. doi:10.7150/ijbs.6022.</span></span></p>
  • <p><span style="font-size:14px">Ye C, Jiang Y Di, An X, Yang L, Shang F, Niu J, Wang JJ. 2019. Effects of RNAi-based silencing of chitin synthase gene on moulting and fecundity in pea aphids (<em>Acyrthosiphon pisum</em>). Sci Rep. 9(1):1&ndash;10. doi:10.1038/s41598-019-39837-4. http://dx.doi.org/10.1038/s41598-019-39837-4.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Ye C, Jiang Y Di, An X, Yang L, Shang F, Niu J, Wang JJ. 2019. Effects of RNAi-based silencing of chitin synthase gene on moulting and fecundity in pea aphids (<em>Acyrthosiphon pisum</em>). Sci Rep. 9(1):1&ndash;10. doi:10.1038/s41598-019-39837-4. http://dx.doi.org/10.1038/s41598-019-39837-4.</span></span></p>
  • <p><span style="font-size:14px">Zhai Y, Fan X, Yin Z, Yue X, Men X, Zheng L, Zhang W. 2017. Identification and Functional Analysis of Chitin Synthase A in Oriental Armyworm, <em>Mythimna separata</em>. Proteomics. 17(21):1&ndash;11. doi:10.1002/pmic.201700165.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Zhai Y, Fan X, Yin Z, Yue X, Men X, Zheng L, Zhang W. 2017. Identification and Functional Analysis of Chitin Synthase A in Oriental Armyworm, <em>Mythimna separata</em>. Proteomics. 17(21):1&ndash;11. doi:10.1002/pmic.201700165.</span></span></p>
  • <p><span style="font-size:14px">Zhang J, Liu X, Zhang Jianqin, Li D, Sun Y, Guo Y, Ma E, Zhu KY. 2010. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem Mol Biol. 40(11):824&ndash;833. doi:10.1016/j.ibmb.2010.08.001. http://dx.doi.org/10.1016/j.ibmb.2010.08.001.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Zhang J, Liu X, Zhang Jianqin, Li D, Sun Y, Guo Y, Ma E, Zhu KY. 2010. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem Mol Biol. 40(11):824&ndash;833. doi:10.1016/j.ibmb.2010.08.001. http://dx.doi.org/10.1016/j.ibmb.2010.08.001.</span></span></p>
  • <p><span style="font-size:14px">Zhang X, Yan Zhu K. 2013. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, <em>Anopheles gambiae</em>. Insect Sci. 20(2):158&ndash;166. doi:10.1111/j.1744-7917.2012.01568.x.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Zhang X, Yan Zhu K. 2013. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, <em>Anopheles gambiae</em>. Insect Sci. 20(2):158&ndash;166. doi:10.1111/j.1744-7917.2012.01568.x.</span></span></p>
  • <p><span style="font-size:14px">Zhang X, Zhang J, Zhu KY. 2010. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (<em>Anopheles gambiae</em>). Insect Mol Biol. 19(5):683&ndash;693. doi:10.1111/j.1365-2583.2010.01029.x.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Zhang X, Zhang J, Zhu KY. 2010. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (<em>Anopheles gambiae</em>). Insect Mol Biol. 19(5):683&ndash;693. doi:10.1111/j.1365-2583.2010.01029.x.</span></span></p>
  • <p><span style="font-size:14px">Zhu KY, Heise S, Zhang J, Anderson TD, Starkey SR. 2007. Comparative Studies on Effects of Three Chitin Synthesis Inhibitors on Common Malaria Mosquito (Diptera: Culicidae). J Med Entomol. 44(6):1047&ndash;1053. doi:10.1093/jmedent/44.6.1047.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Zhu KY, Heise S, Zhang J, Anderson TD, Starkey SR. 2007. Comparative Studies on Effects of Three Chitin Synthesis Inhibitors on Common Malaria Mosquito (Diptera: Culicidae). J Med Entomol. 44(6):1047&ndash;1053. doi:10.1093/jmedent/44.6.1047.</span></span></p>
  • <p><span style="font-size:14px">Zhuo W, Fang Y, Kong L, Li X, Sima Y, Xu S. 2014. Chitin synthase A: A novel epidermal development regulation gene in the larvae of <em>Bombyx mori</em>. Mol Biol Rep. 41(7):4177&ndash;4186. doi:10.1007/s11033-014-3288-1.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Zhuo W, Fang Y, Kong L, Li X, Sima Y, Xu S. 2014. Chitin synthase A: A novel epidermal development regulation gene in the larvae of <em>Bombyx mori</em>. Mol Biol Rep. 41(7):4177&ndash;4186. doi:10.1007/s11033-014-3288-1.</span></span></p>
  • <br>
  • </div>
  • <div id="appendicies">
  • <h2>Appendix 1</h2>
  • <h3>List of MIEs in this AOP</h3>
  • <div>
  • <div>
  • <h4><a href="/events/1522">Event: 1522: Increase, Chitin synthase 1 inhibition</a><br></h4>
  • <h5>Short Name: Increase, CHS-1 inhibition</h5>
  • </div>
  • <h4>Key Event Component</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Process</th>
  • <th>Object</th>
  • <th>Action</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>chitin synthase activity</td>
  • <td></td>
  • <td>decreased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <div>
  • <!-- loop to find all aops that use this event -->
  • <h4>AOPs Including This Key Event</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <h4><a href="/events/1522">Event: 1522: Inhibition, Chitin synthase 1</a></h4>
  • <h5>Short Name: Inhibition, CHS-1</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <th>AOP ID and Name</th>
  • <th>Event Type</th>
  • <td>chitin synthase activity</td>
  • <td></td>
  • <td>decreased</td>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td><a href="/aops/342">Aop:342 - S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/360">Aop:360 - Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </tbody>
  • </table>
  • </div>
  • <!-- loop to find stressors under event -->
  • <div>
  • <h4>Stressors</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Name</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Polyoxin B</td>
  • </tr>
  • <tr>
  • <td>Polyoxin D</td>
  • </tr>
  • <tr>
  • <td>Nikkomycins</td>
  • </tr>
  • <tr>
  • <td>Captan</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <br>
  • <!-- biological organization -->
  • <div>
  • <h4>Biological Context</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Level of Biological Organization</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Molecular</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end of bio org -->
  • <!-- cell term -->
  • <div>
  • <h4>Cell term</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Cell term</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>cuticle secreting cell</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end of cell term -->
  • <!-- organ term -->
  • <div>
  • <h4>Organ term</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Organ term</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>epithelium</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end of organ term -->
  • <!-- Evidence for Perturbation of This Event by Stressors -->
  • <h3>Evidence for Perturbation by Stressor</h3>
  • <hr>
  • <h4>Overview for Molecular Initiating Event</h4>
  • <p><span style="font-size:14px">Stressors known to competitively inhibit CHS1 are polyoxin B, polyoxin D and Nikkomycin Z (Cohen and Casida 1982; Cohen and Casida 1990; Zhang and Yan Zhu 2013). There may also be stressors that inhibit CHS-1 in a non-competitive manner which may become apparent in further characterization efforts of this MIE. There is also a study that reports inhibition of CHS-1 by the phthalimide fungicide captan (Cohen and Casida 1982). However, it remains elusive if the observed inhibition is due to specific interaction with the enzyme or due to unspecific protein binding which is the predominant mode of action of phthalimides (Lukens and Sisler 1958).</span></p>
  • <br>
  • <br>
  • <!-- end Evidence for Perturbation of This Event by Stressors -->
  • <h4>Domain of Applicability</h4>
  • <br>
  • <!-- loop to find taxonomic applicability under event -->
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Term</th>
  • <th>Scientific Term</th>
  • <th>Evidence</th>
  • <th>Links</th>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Anopheles gambiae</td>
  • <td>Anopheles gambiae</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7165" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Tribolium castaneum</td>
  • <td>Tribolium castaneum</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7070" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Trichoplusia ni</td>
  • <td>Trichoplusia ni</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7111" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Hyalophora cecropia</td>
  • <td>Hyalophora cecropia</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7123" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Bradysia hygida</td>
  • <td>Bradysia hygida</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35572" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Mamestra brassicae</td>
  • <td>Mamestra brassicae</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=55057" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Chilo suppressalis</td>
  • <td>Chilo suppressalis</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=168631" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Locusta migratoria</td>
  • <td>Locusta migratoria</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7004" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Nilaparvata lugens</td>
  • <td>Nilaparvata lugens</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=108931" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Aphis glycines</td>
  • <td>Aphis glycines</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=307491" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Lepeophtheirus salmonis</td>
  • <td>Lepeophtheirus salmonis</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=72036" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Panonychus citri</td>
  • <td>Panonychus citri</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=50023" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Grapholita molesta</td>
  • <td>Grapholita molesta</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=192188" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Ectropis obliqua</td>
  • <td>Ectropis obliqua</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=248899" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Tigriopus japonicus</td>
  • <td>Tigriopus japonicus</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=158387" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/342">Aop:342 - S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/360">Aop:360 - Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>MolecularInitiatingEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end loop for taxons -->
  • <!-- life stages -->
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Polyoxin B</td></tr>
  • <tr><td>Polyoxin D</td></tr>
  • <tr><td>Nikkomycins</td></tr>
  • <tr><td>Captan</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Molecular</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Cell term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Cell term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>cuticle secreting cell</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Organ term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Organ term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>epithelium</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h3>Evidence for Perturbation by Stressor</h3>
  • <h4>Overview for Molecular Initiating Event</h4>
  • <p><span style="font-size:14px">Stressors known to competitively inhibit CHS1 are polyoxin B, polyoxin D and Nikkomycin Z (Cohen and Casida 1982; Cohen and Casida 1990; Zhang and Yan Zhu 2013). There may also be stressors that inhibit CHS-1 in a non-competitive manner which may become apparent in further characterization efforts of this MIE. There is also a study that reports inhibition of CHS-1 by the phthalimide fungicide captan (Cohen and Casida 1982). However, it remains elusive if the observed inhibition is due to specific interaction with the enzyme or due to unspecific protein binding which is the predominant mode of action of phthalimides (Lukens and Sisler 1958).</span></p>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Anopheles gambiae</td>
  • <td>Anopheles gambiae</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7165" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Tribolium castaneum</td>
  • <td>Tribolium castaneum</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7070" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Trichoplusia ni</td>
  • <td>Trichoplusia ni</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7111" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Hyalophora cecropia</td>
  • <td>Hyalophora cecropia</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7123" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Bradysia hygida</td>
  • <td>Bradysia hygida</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35572" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Mamestra brassicae</td>
  • <td>Mamestra brassicae</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=55057" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Chilo suppressalis</td>
  • <td>Chilo suppressalis</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=168631" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Locusta migratoria</td>
  • <td>Locusta migratoria</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7004" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Nilaparvata lugens</td>
  • <td>Nilaparvata lugens</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=108931" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Aphis glycines</td>
  • <td>Aphis glycines</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=307491" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Lepeophtheirus salmonis</td>
  • <td>Lepeophtheirus salmonis</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=72036" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Panonychus citri</td>
  • <td>Panonychus citri</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=50023" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Grapholita molesta</td>
  • <td>Grapholita molesta</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=192188" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Ectropis obliqua</td>
  • <td>Ectropis obliqua</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=248899" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Tigriopus japonicus</td>
  • <td>Tigriopus japonicus</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=158387" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Life Stage</th>
  • <th>Evidence</th>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end life stages -->
  • <!-- sex terms -->
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Sex</th>
  • <th>Evidence</th>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end sex terms -->
  • <div>
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>Effect data for the occurrence of CHS1 inhibition exist from Dipteran, Lepidopteran and Coleopteran insect species. Sequence alignment of CHS1 protein sequences using the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS, <a href="https://seqapass.epa.gov/seqapass/info.xhtml">https://seqapass.epa.gov/seqapass</a>) tool, yielded susceptibility predictions for various insect species, arachnids and crustacean taxa such as branchiopods, hexanauplia, malocostraca and merostomata. However, most of the protein sequences were not identified as CHS1. The alignment of amino acid residues believed to be critical for ligand binding were therefore carried out with sequences identified as CHS1. Evidence was rated as high for species with a susceptibility prediction and/or effect data. Evidence was rated as moderate when only alignment data were available. Although most of the sequences are not annotated as CHS1, all arthropods rely on the synthesis of cuticular chitin therefore it is extremely likely that the AOP is applicable to the whole phylum of arthropods.</span></p>
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>Effect data for the occurrence of CHS1 inhibition exist from Dipteran, Lepidopteran and Coleopteran insect species. Sequence alignment of CHS1 protein sequences using the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS, <a href="https://seqapass.epa.gov/seqapass/info.xhtml">https://seqapass.epa.gov/seqapass</a>) tool, yielded susceptibility predictions for various insect species, arachnids and crustacean taxa such as branchiopods, hexanauplia, malocostraca and merostomata. However, most of the protein sequences were not identified as CHS1. The alignment of amino acid residues believed to be critical for ligand binding were therefore carried out with sequences identified as CHS1. Evidence was rated as high for species with a susceptibility prediction and&nbsp;effect data. Evidence was rated as moderate when only alignment data were available. Although most of the sequences are not annotated as CHS1, all arthropods rely on the synthesis of cuticular chitin therefore it is extremely likely that this&nbsp;MIE is applicable to the whole phylum of arthropods.</span></p>
  • <p><span style="font-size:14px"><strong>Life stage: </strong>This MIE is applicable for organisms undergoing continuous molt cycles. Namely larval stages of insects and all life stages of crustaceans and arachnids.</span></p>
  • <p><span style="font-size:14px"><strong>Sex: </strong>The MIE is applicable to all sexes.</span></p>
  • <p><span style="font-size:14px"><strong>Chemical:</strong> Substances known to trigger inhibit CHS-1 are of the family of pyrimidine nucleosides (e.g. polyoxin D, polyoxin B and nikkomycin Z) (Cohen and Casida 1982; Kuwano and Cohen 1984; Cohen and Casida 1990; Zhang and Yan Zhu 2013; Osada 2019). There also exists evidence for the phthalimide captan to inhibit CHS-1 activity <em>in vitro</em> (Cohen and Casida 1982). However, as phthalimides are known to covalently bind to thiol groups in proteins (Lukens and Sisler 1958), it is not clear if the inhibition is due to specific CHS-1 inhibition or due to unspecific protein binding.</span></p>
  • <br>
  • </div>
  • <h4>Key Event Description</h4>
  • <p><span style="font-size:14px">Chitin synthases are essential enzymes for all organisms synthesizing chitin, for example arthropods and fungi (Latg&eacute; 2007; Merzendorfer 2011). Chitin synthases polymerize chitin and subsequently translocate chitin through the cell membrane (Merzendorfer 2006; Merzendorfer 2011). In arthropods, two isoforms of the chitin synthase are known, CHS1, which is responsible for the synthesis of cuticular chitin, and chitin synthase isoform 2, which synthesizes chitin in the midgut (Arakane et al. 2005). In this MIE, inhibition of CHS-1 is characterized. The biological state being measured is the activity of the enzyme. CHS-1 has an essential role in the cuticle biology, as it constitutes the last and most critical step in the chitin biosynthetic pathway by catalyzing the polymerization of UDP-GlcNAc to chitin (Merzendorfer and Zimoch 2003; Merzendorfer 2006).</span></p>
  • <h4>How it is Measured or Detected</h4>
  • <p><span style="font-size:14px">Since the purification or even recombinant production of CHS-1 has not been achieved yet, the most common way is to use crude enzyme preparations for CHS-1 activity assays. It is noteworthy that in crude enzyme preparations of whole organisms both CHS isoforms, CHS-1 and CHS-2, are present. However, the expression of CHS-1 was shown to be much higher than CHS-2 in <em>Anopheles gambiae </em>(Zhang et al. 2012), therefore the effect of CHS-2 may be regarded as negligible. Alternatively, the digestive tract of the respective organism could be removed before producing the enzyme preparation. Different ways exist to detect the activity of the enzyme. One can incubate the enzyme preparation with radioactively labelled chitin precursors (e.g. 14C-UDP-GlcNAc) and measure radioactivity in the formed chitin chains by scintillation counting (Cohen 1982; Cohen and Casida 1990). Chitin synthase activity can also be measured in a non-radioactive way after the addition of precursors to a crude enzyme extract.&nbsp;There, the detection of CHS-1 activity involves the binding of chitin chains to wheat germ agglutinin (WGA) which possesses specific chitin binding properties (Lucero et al. 2002; Zhang and Yan Zhu 2013). The assay builds on the principle of a sandwich-ELISA, where chitin binds to a layer of WGA. A second layer of WGA which is conjugated to horseradish peroxidase (HRP) is then added and subsequently incubated with a HRP substrate. The cleavage of the HRP substrate leads to color formation and the amount of chitin synthesized can be determined colorimetrically.</span></p>
  • <!-- event text -->
  • <h4>Key Event Description</h4>
  • <p><span style="font-size:14px">Chitin synthases are essential enzymes for all organisms synthesizing chitin, for example arthropods and fungi (Latg&eacute; 2007; Merzendorfer 2011). Chitin synthases polymerize chitin and subsequently translocate chitin through the cell membrane (Merzendorfer 2006; Merzendorfer 2011). In arthropods, two isoforms of the chitin synthase are known, CHS1, which is responsible for the synthesis of cuticular chitin, and chitin synthase isoform 2, which synthesizes chitin in the midgut (Arakane et al. 2005). In this MIE, inhibition of CHS-1 is characterized. The biological state being measured is the activity of the enzyme. CHS-1 has an essential role in the cuticle biology, as it constitutes the last and most critical step in the chitin biosynthetic pathway by catalyzing the polymerization of UDP-GlcNAc to chitin (Merzendorfer and Zimoch 2003; Merzendorfer 2006).</span></p>
  • <br>
  • <h4>How it is Measured or Detected</h4>
  • <p><span style="font-size:14px">Since the purification or even recombinant production of CHS1 has not been achieved yet, the most common way is to use crude enzyme preparations for CHS1 activity assays. It is noteworthy that in crude enzyme preparations of whole organisms both CHS isoforms, CHS1 and CHS2, are present. However, the expression of CHS1 was shown to be much higher than CHS2 in <em>Anopheles gambiae </em>(Zhang et al. 2012), therefore the effect of CHS2 may be regarded as negligible. Alternatively, the digestive tract of the respective organism could be removed before producing the enzyme preparation. Different ways exist to detect the activity of the enzyme. One can incubate the enzyme preparation with radioactively labelled chitin precursors (e.g. 14C-UDP-GlcNAc) and measure radioactivity in the formed chitin chains by scintillation counting (Cohen 1982; Cohen and Casida 1990). Another approach for the detection of CHS1 activity involves the binding of formed chitin chains to wheat germ agglutinin (WGA) which possesses specific chitin binding properties (Lucero et al. 2002; Zhang and Yan Zhu 2013). The assay builds on the principle of a sandwich-ELISA, where chitin binds to a layer of WGA. A second layer of WGA which is conjugated to horseradish peroxidase (HRP) is then added and subsequently incubated with a HRP substrate. The cleavage of the HRP substrate leads to color formation and the amount of chitin synthesized can be determined colorimetrically.</span></p>
  • <br>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. 2005. The <em>Tribolium </em>&nbsp;chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol. 14(5):453&ndash;463. doi:10.1111/j.1365-2583.2005.00576.x.</span></p>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. 2005. The <em>Tribolium </em>&nbsp;chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol. 14(5):453&ndash;463. doi:10.1111/j.1365-2583.2005.00576.x.</span></p>
  • <p><span style="font-size:14px">Cohen E. 1982. In vitro chitin synthesis in an insect: formation and structure of microfibrils. Eur J Cell Biol. 26(2):289&ndash;294.</span></p>
  • <p><span style="font-size:14px">Cohen E, Casida JE. 1982. Properties and inhibition of insect integumental chitin synthetase. Pestic Biochem Physiol. 17(3):301&ndash;306. doi:10.1016/0048-3575(82)90141-9.</span></p>
  • <p><span style="font-size:14px">Cohen E, Casida JE. 1990. Insect and Fungal Chitin Synthetase Activity: Specificity of Lectins as Enhancers and Nucleoside Peptides as Inhibitors. Pestic Biochem Physiol. 37(3):249&ndash;253. doi:10.1016/0048-3575(90)90131-K.</span></p>
  • <p><span style="font-size:14px">Kuwano E, Cohen E. 1984. The use of a <em>Tribolium</em> chitin synthetase assay in studying the effects of benzimidazoles with a terpene moiety and related compounds. Agric Biol Chem. 48(6):1617&ndash;1620. doi:10.1080/00021369.1984.10866362.</span></p>
  • <p><span style="font-size:14px">Latg&eacute; JP. 2007. The cell wall: A carbohydrate armour for the fungal cell. Mol Microbiol. 66(2):279&ndash;290. doi:10.1111/j.1365-2958.2007.05872.x.</span></p>
  • <p><span style="font-size:14px">Lucero HA, Kuranda MJ, Bulik DA. 2002. A nonradioactive, high throughput assay for chitin synthase activity. Anal Biochem. 305(1):97&ndash;105. doi:10.1006/abio.2002.5594.</span></p>
  • <p><span style="font-size:14px">Lukens RJ, Sisler HD. 1958. 2-Thiazolidinethione-4-carboxylic acid from the reaction of captan with cysteine. Science (80- ). 127(3299):650. doi:10.1126/science.127.3299.650.</span></p>
  • <p><span style="font-size:14px">Merzendorfer H. 2006. Insect chitin synthases: A review. J Comp Physiol B Biochem Syst Environ Physiol. doi:10.1007/s00360-005-0005-3.</span></p>
  • <p><span style="font-size:14px">Merzendorfer H. 2011. The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. Eur J Cell Biol. 90(9):759&ndash;769. doi:10.1016/j.ejcb.2011.04.014. http://dx.doi.org/10.1016/j.ejcb.2011.04.014.</span></p>
  • <p><span style="font-size:14px">Merzendorfer H, Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol. 206(24):4393 LP &ndash; 4412. doi:10.1242/jeb.00709. http://jeb.biologists.org/content/206/24/4393.abstract.</span></p>
  • <p><span style="font-size:14px">Osada H. 2019. Discovery and applications of nucleoside antibiotics beyond polyoxin. J Antibiot (Tokyo). 72(12):855&ndash;864. doi:10.1038/s41429-019-0237-1. http://dx.doi.org/10.1038/s41429-019-0237-1.</span></p>
  • <p><span style="font-size:14px">Zhang X, Yan Zhu K. 2013. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, <em>Anopheles gambiae</em>. Insect Sci. 20(2):158&ndash;166. doi:10.1111/j.1744-7917.2012.01568.x.</span></p>
  • <p><span style="font-size:14px">Zhang X, Zhang J, Park Y, Zhu KY. 2012. Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol. 42(9):674&ndash;682. doi:10.1016/j.ibmb.2012.05.005. http://dx.doi.org/10.1016/j.ibmb.2012.05.005.</span></p>
  • <br>
  • <!-- end event text -->
  • </div>
  • <h3>List of Key Events in the AOP</h3>
  • <div>
  • <div>
  • <h4><a href="/events/1523">Event: 1523: Decrease, Cuticular chitin content</a><br></h4>
  • <h5>Short Name: Decrease, Cuticular chitin content</h5>
  • </div>
  • <h4>Key Event Component</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Process</th>
  • <th>Object</th>
  • <th>Action</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>cuticle development</td>
  • <td>cuticle</td>
  • <td>decreased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <div>
  • <!-- loop to find all aops that use this event -->
  • <h4>AOPs Including This Key Event</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <h4><a href="/events/1523">Event: 1523: Decrease, Cuticular chitin content</a></h4>
  • <h5>Short Name: Decrease, Cuticular chitin content</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <th>AOP ID and Name</th>
  • <th>Event Type</th>
  • <td>cuticle development</td>
  • <td>cuticle</td>
  • <td>decreased</td>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td><a href="/aops/343">Aop:343 - S-adenosylmethionine depletion leading to population decline (2)</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/342">Aop:342 - S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/360">Aop:360 - Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/361">Aop:361 - Sulfonylureareceptor binding leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </tbody>
  • </table>
  • </div>
  • <!-- loop to find stressors under event -->
  • <div>
  • <h4>Stressors</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Name</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Polyoxin D</td>
  • </tr>
  • <tr>
  • <td>Nikkomycins</td>
  • </tr>
  • <tr>
  • <td>Captan</td>
  • </tr>
  • <tr>
  • <td>Captafol</td>
  • </tr>
  • <tr>
  • <td>Folpet</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <br>
  • <!-- biological organization -->
  • <div>
  • <h4>Biological Context</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Level of Biological Organization</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Tissue</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end of bio org -->
  • <!-- cell term -->
  • <div>
  • </div>
  • <!-- end of cell term -->
  • <!-- organ term -->
  • <div>
  • <h4>Organ term</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Organ term</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>cuticle</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end of organ term -->
  • <!-- Evidence for Perturbation of This Event by Stressors -->
  • <!-- end Evidence for Perturbation of This Event by Stressors -->
  • <h4>Domain of Applicability</h4>
  • <br>
  • <!-- loop to find taxonomic applicability under event -->
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Term</th>
  • <th>Scientific Term</th>
  • <th>Evidence</th>
  • <th>Links</th>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Pieris brassicae</td>
  • <td>Pieris brassicae</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7116" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Lucilia cuprina</td>
  • <td>Lucilia cuprina</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7375" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Bombyx mori</td>
  • <td>Bombyx mori</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7091" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Artemia salina</td>
  • <td>Artemia salina</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=85549" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Ostrinia nubilalis</td>
  • <td>Ostrinia nubilalis</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=29057" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/343">Aop:343 - S-adenosylmethionine depletion leading to population decline (2)</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/342">Aop:342 - S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/360">Aop:360 - Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/361">Aop:361 - Sulfonylureareceptor binding leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end loop for taxons -->
  • <!-- life stages -->
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Polyoxin D</td></tr>
  • <tr><td>Nikkomycins</td></tr>
  • <tr><td>Captan</td></tr>
  • <tr><td>Captafol</td></tr>
  • <tr><td>Folpet</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Tissue</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Organ term</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Organ term</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>cuticle</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Pieris brassicae</td>
  • <td>Pieris brassicae</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7116" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Lucilia cuprina</td>
  • <td>Lucilia cuprina</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7375" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Bombyx mori</td>
  • <td>Bombyx mori</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7091" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Artemia salina</td>
  • <td>Artemia salina</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=85549" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Ostrinia nubilalis</td>
  • <td>Ostrinia nubilalis</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=29057" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Life Stage</th>
  • <th>Evidence</th>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end life stages -->
  • <!-- sex terms -->
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Sex</th>
  • <th>Evidence</th>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end sex terms -->
  • <div>
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>Effect data for the occurrence of this KE exist from <em>Pieris brassicae</em>, <em>Lucilia cuprina</em>, <em>Bombyx mori</em>, <em>Artemia salina</em> and <em>Ostrinia nubilalis</em>, defining its taxonomic applicability. Most likely, this KE is applicable to the whole phylum of arthropods, as they all rely on chitin as part of their exoskeleton.</span></p>
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>Effect data for the occurrence of this KE exist from <em>Pieris brassicae</em>, <em>Lucilia cuprina</em>, <em>Bombyx mori</em>, <em>Artemia salina</em> and <em>Ostrinia nubilalis</em>, defining its taxonomic applicability. Most likely, this KE is applicable to the whole phylum of arthropods, as they all rely on chitin as part of their exoskeleton.</span></p>
  • <p><span style="font-size:14px"><strong>Life stage: </strong>This KE is applicable for organisms synthesizing chitin in order to grow and develop, namely larval stages of insects and all life stages of crustaceans and arachnids.</span></p>
  • <p><span style="font-size:14px"><strong>Sex: </strong>This KE is applicable to all sexes.</span></p>
  • <p><span style="font-size:14px"><strong>Chemical:</strong> Substances known decrease the cuticular chitin content are of the family of pyrimidine nucleosides (e.g. polyoxin D and nikkomycin Z) (Gijswijt et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Zhuo et al. 2014; Osada 2019). There also exists evidence for phthalimides (captan, captafol and folpet) to to decrease the cuticular chitin content <em>in vitro</em> (Gelman and Borkovec 1986). However, as these substances are known to covalently bind to thiol groups in proteins (Lukens and Sisler 1958), it is not clear if the inhibition is due to specific CHS-1 inhibition or due to unspecific protein binding.</span></p>
  • <br>
  • </div>
  • <!-- event text -->
  • <h4>Key Event Description</h4>
  • <p><span style="font-size:14px">This key event describes the decrease in cuticular chitin content. Chitin is a major part of the arthropod cuticle and therefore also responsible for its integrity <!--[if supportFields]><span
  • <h4>Key Event Description</h4>
  • <p><span style="font-size:14px">This key event describes the decrease in cuticular chitin content. Chitin is a major part of the arthropod cuticle and therefore also responsible for its integrity <!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-begin;mso-field-lock:
  • yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1002/ps.2780200207&quot;,&quot;ISSN&quot;:&quot;10969063&quot;,&quot;abstract&quot;:&quot;The
  • functions, structure and biochemistry of the insect cuticle in relation to the
  • moulting cycle are briefly reviewed as an introduction to the actions of
  • insecticides that act on the cuticle, particularly acylureas. The symptoms of
  • poisoning with diflubenzuron (DFB) and other acylureas are consistent with
  • ultra‐structural and biochemical evidence that these insecticides inhibit the
  • formation of chitin microfibrils in newly synthesised cuticle. It is probable
  • that DFB acts at a late stage in chitin biosynthesis, perhaps inhibiting chitin
  • synthase (CS) itself. However, the results of studies using cell‐free
  • preparations of CS have not, on the whole, supported this hypothesis. A number
  • of alternative suggestions as to the mode of action of DFB are reviewed. Among
  • the most attractive of these is the possibility that DFB may inhibit the
  • transmembrane transport of chitin synthesis precursors from their site of
  • production within the epidermal cells to the site of the final poly
  • condensation reaction, presumably at the apical membrane of the epidermal
  • microvilli. Copyright © 1987 John Wiley &amp; Sons,
  • Ltd&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Reynolds&quot;,&quot;given&quot;:&quot;Stuart
  • E.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Pesticide
  • Science&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;2&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1987&quot;]]},&quot;page&quot;:&quot;131-146&quot;,&quot;title&quot;:&quot;The
  • cuticle, growth and moulting in insects: The essential background to the action
  • of acylurea
  • insecticides&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;20&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=7d4a05a8-c824-42b6-9bf5-c305a2bcfc03&quot;]},{&quot;id&quot;:&quot;ITEM-2&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/B978-0-12-384747-8.10007-8&quot;,&quot;ISBN&quot;:&quot;9780123847478&quot;,&quot;abstract&quot;:&quot;This
  • chapter highlights some of the recent and important findings obtained from
  • studies conducted on the synthesis, structure, physical state, modification,
  • organization, and degradation of chitin in insect tissues, as well as the
  • interplay of chitin with chitin-binding proteins, the regulation of genes
  • responsible for chitin metabolism, and, finally, the targeting of chitin
  • metabolism for insect-control purposes. Chitin is the major polysaccharide
  • present in insects and many other invertebrates as well as in several microbes,
  • including fungi. It serves as the skeletal polysaccharide of several animal
  • phyla, such as the Arthropoda, Annelida, Molluska, and Coelenterata. In several
  • groups of fungi, chitin replaces cellulose as the structural polysaccharide. In
  • insects, it is found in the body wall or cuticle, gut lining or peritrophic
  • matrix (PM), salivary gland, trachea, eggshells, and muscle attachment points.
  • In the course of evolution, insects have made excellent use of the rigidity and
  • chemical stability of the polymeric chitin to assemble both hard and soft
  • extracellular structures such as the cuticle (exoskeleton) and PM respectively,
  • both of which enable insects to be protected from the environment while
  • allowing for growth, mobility, respiration, and communication. All of these
  • structures are primarily composites of chitin fibers and proteins with varying
  • degrees of hydration and trace materials distributed along the structures. ©
  • 2012 Elsevier B.V. All rights
  • reserved.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Muthukrishnan&quot;,&quot;given&quot;:&quot;Subbaratnam&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Merzendorfer&quot;,&quot;given&quot;:&quot;Hans&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Arakane&quot;,&quot;given&quot;:&quot;Yasuyuki&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Kramer&quot;,&quot;given&quot;:&quot;Karl
  • J.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Insect
  • Molecular Biology and
  • Biochemistry&quot;,&quot;id&quot;:&quot;ITEM-2&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2012&quot;]]},&quot;number-of-pages&quot;:&quot;193-235&quot;,&quot;publisher&quot;:&quot;Elsevier
  • B.V.&quot;,&quot;title&quot;:&quot;Chitin Metabolism in
  • Insects&quot;,&quot;type&quot;:&quot;book&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=24c204e2-9cb5-413f-81eb-5a90926cf1ed&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Reynolds
  • 1987; Muthukrishnan et al.
  • 2012)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Reynolds 1987;
  • Muthukrishnan et al.
  • 2012)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;[1],
  • [2]&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Reynolds 1987; Muthukrishnan et al. 2012)<!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]-->. The cuticle is the exoskeleton of arthropods and has manifold functions, it protects organisms from predators, loss of water, acts as a physical barrier against microbial pathogens and provides support for muscular function <!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA;mso-bidi-font-weight:bold'><span
  • style='mso-element:field-begin;mso-field-lock:yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/j.asd.2004.05.006&quot;,&quot;ISSN&quot;:&quot;14678039&quot;,&quot;abstract&quot;:&quot;Since
  • nearly all adult insects fly, the cuticle has to provide a very efficient and
  • lightweight skeleton. Information is available about the mechanical properties
  • of cuticle - Young's modulus of resilin is about 1 MPa, of soft cuticles about
  • 1kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of
  • sclerotised cuticle ranges between 25 and 80kgfmm-2; density is 1-1.3 kg m-3 -
  • and one of its components, chitin nanofibres, the Young's modulus of which is
  • more than 150 GPa. Experiments based on fracture mechanics have not been
  • performed although the layered structure probably provides some toughening. The
  • structural performance of wings and legs has been measured, but our
  • understanding of the importance of buckling is lacking: it can stiffen the
  • structure (by elastic postbuckling in wings, for example) or be a failure mode.
  • We know nothing of fatigue properties (yet, for instance, the insect wing must
  • undergo millions of cycles, flexing or buckling on each cycle). The remarkable
  • mechanical performance and efficiency of cuticle can be analysed and compared
  • with those of other materials using material property charts and material
  • indices. Presented in this paper are four: Young's modulus - density (stiffness
  • per unit weight), specific Young's modulus - specific strength (elastic hinges,
  • elastic energy storage per unit weight), toughness - Young's modulus (fracture
  • resistance under various loading conditions), and hardness (wear resistance).
  • In conjunction with a structural analysis of cuticle these charts help to
  • understand the relevance of microstructure (fibre orientation effects in
  • tendons, joints and sense organs, for example) and shape (including surface
  • structure) of this fibrous composite for a given function. With modern
  • techniques for analysis of structure and material, and emphasis on
  • nanocomposites and self-assembly, insect cuticle should be the archetype for
  • composites at all levels of scale. © 2004 Elsevier Ltd. All rights
  • reserved.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Vincent&quot;,&quot;given&quot;:&quot;Julian
  • F.V.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Wegst&quot;,&quot;given&quot;:&quot;Ulrike
  • G.K.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Arthropod
  • Structure and Development&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;3&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2004&quot;]]},&quot;page&quot;:&quot;187-199&quot;,&quot;title&quot;:&quot;Design
  • and mechanical properties of insect
  • cuticle&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;33&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=0a16940f-fa66-43c3-8dc5-a683f3a36ac4&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Vincent
  • and Wegst 2004)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Vincent and
  • Wegst
  • 2004)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;[3]&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Vincent and Wegst 2004)<!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA;mso-bidi-font-weight:bold'><span
  • style='mso-element:field-end'></span></span><![endif]-->. Hence, cuticular chitin is also indispensable for the development of arthropods, as an immaculate cuticle is required for proper molting and therefore also for the growth of an organism.<br />
  • During molting, the newly secreted cuticle is subject to mechanical stress associated and therefore needs to possess enough structural and functional integrity. The ecdysis motor program, which constitutes the behavioral part of the cuticle shedding requires the newly secreted cuticle to possess a certain strength to support for muscular force in order to shed the old cuticle <!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-begin;mso-field-lock:
  • yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1371/journal.pbio.0030349&quot;,&quot;ISSN&quot;:&quot;15457885&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Ewer&quot;,&quot;given&quot;:&quot;John&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;PLoS
  • Biology&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;10&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2005&quot;]]},&quot;page&quot;:&quot;1696-1699&quot;,&quot;title&quot;:&quot;How
  • the ecdysozoan changed its
  • coat&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;3&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=a13232b0-4a3a-4537-b2cb-8e625020dec8&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Ewer
  • 2005)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Ewer
  • 2005)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;[4]&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Ewer 2005)<!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]-->. Cuticular integrity is also important after ecdysis, as insects and crustaceans expand their new cuticle by increasing internal pressure by swallowing air and water, respectively. This happens in order to expand and provide stability to the new cuticle until it is hardened (tanned) <!--[if supportFields]><span lang=EN-US style='font-size:11.0pt;
  • line-height:107%;font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
  • mso-fareast-font-family:Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:
  • minor-latin;mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;
  • mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><span
  • style='mso-element:field-begin;mso-field-lock:yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.2307/1547867&quot;,&quot;ISSN&quot;:&quot;0278-0372&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;deFur&quot;,&quot;given&quot;:&quot;Peter
  • L.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Mangum&quot;,&quot;given&quot;:&quot;Charlotte
  • P.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;McMahon&quot;,&quot;given&quot;:&quot;Brian
  • R.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Journal
  • of Crustacean
  • Biology&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;2&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1985&quot;]]},&quot;page&quot;:&quot;207-215&quot;,&quot;title&quot;:&quot;Cardiovascular
  • and Ventilatory Changes During Ecdysis in the Blue Crab &lt;i&gt;Callinectes
  • Sapidus&lt;/i&gt;
  • Rathbun&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;5&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=5f9a7253-f58f-47c7-9979-dff8837e3df5&quot;]},{&quot;id&quot;:&quot;ITEM-2&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/0022-0981(78)90074-6&quot;,&quot;ISSN&quot;:&quot;00220981&quot;,&quot;abstract&quot;:&quot;Water
  • ingestion at ecdysis by the western rock lobster. Panulirus longipes (Milne
  • Edwards) was investigated using the reference markers 51Cr-EDTA and 58Co-EDTA.
  • Two possible mechanisms controlling water absorption were examined: first,
  • changes in osmolarity of blood and muscle and secondly, the effects of extracts
  • of central nervous system. Water ingestion was 16.071 ± 2.365 ml kg-1 h-1
  • during swelling just before ecdysis (stage D4(S)) and 23.099 ± 1.238 ml kg-1
  • h-1 during stage A. There was no significant absorption in the foregut or
  • hindgut and the digestive gland appeared to be the site of major absorption.
  • Total water ingested during stages D4(S) and A was 13.7% of the proecdysis
  • weight. Calculating total water uptake by wet weight differences plus wet
  • weight of exuviae gave a value that was too high and instead weight increases
  • were calculated from a carapace length-weight formula. Allowing for postecdysis
  • increase in weight the net increase at ecdysis was 18.4-21.4% which was
  • 4.7-7.7% more than the water ingested. It was concluded from this that water
  • enters the body at ecdysis both by ingestion and by absorption through the
  • external surface. It is suggested that water ingestion provides the main source
  • of swelling of the cephalothorax in stage D4(S) and after ecdysis both ingested
  • water and external absorption enables the flaccid abdomen and appendages to
  • swell rapidly. Statistically significant differences were found in the
  • concentrations of total cations and chloride in leg muscle during the
  • transition from stage C4 to late D4 but the trends were not consistent and probably
  • have no functional significance. There were no changes in the concentration of
  • osmotically active organic constituents. The freezing-point depression of the
  • blood in stage D4 was significantly higher than that in stage C4(P &lt; 0.02)
  • but the mean difference was only 1.8%. It was concluded that osmoticchanges
  • were unlikely to be an important mechanism of water uptake. Water-soluble
  • extract (WSE) and acetone-soluble extract (ASE) of brains and first ventral
  • ganglia were without significant effect when compared together with controls.
  • There was a barely significant decrease, however, in water in the
  • proventriculus of WSE-treated animals compared with that of controls (P &lt;
  • 0.05). and further investigation on the effects of such extracts on water uptake
  • at ecdysis is warranted. ©
  • 1978.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Dall&quot;,&quot;given&quot;:&quot;W.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Smith&quot;,&quot;given&quot;:&quot;D.
  • M.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Press&quot;,&quot;given&quot;:&quot;Biomedical&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Journal
  • of Experimental Marine Biology and
  • Ecology&quot;,&quot;id&quot;:&quot;ITEM-2&quot;,&quot;issue&quot;:&quot;1960&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1978&quot;]]},&quot;title&quot;:&quot;Water
  • uptake at ecdysis in the western rock
  • lobster&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;35&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=7de2ab94-c05e-4646-957b-a900dc162056&quot;]},{&quot;id&quot;:&quot;ITEM-3&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1111/j.1365-3032.1957.tb00361.x&quot;,&quot;ISSN&quot;:&quot;13653032&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Clarke&quot;,&quot;given&quot;:&quot;Kenneth
  • U.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Proceedings
  • of the Royal Entomological Society of London. Series A, General
  • Entomology&quot;,&quot;id&quot;:&quot;ITEM-3&quot;,&quot;issue&quot;:&quot;1-3&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1957&quot;]]},&quot;page&quot;:&quot;35-39&quot;,&quot;title&quot;:&quot;On
  • the Increase in Linear Size During Growth in &lt;i&gt;Locusta
  • Migratoria&lt;/i&gt;
  • L.&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;32&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=eea788ce-c9d2-42b7-a36e-598377701670&quot;]},{&quot;id&quot;:&quot;ITEM-4&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/0022-1910(61)90090-7&quot;,&quot;ISSN&quot;:&quot;00221910&quot;,&quot;abstract&quot;:&quot;Two
  • methods of estimating insect blood volume are discussed. A method based on
  • haemocyte counts before and after injection of a measured volume of saline is
  • shown to be invalid, whereas a method based on the dilution of amaranth dye by
  • the haemolymph gave repeatable and consistent results. The blood volume of
  • Schistocerca gregaria Forsk. rises during the latter half of an instar, and
  • attains its highest level just prior to ecdysis. This high blood volume is
  • maintained for about 24 hr after ecdysis, then falls sharply to a mid-instar or
  • adult value, which is constant under the conditions described herein. The
  • increase in blood volume is shown to be due partly to changes in the
  • distribution of water within the body, and not merely to an intake of water
  • from the exterior. During periods of dietary water deficiency, the blood of the
  • desert locust can act as a reserve of water for other tissue requirements. ©
  • 1961.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Lee&quot;,&quot;given&quot;:&quot;R.
  • M.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Journal
  • of Insect Physiology&quot;,&quot;id&quot;:&quot;ITEM-4&quot;,&quot;issue&quot;:&quot;1&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1961&quot;]]},&quot;page&quot;:&quot;36-51&quot;,&quot;title&quot;:&quot;The
  • variation of blood volume with age in the desert locust (&lt;i&gt;Schistocerca
  • gregaria&lt;/i&gt; Forsk.)&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;6&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=7d2a6590-2216-4800-aee1-b3fb31ed55c7&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Clarke
  • 1957; Lee 1961; Dall et al. 1978; deFur et al.
  • 1985)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Clarke 1957; Lee
  • 1961; Dall et al. 1978; deFur et al.
  • 1985)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;[5]–[8]&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Clarke 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985)<!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]-->.</span></p>
  • style='mso-element:field-end'></span></span><![endif]-->. Hence, cuticular chitin is also indispensable for the development of arthropods, as an immaculate cuticle is required for proper molting and therefore also for the growth of an organism.</span><br />
  • &nbsp;</p>
  • <br>
  • <h4>How it is Measured or Detected</h4>
  • <p><span style="font-size:14px">Several ways to determine cuticular chitin are described in the literature. Some of them are based on the determination of amino sugars after digestion or hydrolysis of chitin. For example, after the digestion of chitin by a bacterial chitinase, the GlcNAc amount can be determined colorimetrically by a modified Morgan-Elson assay <!--[if supportFields]><span lang=EN-US style='font-size:11.0pt;
  • <h4>How it is Measured or Detected</h4>
  • <p><span style="font-size:14px">Several ways to determine cuticular chitin are described in the literature. Some of them are based on the determination of amino sugars after digestion or hydrolysis of chitin. For example, after the digestion of chitin by a bacterial chitinase, the <em>N</em>-Acetylclucosamine (GlcNAc) amount can be determined colorimetrically by a modified Morgan-Elson assay <!--[if supportFields]><span lang=EN-US style='font-size:11.0pt;
  • line-height:107%;font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
  • mso-fareast-font-family:Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:
  • minor-latin;mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;
  • mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><span
  • style='mso-element:field-begin;mso-field-lock:yes'></span>ADDIN CSL_CITATION {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Reissig&quot;,&quot;given&quot;:&quot;J.
  • L.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Strominger&quot;,&quot;given&quot;:&quot;J.
  • L.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Leloir&quot;,&quot;given&quot;:&quot;L.
  • F.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;The
  • Journal of Biological
  • Chemistry&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1955&quot;]]},&quot;page&quot;:&quot;959-966&quot;,&quot;title&quot;:&quot;A
  • modified colorimetric method for the estimation of N-acetylamino
  • sugars&quot;,&quot;type&quot;:&quot;article-journal&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=e5b7080f-7220-4ac0-91fe-53323221ce31&quot;]},{&quot;id&quot;:&quot;ITEM-2&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1111/j.1365-2583.2005.00576.x&quot;,&quot;ISSN&quot;:&quot;09621075&quot;,&quot;PMID&quot;:&quot;16164601&quot;,&quot;abstract&quot;:&quot;Functional
  • analysis of the two chitin synthase genes, TcCHS1 and TcCHS2, in the red flour
  • beetle, Tribolium castaneum, revealed unique and complementary roles for each
  • gene. TcCHS1-specific RNA interference (RNAi) disrupted all three types of
  • moult (larval-larval, larval-pupal and pupal-adult) and greatly reduced
  • whole-body chitin content. Exon-specific RNAi showed that splice variant 8a of
  • TcCHS1 was required for both the larval-pupal and pupal-adult moults, whereas
  • splice variant 8b was required only for the latter. TcCHS2-specific RNAi had no
  • effect on metamorphosis or on total body chitin content. However, RNAi-mediated
  • down-regulation of TcCHS2, but not TcCHS1, led to cessation of feeding, a
  • dramatic shrinkage in larval size and reduced chitin content in the midgut. ©
  • 2005 The Royal Entomological
  • Society.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Arakane&quot;,&quot;given&quot;:&quot;Y.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Muthukrishnan&quot;,&quot;given&quot;:&quot;S.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Kramer&quot;,&quot;given&quot;:&quot;K.
  • J.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Specht&quot;,&quot;given&quot;:&quot;C.
  • A.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Tomoyasu&quot;,&quot;given&quot;:&quot;Y.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Lorenzen&quot;,&quot;given&quot;:&quot;M.
  • D.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Kanost&quot;,&quot;given&quot;:&quot;M.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Beeman&quot;,&quot;given&quot;:&quot;R.
  • W.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Insect
  • Molecular
  • Biology&quot;,&quot;id&quot;:&quot;ITEM-2&quot;,&quot;issue&quot;:&quot;5&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2005&quot;]]},&quot;page&quot;:&quot;453-463&quot;,&quot;title&quot;:&quot;The
  • &lt;i&gt;Tribolium &lt;/i&gt; chitin synthase genes TcCHS1 and TcCHS2 are
  • specialized for synthesis of epidermal cuticle and midgut peritrophic
  • matrix&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;14&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=849047b2-43cc-4c68-a566-ac8d02770f8f&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Reissig
  • et al. 1955; Arakane et al.
  • 2005)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Reissig et al. 1955;
  • Arakane et al. 2005)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;[9],
  • [10]&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Reissig et al. 1955; Arakane et al. 2005)<!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]-->. Alternatively, one can also quantify glucosamine colorimetrically after deacetylation and hydrolysis of chitin <!--[if supportFields]><span lang=EN-US
  • style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA;mso-no-proof:yes'><span style='mso-element:field-begin;
  • mso-field-lock:yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Lehmann&quot;,&quot;given&quot;:&quot;Paul
  • F.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;White&quot;,&quot;given&quot;:&quot;Les
  • O.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Infection
  • and
  • immunity&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;5&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1975&quot;]]},&quot;page&quot;:&quot;987-992&quot;,&quot;title&quot;:&quot;Chitin
  • Assay Used to Demonstrate Renal Localization and Cortisone-Enhanced Growth of
  • &lt;i&gt;Aspergillus fumigatus&lt;/i&gt; Mycelium in
  • Mice&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;12&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=9a283039-39e3-4744-ad55-257699c604a7&quot;]},{&quot;id&quot;:&quot;ITEM-2&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/j.ibmb.2006.06.002&quot;,&quot;ISSN&quot;:&quot;09651748&quot;,&quot;abstract&quot;:&quot;Chitin
  • synthase (EC 2.4.1.16) is a crucial enzyme responsible for chitin biosynthesis
  • in all chitin-containing organisms. This paper reports a complete cDNA encoding
  • chitin synthase 1 (AqCHS1), change of AqCHS1 mRNA level in response to
  • diflubenzuron exposure, and concentration-dependent effect of diflubenzuron on
  • chitin synthesis in the common malaria mosquito (Anopheles quadrimaculatus).
  • The cDNA consists of 5723 nucleotides, including an open reading frame (ORF) of
  • 4734 nucleotides that encode 1578 amino acid residues and a non-translated
  • region of 989 nucleotides. The deduced amino acid sequence contains all the
  • chitin synthase signature motifs (EDR, QRRRW and SWGTR) and shows 97% identity
  • to that of An. gambiae (AgCHS1, XM_321337). Northern blot and real-time
  • quantitative PCR analyses revealed a significant increase of AqCHS1 mRNA level
  • in the larvae exposed to diflubenzuron at 100 and 500 μg/L. As confirmed by
  • real-time quantitative PCR, AqCHS1 mRNA level was enhanced by 2-fold in the
  • larvae exposed to diflubenzuron at 500 μg/L for 24 h. In contrast, exposures of
  • the larvae to diflubenzuron at 4.0, 20, 100 and 500 μg/L for 48 h resulted in
  • decreases of chitin content by 9.0%, 43%, 58% and 76%, respectively.
  • Significantly increased AqCHS1 mRNA level associated with decreased chitin
  • synthesis may imply possible inhibition of chitin synthase, or abnormal chitin
  • synthase translocation or chitin microfibril assembly conferred by
  • diflubenzuron. Increased AqCHS1 expression due to increased transcription
  • and/or increased mRNA stability may serve as a feedback mechanism to compensate
  • such an effect in the mosquitoes. Further studies are necessary to elucidate
  • the relationship between reduced chitin synthesis and increased expression of
  • AqCHS1 in order to shed new light on trafficking and regulation of chitin biosynthesis
  • in the mosquito affected by diflubenzuron. © 2006 Elsevier Ltd. All rights
  • reserved.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Zhang&quot;,&quot;given&quot;:&quot;Jianzhen&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Zhu&quot;,&quot;given&quot;:&quot;Kun
  • Yan&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Insect
  • Biochemistry and Molecular Biology&quot;,&quot;id&quot;:&quot;ITEM-2&quot;,&quot;issue&quot;:&quot;9&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2006&quot;]]},&quot;page&quot;:&quot;712-725&quot;,&quot;title&quot;:&quot;Characterization
  • of a chitin synthase cDNA and its increased mRNA level associated with
  • decreased chitin synthesis in &lt;i&gt;Anopheles quadrimaculatus&lt;/i&gt;
  • exposed to
  • diflubenzuron&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;36&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=fa5bf775-1428-4062-8648-d40302face64&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Lehmann
  • and White 1975; Zhang and Zhu
  • 2006)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Lehmann and White
  • 1975; Zhang and Zhu 2006)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;[11],
  • [12]&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Lehmann and White 1975; Zhang and Zhu 2006)<!--[if supportFields]><span lang=EN-US style='font-size:
  • 11.0pt;line-height:107%;font-family:"Calibri",sans-serif;mso-ascii-theme-font:
  • minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:minor-latin;
  • mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA;mso-no-proof:yes'><span style='mso-element:field-end'></span></span><![endif]-->.<br />
  • There also exists an approach based on the detection of fluorescence after staining with calcofluor white. In this assay, no treatment of the samples is necessary, the detection is carried out in homogenates of the respective organisms as calcofluor white directly binds to chitin <!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA;mso-no-proof:yes'><span style='mso-element:field-begin;
  • mso-field-lock:yes'></span>ADDIN CSL_CITATION {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.3389/fphys.2020.00117&quot;,&quot;ISSN&quot;:&quot;1664042X&quot;,&quot;abstract&quot;:&quot;Chitin
  • is an aminopolysaccharide present in yeast cells and arthropod cuticle and is
  • one of the most abundant biopolymers. The conventional methods for the
  • quantitation of chitin content in biological samples are based on its
  • hydrolysis (acid or enzymatic), and the assessment of the byproduct,
  • glucosamine. However, previously described methodologies are time-consuming,
  • laborious, low throughput, and not applicable to insect samples in many cases.
  • Here we describe a new approach to chitin content quantitation based on
  • calcofluor fluorescent brightener staining of samples, followed by microplate
  • fluorescence readings. Calcofluor is a specific chitin stain commonly used for
  • topological localization of the polymer. The protocol was tested in three
  • important disease vector species, namely Lutzomyia longipalpis, Aedes aegypti,
  • and Rhodnius prolixus, and then compared to a classic colorimetric chitin
  • assessment method. Results show that chitin content in the tested insects can
  • vary largely in a range of 8–4600 micrograms of chitin per insect, depending on
  • species, sex, and instar. Comparisons between measurements from the previous
  • protocol and calcofluor method showed statistically significant differences in
  • some samples. However, the difference might be due to interference in the
  • classic method from non-chitin sources of glucosamine and reducing agents.
  • Furthermore, chitinase hydrolysis reduces the total chitin mass estimated
  • between 36 and 74%, consolidating the fluorescent measurements as actual
  • stained chitin in the same extent that was observed with the standard protocol.
  • Therefore, the calcofluor staining method revealed to be a fast and reliable
  • technique for chitin quantitation in homogenized insect
  • samples.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Henriques&quot;,&quot;given&quot;:&quot;Bianca
  • Santos&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Garcia&quot;,&quot;given&quot;:&quot;Eloi
  • Souza&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Azambuja&quot;,&quot;given&quot;:&quot;Patricia&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Genta&quot;,&quot;given&quot;:&quot;Fernando
  • Ariel&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Frontiers
  • in
  • Physiology&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;February&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2020&quot;]]},&quot;page&quot;:&quot;1-10&quot;,&quot;title&quot;:&quot;Determination
  • of Chitin Content in Insects: An Alternate Method Based on Calcofluor
  • Staining&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;11&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=e225b750-e330-404b-bc62-3fe4adb45c82&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Henriques
  • et al. 2020)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Henriques et
  • al.
  • 2020)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;[13]&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Henriques et al. 2020)<!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA;mso-no-proof:yes'><span style='mso-element:field-end'></span></span><![endif]-->.<br />
  • Chitin can also be quantified using radioactively labelled precursors (e.g. 14C-UDP-GlcNAc) which are incorporated into <em>in vitro</em> cultured integument pieces or into the cuticle of whole organisms <!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA;mso-no-proof:yes'><span style='mso-element:field-begin;
  • mso-field-lock:yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/0048-3575(79)90098-1&quot;,&quot;ISSN&quot;:&quot;10959939&quot;,&quot;abstract&quot;:&quot;The
  • increase in cuticle thickness with age of fifth instar larvae of Pieris
  • brassicae (L.) was measured microscopically. The injection of a lethal dose of
  • either Polyoxin D or diflubenzuron revealed total inhibition of cuticular
  • growth and caused comparable abnormalities in the cuticles. In a further
  • experiment [14C]glucose was injected along with Polyoxin D into Pieris
  • brassicae and the incorporation of radioactivity into various tissue fractions
  • was measured. This revealed that the impairment of cuticular growth was due to
  • inhibition of chitin synthesis. With the methods used the effects of Polyoxin D
  • and two benzoylphenylurea insecticides appeared to be the same. ©
  • 1979.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Gijswijt&quot;,&quot;given&quot;:&quot;M.
  • J.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Deul&quot;,&quot;given&quot;:&quot;D.
  • H.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Jong&quot;,&quot;given&quot;:&quot;B.
  • J.&quot;,&quot;non-dropping-particle&quot;:&quot;de&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Pesticide
  • Biochemistry and
  • Physiology&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;1&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1979&quot;]]},&quot;page&quot;:&quot;87-94&quot;,&quot;title&quot;:&quot;Inhibition
  • of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in
  • action in &lt;i&gt;Pieris brassicae&lt;/i&gt; (L.) with Polyoxin
  • D&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;12&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=d8c76ed6-331a-4d84-a384-060a7786c23b&quot;]},{&quot;id&quot;:&quot;ITEM-2&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1071/BI9820491&quot;,&quot;ISSN&quot;:&quot;00049417&quot;,&quot;abstract&quot;:&quot;Isolated
  • whole integuments from L. cuprina larvae rapidly incorporate radioactivity from
  • both N-acetyl[1-14C]glucosamine and [1-'4C]glucosamine into alkali-insoluble
  • material, a reaction which does not require preincubation of the tissue with
  • β-ecdysone. The labelled product was degraded to N-acetylglucosamine during
  • digestion with chitinase, establishing that it consists mainly of chitin.
  • Incorporation was inhibited by polyoxin-D (I506 × 10−7 M) and diflubenzuron
  • (I507 × 10−7 M) but was not inhibited to any marked extent by isoprothiolane,
  • Vetrazin or α-methyl-DOPA. The effectiveness of diflubenzuron as an inhibitor
  • of chitin synthesis in this system (I506 × 10−7 M) correlates well with its
  • potency as a larvicide (LD502 · 1 × 10−6 M), providing additional support for
  • the proposal that this compound kills larvae by interfering with chitin
  • deposition in the cuticle. Polyoxin-D was much more effective as an inhibitor
  • of chitin synthesis (I506 × 10−7 M) than as a larvicide (LD502 · 0 × 10−5 M).
  • It was established that the final intermediate of chitin biosynthesis
  • (UDP-N-acetylglucosamine) was formed in the isolated integuments in the
  • presence of diflubenzuron and polyoxin-D. It seems likely therefore that both
  • compounds interfere with the final polymerization step of the chitin
  • biosynthesis pathway. © 1982
  • ASEG.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Turnbull&quot;,&quot;given&quot;:&quot;I.
  • F.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Howells&quot;,&quot;given&quot;:&quot;A.
  • J.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Australian
  • Journal of Biological Sciences&quot;,&quot;id&quot;:&quot;ITEM-2&quot;,&quot;issue&quot;:&quot;5&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1982&quot;]]},&quot;page&quot;:&quot;491-504&quot;,&quot;title&quot;:&quot;Effects
  • of several larvicidal compounds on chitin biosynthesis by isolated larval
  • integuments of the sheep blowfly &lt;i&gt;Lucilia
  • cuprina&lt;/i&gt;&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;35&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=fd6263b3-01b7-4b0e-bbcc-3c62e798badd&quot;]},{&quot;id&quot;:&quot;ITEM-3&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.7164/antibiotics.37.253&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Calcott&quot;,&quot;given&quot;:&quot;Peter
  • H&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Fatig&quot;,&quot;given&quot;:&quot;Raymond
  • O&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Journal
  • of
  • Antibiotics&quot;,&quot;id&quot;:&quot;ITEM-3&quot;,&quot;issue&quot;:&quot;3&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1984&quot;]]},&quot;page&quot;:&quot;253-259&quot;,&quot;title&quot;:&quot;Inhibition
  • of Chitin metabolism by Avermectin in susceptible
  • Organisms&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;37&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=766ef597-d1ad-424e-ab3d-94c8c47a9f89&quot;]},{&quot;id&quot;:&quot;ITEM-4&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/0742-8413(86)90073-3&quot;,&quot;ISSN&quot;:&quot;03064492&quot;,&quot;PMID&quot;:&quot;2877789&quot;,&quot;abstract&quot;:&quot;1.
  • 1. A rapid, reliable, repeatable bioassay for measuring chitin synthesis is
  • described. 2. 2. It utilizes the clasper from male pharate adult European corn
  • borers and measures the incorporation of [14C]N-acetylglucosamine. 3. 3. Chitin
  • synthesis is maximum in claspers taken from animals 5 and 6 days postpupation.
  • 4. 4. The system is very sensitive to inhibition by the phenylbenzoyl ureas and
  • polyoxins and should be useful for identifying potential inhibitory agents. ©
  • 1988.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Gelman&quot;,&quot;given&quot;:&quot;D.
  • B.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Borkovec&quot;,&quot;given&quot;:&quot;Alexej
  • B.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Comparative
  • Biochemistry and Physiology. Part C,
  • Comparative&quot;,&quot;id&quot;:&quot;ITEM-4&quot;,&quot;issue&quot;:&quot;1&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1986&quot;]]},&quot;page&quot;:&quot;193-197&quot;,&quot;title&quot;:&quot;The
  • pharate adult clasper as a tool for measuring chitin synthesis and for
  • identifying new chitin synthesis
  • inhibitors&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;85&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=8f617e22-df7d-4431-a130-09ed71888baa&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Gijswijt
  • et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Gelman and
  • Borkovec 1986)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Gijswijt et
  • al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Gelman and
  • Borkovec
  • 1986)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;[14]–[17]&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Gijswijt et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Gelman and Borkovec 1986)<!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA;mso-no-proof:yes'><span style='mso-element:field-end'></span></span><![endif]-->.</span></p>
  • <br>
  • EN-US;mso-bidi-language:AR-SA;mso-no-proof:yes'><span style='mso-element:field-end'></span></span><![endif]-->.<br />
  • Another possibility is to use the non-radioactive assay developed to measure chitin synthase activity (Lucero et al. 2002; Zhang and Yan Zhu 2013). Instead of adding an enzyme extract and chitin precursors to the reaction, one could simply add homogenized chitin containing material to the reaction to quantify its chitin content.</span></p>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. 2005. The <em>Tribolium </em>&nbsp;chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol. 14(5):453&ndash;463. doi:10.1111/j.1365-2583.2005.00576.x.</span></p>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. 2005. The <em>Tribolium </em>&nbsp;chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol. 14(5):453&ndash;463. doi:10.1111/j.1365-2583.2005.00576.x.</span></p>
  • <p><span style="font-size:14px">Calcott PH, Fatig RO. 1984. Inhibition of Chitin metabolism by Avermectin in susceptible Organisms. J Antibiot (Tokyo). 37(3):253&ndash;259. doi:10.7164/antibiotics.37.253.</span></p>
  • <p><span style="font-size:14px">Clarke KU. 1957. On the Increase in Linear Size During Growth in <em>Locusta Migratoria</em> L. Proc R Entomol Soc London Ser A, Gen Entomol. 32(1&ndash;3):35&ndash;39. doi:10.1111/j.1365-3032.1957.tb00361.x.</span></p>
  • <p><span style="font-size:14px">Dall W, Smith DM, Press B. 1978. Water uptake at ecdysis in the western rock lobster. J Exp Mar Bio Ecol. 35(1960). doi:10.1016/0022-0981(78)90074-6.</span></p>
  • <p><span style="font-size:14px">deFur PL, Mangum CP, McMahon BR. 1985. Cardiovascular and Ventilatory Changes During Ecdysis in the Blue Crab <em>Callinectes Sapidus</em> Rathbun. J Crustac Biol. 5(2):207&ndash;215. doi:10.2307/1547867.</span></p>
  • <p><span style="font-size:14px">Ewer J. 2005. How the ecdysozoan changed its coat. PLoS Biol. 3(10):1696&ndash;1699. doi:10.1371/journal.pbio.0030349.</span></p>
  • <p><span style="font-size:14px">Gelman DB, Borkovec AB. 1986. The pharate adult clasper as a tool for measuring chitin synthesis and for identifying new chitin synthesis inhibitors. Comp Biochem Physiol Part C, Comp. 85(1):193&ndash;197. doi:10.1016/0742-8413(86)90073-3.</span></p>
  • <p><span style="font-size:14px">Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in <em>Pieris brassicae</em> (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87&ndash;94. doi:10.1016/0048-3575(79)90098-1.</span></p>
  • <p><span style="font-size:14px">Henriques BS, Garcia ES, Azambuja P, Genta FA. 2020. Determination of Chitin Content in Insects: An Alternate Method Based on Calcofluor Staining. Front Physiol. 11(February):1&ndash;10. doi:10.3389/fphys.2020.00117.</span></p>
  • <p><span style="font-size:14px">Lee RM. 1961. The variation of blood volume with age in the desert locust (<em>Schistocerca gregaria</em> Forsk.). J Insect Physiol. 6(1):36&ndash;51. doi:10.1016/0022-1910(61)90090-7.</span></p>
  • <p><span style="font-size:14px">Lehmann PF, White LO. 1975. Chitin Assay Used to Demonstrate Renal Localization and Cortisone-Enhanced Growth of <em>Aspergillus fumigatus</em> Mycelium in Mice. Infect Immun. 12(5):987&ndash;992.</span></p>
  • <p><span style="font-size:14px">Lucero HA, Kuranda MJ, Bulik DA. 2002. A nonradioactive, high throughput assay for chitin synthase activity. Anal Biochem. 305(1):97&ndash;105.<br />
  • doi:10.1006/abio.2002.5594.</span></p>
  • <p><span style="font-size:14px">Lukens RJ, Sisler HD. 1958. 2-Thiazolidinethione-4-carboxylic acid from the reaction of captan with cysteine. Science (80- ). 127(3299):650. doi:10.1126/science.127.3299.650.</span></p>
  • <p><span style="font-size:14px">Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ. 2012. Chitin Metabolism in Insects. Elsevier B.V. http://dx.doi.org/10.1016/B978-0-12-384747-8.10007-8.</span></p>
  • <p><span style="font-size:14px">Osada H. 2019. Discovery and applications of nucleoside antibiotics beyond polyoxin. J Antibiot (Tokyo). 72(12):855&ndash;864. doi:10.1038/s41429-019-0237-1. http://dx.doi.org/10.1038/s41429-019-0237-1.</span></p>
  • <p><span style="font-size:14px">Reissig JL, Strominger JL, Leloir LF. 1955. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem.:959&ndash;966.</span></p>
  • <p><span style="font-size:14px">Reynolds SE. 1987. The cuticle, growth and moulting in insects: The essential background to the action of acylurea insecticides. Pestic Sci. 20(2):131&ndash;146. doi:10.1002/ps.2780200207.</span></p>
  • <p><span style="font-size:14px">Turnbull IF, Howells AJ. 1982. Effects of several larvicidal compounds on chitin biosynthesis by isolated larval integuments of the sheep blowfly <em>Lucilia cuprina</em>. Aust J Biol Sci. 35(5):491&ndash;504. doi:10.1071/BI9820491.</span></p>
  • <p><span style="font-size:14px">Vincent JFV, Wegst UGK. 2004. Design and mechanical properties of insect cuticle. Arthropod Struct Dev. 33(3):187&ndash;199. doi:10.1016/j.asd.2004.05.006.</span></p>
  • <p><span style="font-size:14px">Zhang J, Zhu KY. 2006. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in <em>Anopheles quadrimaculatus</em> exposed to diflubenzuron. Insect Biochem Mol Biol. 36(9):712&ndash;725. doi:10.1016/j.ibmb.2006.06.002.</span></p>
  • <p><span style="font-size:14px">Zhang X, Yan Zhu K. 2013. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles<br />
  • gambiae. Insect Sci. 20(2):158&ndash;166. doi:10.1111/j.1744-7917.2012.01568.x.</span></p>
  • <p><span style="font-size:14px">Zhuo W, Fang Y, Kong L, Li X, Sima Y, Xu S. 2014. Chitin synthase A: A novel epidermal development regulation gene in the larvae of <em>Bombyx mori</em>. Mol Biol Rep. 41(7):4177&ndash;4186. doi:10.1007/s11033-014-3288-1.</span></p>
  • <br>
  • <!-- end event text -->
  • </div>
  • <div>
  • <div>
  • <h4><a href="/events/1524">Event: 1524: Increase, Premature molting</a><br></h4>
  • <h5>Short Name: Increase, Premature molting</h5>
  • </div>
  • <h4>Key Event Component</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Process</th>
  • <th>Object</th>
  • <th>Action</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>ecdysis, chitin-based cuticle</td>
  • <td></td>
  • <td>decreased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <div>
  • <!-- loop to find all aops that use this event -->
  • <h4>AOPs Including This Key Event</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <h4><a href="/events/1524">Event: 1524: Increase, Premature molting</a></h4>
  • <h5>Short Name: Increase, Premature molting</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <th>AOP ID and Name</th>
  • <th>Event Type</th>
  • <td>ecdysis, chitin-based cuticle</td>
  • <td></td>
  • <td>decreased</td>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td><a href="/aops/343">Aop:343 - S-adenosylmethionine depletion leading to population decline (2)</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/342">Aop:342 - S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/358">Aop:358 - Chitinase inhibition leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/359">Aop:359 - Chitobiase inhibition leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/360">Aop:360 - Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/361">Aop:361 - Sulfonylureareceptor binding leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </tbody>
  • </table>
  • </div>
  • <!-- loop to find stressors under event -->
  • <div>
  • <h4>Stressors</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Name</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Polyoxin D</td>
  • </tr>
  • <tr>
  • <td>Nikkomycins</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <br>
  • <!-- biological organization -->
  • <div>
  • <h4>Biological Context</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Level of Biological Organization</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Individual</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end of bio org -->
  • <!-- cell term -->
  • <div>
  • </div>
  • <!-- end of cell term -->
  • <!-- organ term -->
  • <div>
  • </div>
  • <!-- end of organ term -->
  • <!-- Evidence for Perturbation of This Event by Stressors -->
  • <!-- end Evidence for Perturbation of This Event by Stressors -->
  • <h4>Domain of Applicability</h4>
  • <br>
  • <!-- loop to find taxonomic applicability under event -->
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Term</th>
  • <th>Scientific Term</th>
  • <th>Evidence</th>
  • <th>Links</th>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Pieris brassicae</td>
  • <td>Pieris brassicae</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7116" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Lucilia cuprina</td>
  • <td>Lucilia cuprina</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7375" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/343">Aop:343 - S-adenosylmethionine depletion leading to population decline (2)</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/342">Aop:342 - S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/358">Aop:358 - Chitinase inhibition leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/359">Aop:359 - Chitobiase inhibition leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/360">Aop:360 - Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/361">Aop:361 - Sulfonylureareceptor binding leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end loop for taxons -->
  • <!-- life stages -->
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Polyoxin D</td></tr>
  • <tr><td>Nikkomycins</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Individual</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Pieris brassicae</td>
  • <td>Pieris brassicae</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7116" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Lucilia cuprina</td>
  • <td>Lucilia cuprina</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7375" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Life Stage</th>
  • <th>Evidence</th>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end life stages -->
  • <!-- sex terms -->
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Sex</th>
  • <th>Evidence</th>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end sex terms -->
  • <div>
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>Effect data for the occurrence of this KE exist from <em>Pieris brassicae</em> and <em>Lucilia cuprina</em>, defining its taxonomic applicability. However, all arthropods undergo molting, so it is highly likely that this KE is applicable to the whole phylum of arthropods.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Taxonomic: </strong>Effect data for the occurrence of this KE exist from <em>Pieris brassicae</em> and <em>Lucilia cuprina</em>. However, all arthropods undergo molting, so it is highly likely that this KE is applicable to the whole phylum of arthropods.</span></span></p>
  • <p><span style="font-size:14px"><strong>Life stage: </strong>This KE is applicable for organisms that undergo molting in order to grow and develop, namely larval stages of insects and all life stages of crustaceans and arachnids.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Life stage: </strong>This KE is applicable for organisms that undergo molting in order to grow and develop, namely larval stages of insects and all life stages of crustaceans and arachnids.</span></span></p>
  • <p><span style="font-size:14px"><strong>Sex: </strong>This KE is applicable to all sexes.</span></p>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Sex: </strong>This KE is applicable to all sexes.</span></span></p>
  • <p><span style="font-size:14px"><strong>Chemical:</strong> Substances known to induce premature molting are of the family of pyrimidine nucleosides (e.g. polyoxin D and nikkomycin Z) (Gijswijt et al. 1979; Tellam et al. 2000; Arakawa et al. 2008).</span></p>
  • <br>
  • </div>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px"><strong>Chemical:</strong> Substances known to induce premature molting are of the family of pyrimidine nucleosides (e.g. polyoxin D and nikkomycin Z) (Gijswijt et al. 1979; Tellam et al. 2000; Arakawa et al. 2008).</span></span></p>
  • <!-- event text -->
  • <h4>Key Event Description</h4>
  • <p><span style="font-size:14px">This key event is measured on the level of the individual. In order to grow and develop, arthropods need to shed their exoskeleton periodically (Heming 2018). If they are not able to molt properly, the organism will eventually die. Premature molting summarizes a variety of effects related to molting disruption. It describes the unsuccessful molting where the organism is not able to shed the old cuticle, but also other effects related to molting in an immature stage where the new cuticle is not mature enough for the molt, such as rupture of the new cuticle and associated desiccation, deformities, higher susceptibility to pathogens or impaired locomotion.</span></p>
  • <h4>Key Event Description</h4>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">This key event is measured on the level of the individual. In order to grow and develop, arthropods need to shed their exoskeleton periodically (molting) (Heming 2018). During molting, the newly secreted cuticle is subject to mechanical stress associated and therefore needs to possess enough structural and functional integrity. The ecdysis motor program, which constitutes the behavioral part of the cuticle shedding requires the newly secreted cuticle to possess a certain strength to support for muscular force in order to shed the old cuticle (Ewer 2005). Cuticular integrity is also important after ecdysis, as insects and crustaceans expand their new cuticle by increasing internal pressure by swallowing air and water, respectively. This happens in order to expand and provide stability to the new cuticle until it is hardened (tanned) (Clarke 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985). If arthropods are not able to molt properly, the organism will eventually die. Premature molting&nbsp;describes the unsuccessful molting where the organism is not able to shed the old cuticle, but also other effects related to molting in an immature stage where the new cuticle is not mature enough for the molt, such as rupture of the new cuticle and associated desiccation, deformities, higher susceptibility to pathogens or impaired locomotion. Specific effects observed are animals stuck in their exuviae (Wang et al., 2019),&nbsp;and&nbsp;if molting can be completed despite an immature cuticle, animals might be smaller and die at subsequent molts (Arakawa et al., 2008; Chen et al., 2008; Mohammed et al., 2017).</span></span></p>
  • <br>
  • <h4>How it is Measured or Detected</h4>
  • <p><span style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:14px">Premature molting can be determined by observation. No standardized tests for the endpoint of molting exist to date.&nbsp;However, during an OECD 202 <em>Daphnia</em> sp. Acute immobilization test (OECD 2004), the cumulative number of molts can be assessed as an additional endpoint. Molting can also be assessed during a&nbsp;OECD 211&nbsp;<em>Daphnia</em> sp. Reproduction test (OECD 2012), as proposed previously (OECD 2003). One could even prolong the test to 96h to get a clearer result of this endpoint. Additionally, one could apply histopathological methods to monitor the maturity of the newly synthesized cuticle (e.g. thickness of procuticle).</span></span></p>
  • <h4>How it is Measured or Detected</h4>
  • <p><span style="font-size:14px">Premature molting can be determined by observation. For example, during an OECD 202 Daphnia sp. Acute immobilization test (OECD 2004), the cumulative number of molts can be assessed as an additional endpoint. One could even prolong the test to 96h to get a clearer result of this endpoint. Additionally, one could apply histopathological methods to monitor the maturity of the newly synthesized cuticle (e.g. thickness of procuticle).</span></p>
  • <br>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakawa T, Yukuhiro F, Noda H. 2008. Insecticidal effect of a fungicide containing polyoxin B on the larvae of <em>Bombyx mori</em> (Lepidoptera: Bombycidae), <em>Mamestra brassicae</em>, <em>Mythimna separata</em>, and <em>Spodoptera litura</em> (Lepidoptera: Noctuidae). Appl Entomol Zool. 43(2):173&ndash;181. doi:10.1303/aez.2008.173.</span></p>
  • <h4>References</h4>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Arakawa T, Yukuhiro F, Noda H. 2008. Insecticidal effect of a fungicide containing polyoxin B on the larvae of <em>Bombyx mori</em> (Lepidoptera: Bombycidae), <em>Mamestra brassicae</em>, <em>Mythimna separata</em>, and <em>Spodoptera litura</em> (Lepidoptera: Noctuidae). Appl Entomol Zool. 43(2):173&ndash;181. doi:10.1303/aez.2008.173.</span></span></p>
  • <p><span style="font-size:14px">Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in <em>Pieris brassicae</em> (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87&ndash;94. doi:10.1016/0048-3575(79)90098-1.</span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Chen, X.; Tian, H.; Zou, L.; Tang, B.; Hu, J.; Zhang, W. Disruption of Spodoptera Exigua Larval Development by Silencing Chitin Synthase Gene A with RNA Interference. Bull. Entomol. Res. 2008, 98 (6), 613&ndash;619. https://doi.org/10.1017/S0007485308005932.</span></span></p>
  • <p><span style="font-size:14px">Heming BS. 2018. Insect development and evolution. Ithaca: Cornell University Press.</span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Clarke KU. 1957. On the Increase in Linear Size During Growth in Locusta Migratoria L. Proc R Entomol Soc London Ser A, Gen Entomol. 32(1&ndash;<br />
  • 3):35&ndash;39. doi:10.1111/j.1365-3032.1957.tb00361.x.</span></span></p>
  • <p><span style="font-size:14px">OECD. 2004. Test No. 202: <em>Daphnia sp.</em> Acute Immobilisation Test. OECD Guidel Test og Chem Sect 2.(April):1&ndash;12. doi:10.1787/9789264069947-en. [accessed 2020 Jun 5]. https://www.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en.</span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Dall W, Smith DM, Press B. 1978. Water uptake at ecdysis in the western rock lobster. J Exp Mar Bio Ecol. 35(1960). doi:10.1016/0022-<br />
  • 0981(78)90074-6.</span></span></p>
  • <p><span style="font-size:14px">Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. 2000. Insect chitin synthase. cDNA sequence, gene organization and expression. Eur J Biochem. 267(19):6025&ndash;6043. doi:10.1046/j.1432-1327.2000.01679.x.</span></p>
  • <br>
  • <!-- end event text -->
  • </div>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">deFur PL, Mangum CP, McMahon BR. 1985. Cardiovascular and Ventilatory Changes During Ecdysis in the Blue Crab Callinectes Sapidus<br />
  • Rathbun. J Crustac Biol. 5(2):207&ndash;215. doi:10.2307/1547867.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Ewer J. 2005. How the ecdysozoan changed its coat. PLoS Biol. 3(10):1696&ndash;1699. doi:10.1371/journal.pbio.0030349.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in <em>Pieris brassicae</em> (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87&ndash;94. doi:10.1016/0048-3575(79)90098-1.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Heming BS. 2018. Insect development and evolution. Ithaca: Cornell University Press.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Mohammed, A. M. A.; DIab, M. R.; Abdelsattar, M.; Khalil, S. M. S. Characterization and RNAi-Mediated Knockdown of Chitin Synthase A in the Potato Tuber Moth, Phthorimaea Operculella. Sci. Rep. 2017, 7 (1), 1&ndash;12. https://doi.org/10.1038/s41598-017-09858-y.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Lee RM. 1961. The variation of blood volume with age in the desert locust (Schistocerca gregaria Forsk.). J Insect Physiol. 6(1):36&ndash;51.<br />
  • doi:10.1016/0022-1910(61)90090-7.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">OECD&nbsp;(2003),&nbsp;Proposal for an Enhanced Test Guideline. Daphnia magna Reproduction Test. Draft OECD Guidel. Test. Chem. Enhanc. Tech. Guid. Doc. 211 21.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">OECD (2004),&nbsp;<em>Test No. 202: Daphnia sp. Acute Immobilisation Test</em>, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris,&nbsp;<a href="https://doi.org/10.1787/9789264069947-en" title="">https://doi.org/10.1787/9789264069947-en</a>.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">OECD (2012),&nbsp;<em>Test No. 211: Daphnia magna Reproduction Test</em>, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris,&nbsp;<a href="https://doi.org/10.1787/9789264185203-en" title="">https://doi.org/10.1787/9789264185203-en</a>.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. 2000. Insect chitin synthase. cDNA sequence, gene organization and expression. Eur J Biochem. 267(19):6025&ndash;6043. doi:10.1046/j.1432-1327.2000.01679.x.</span></span></p>
  • <p><span style="font-size:14px"><span style="font-family:Arial,Helvetica,sans-serif">Wang, Z.; Yang, H.; Zhou, C.; Yang, W. J.; Jin, D. C.; Long, G. Y. Molecular Cloning, Expression, and Functional Analysis of the Chitin Synthase 1 Gene and Its Two Alternative Splicing Variants in the White-Backed Planthopper, Sogatella Furcifera (Hemiptera: Delphacidae). Sci. Rep. 2019, 9 (1), 1&ndash;14. https://doi.org/10.1038/s41598-018-37488-5.</span></span></p>
  • <h3>List of Adverse Outcomes in this AOP</h3>
  • <div>
  • <div>
  • <h4><a href="/events/350">Event: 350: Increase, Mortality</a><br></h4>
  • <h5>Short Name: Increase, Mortality</h5>
  • </div>
  • <h4>Key Event Component</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Process</th>
  • <th>Object</th>
  • <th>Action</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>mortality</td>
  • <td></td>
  • <td>increased</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <div>
  • <!-- loop to find all aops that use this event -->
  • <h4>AOPs Including This Key Event</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <h4><a href="/events/350">Event: 350: Increase, Mortality</a></h4>
  • <h5>Short Name: Increase, Mortality</h5>
  • <h4>Key Event Component</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Process</th>
  • <th scope="col">Object</th>
  • <th scope="col">Action</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <th>AOP ID and Name</th>
  • <th>Event Type</th>
  • <td>mortality</td>
  • <td></td>
  • <td>increased</td>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td><a href="/aops/4">Aop:4 - Ecdysone receptor agonism leading to incomplete ecdysis associated mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/286">Aop:286 - Mitochondrial complex III inhibition leading to growth inhibition (1)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/287">Aop:287 - Mitochondrial complex III inhibition leading to growth inhibition (2)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/331">Aop:331 - Formation of DNA photoproducts leading to growth inhibition (1)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/327">Aop:327 - Excessive reactive oxygen species production leading to mortality (1)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/328">Aop:328 - Excessive reactive oxygen species production leading to mortality (2)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/329">Aop:329 - Excessive reactive oxygen species production leading to mortality (3)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/330">Aop:330 - Excessive reactive oxygen species production leading to mortality (4)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/343">Aop:343 - S-adenosylmethionine depletion leading to population decline (2)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/342">Aop:342 - S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/358">Aop:358 - Chitinase inhibition leading to mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/359">Aop:359 - Chitobiase inhibition leading to mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/360">Aop:360 - Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/361">Aop:361 - Sulfonylureareceptor binding leading to mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </tbody>
  • </table>
  • </div>
  • <!-- loop to find stressors under event -->
  • <div>
  • <h4>Stressors</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Name</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Polyoxin D</td>
  • </tr>
  • <tr>
  • <td>Nikkomycins</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <br>
  • <!-- biological organization -->
  • <div>
  • <h4>Biological Context</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Level of Biological Organization</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Individual</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end of bio org -->
  • <!-- cell term -->
  • <div>
  • </div>
  • <!-- end of cell term -->
  • <!-- organ term -->
  • <div>
  • </div>
  • <!-- end of organ term -->
  • <!-- Evidence for Perturbation of This Event by Stressors -->
  • <!-- end Evidence for Perturbation of This Event by Stressors -->
  • <h4>Domain of Applicability</h4>
  • <br>
  • <!-- loop to find taxonomic applicability under event -->
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Term</th>
  • <th>Scientific Term</th>
  • <th>Evidence</th>
  • <th>Links</th>
  • <h4>AOPs Including This Key Event</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP ID and Name</th>
  • <th scope="col">Event Type</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Lucilia cuprina</td>
  • <td>Lucilia cuprina</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7375" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>Daphnia magna</td>
  • <td>Daphnia magna</td>
  • <td>High</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35525" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/4">Aop:4 - Ecdysone receptor agonism leading to incomplete ecdysis associated mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/331">Aop:331 - Formation of DNA photoproducts leading to growth inhibition (1)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/327">Aop:327 - Excessive reactive oxygen species production leading to mortality (1)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/328">Aop:328 - Excessive reactive oxygen species production leading to mortality (2)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/329">Aop:329 - Excessive reactive oxygen species production leading to mortality (3)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/330">Aop:330 - Excessive reactive oxygen species production leading to mortality (4)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/343">Aop:343 - S-adenosylmethionine depletion leading to population decline (2)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/342">Aop:342 - S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/358">Aop:358 - Chitinase inhibition leading to mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/359">Aop:359 - Chitobiase inhibition leading to mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/360">Aop:360 - Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/361">Aop:361 - Sulfonylureareceptor binding leading to mortality</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/465">Aop:465 - Alcohol dehydrogenase leading to reproductive dysfunction</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/466">Aop:466 - Doda decarboxylase leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/467">Aop:467 - Knickkopf leading to mortality</a></td>
  • <td>KeyEvent</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/479">Aop:479 - Mitochondrial complexes inhibition leading to heart failure via increased myocardial oxidative stress</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/480">Aop:480 - Mitochondrial complexes inhibition leading to heart failure via decreased ATP production</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/471">Aop:471 - Various neuronal effects induced by elavl3, sox10, and mbp</a></td>
  • <td>AdverseOutcome</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end loop for taxons -->
  • <!-- life stages -->
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Life Stage</th>
  • <th>Evidence</th>
  • <h4>Stressors</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Name</th></tr>
  • </thead>
  • <tbody>
  • <tr><td>Polyoxin D</td></tr>
  • <tr><td>Nikkomycins</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Biological Context</h4>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr><th scope="col">Level of Biological Organization</th></tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr><td>Individual</td></tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Domain of Applicability</h4>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>All life stages</td>
  • <td>High</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Lucilia cuprina</td>
  • <td>Lucilia cuprina</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7375" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>Daphnia magna</td>
  • <td>Daphnia magna</td>
  • <td>High</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35525" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end life stages -->
  • <!-- sex terms -->
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Sex</th>
  • <th>Evidence</th>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Unspecific</td>
  • <td>High</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>All life stages</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end sex terms -->
  • <div>
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>This AO is applicable to all living organisms.</span></p>
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>This AO is applicable to all living organisms.</span></p>
  • <p><span style="font-size:14px"><strong>Life stage: </strong>This AO&nbsp;is applicable to all life stages.</span></p>
  • <p><span style="font-size:14px"><strong>Sex: </strong>This AO is applicable to all sexes.</span></p>
  • <p><span style="font-size:14px"><strong>Chemical:</strong> Substances known to increase mortality in arthropods are of the family of pyrimidine nucleosides (e.g. polyoxin D and nikkomycin Z) (Gijswijt et al. 1979; Tellam et al. 2000; Arakawa et al. 2008).</span></p>
  • <br>
  • </div>
  • <!-- event text -->
  • <h4>Key Event Description</h4>
  • <p><span style="font-size:14px">This key event is observed at the biological level of the individual and describes the increase of mortality of individuals upon exposure to a stressor.</span></p>
  • <br>
  • <h4>Key Event Description</h4>
  • <p><span style="font-size:14px">This key event is observed at the biological level of the individual and describes the increase of mortality of individuals upon exposure to a stressor.</span></p>
  • <h4>How it is Measured or Detected</h4>
  • <p><span style="font-size:14px">The AO can be detected by observation, for example by immobilization of the respective organisms. There exist guidelines for the characterization of this AO in arthropods. For example, the OECD 202 Daphnia sp. Acute immobilization test&nbsp;</span><!--[if supportFields]><span lang=EN-US
  • <h4>How it is Measured or Detected</h4>
  • <p><span style="font-size:14px">The AO can be detected by observation, for example by immobilization of the respective organisms. There exist guidelines for the characterization of this AO in arthropods. For example, the OECD 202 Daphnia sp. Acute immobilization test&nbsp;</span><!--[if supportFields]><span lang=EN-US
  • style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-begin;mso-field-lock:
  • yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1787/9789264069947-en&quot;,&quot;ISBN&quot;:&quot;9789264069947&quot;,&quot;PMID&quot;:&quot;128&quot;,&quot;abstract&quot;:&quot;This
  • Test Guideline describes an acute toxicity test to assess effects of chemicals
  • towards daphnids (usually Daphnia magna Staus). Young daphnids, aged less than
  • 24 hours at the start of the test, are exposed to the test substance at a range
  • of concentrations (at least five concentrations) for a period of 48 hours.
  • Immobilisation is recorded at 24 hours and 48 hours and compared with control
  • values. The results are analysed in order to calculate the EC50 at 48h. Determination
  • of the EC50 at 24h is optional. At least 20 animals, preferably divided into
  • four groups of five animals each, should be used at each test concentration and
  • for the controls. At least 2 ml of test solution should be provided for each
  • animal (i.e. a volume of 10 ml for five daphnids per test vessel). The limit
  • test corresponds to one dose level of 100 mg/L. The study report should include
  • the observation for immobilized daphnids at 24 and 48 hours after the beginning
  • of the test and the measures of dissolved oxygen, pH, concentration of the test
  • substance, at the beginning and end of the
  • test.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;OECD&quot;,&quot;given&quot;:&quot;&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;collection-title&quot;:&quot;OECD
  • Guidelines for the Testing of Chemicals, Section
  • 2&quot;,&quot;container-title&quot;:&quot;OECD
  • Publishing&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;OECD
  • Guideline for the Testing of Chemicals, Section
  • 2&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2004&quot;,&quot;11&quot;,&quot;23&quot;]]},&quot;number-of-pages&quot;:&quot;1-12&quot;,&quot;publisher&quot;:&quot;OECD&quot;,&quot;title&quot;:&quot;Test
  • No. 202: &lt;i&gt;Daphnia sp.&lt;/i&gt; Acute Immobilisation
  • Test&quot;,&quot;type&quot;:&quot;report&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=53ebeac3-a1c9-3977-9697-df1efabeb4d3&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(OECD
  • 2004)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(OECD
  • 2004)&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(OECD 2004)<!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]--><span style="font-size:14px"> which can also be modified depending on the effect one expects.</span></p>
  • <br>
  • <h4>Regulatory Significance of the AO</h4>
  • <p><span style="font-size:14px">The Adverse Outcome is highly significant from a regulatory point of view. It is employed as regulatory endpoint in most studies assessing the toxicity of stressors.</span></p>
  • <h4>Regulatory Significance of the AO</h4>
  • <p><span style="font-size:14px">The Adverse Outcome is highly significant from a regulatory point of view. It is employed as regulatory endpoint in most studies assessing the toxicity of stressors.</span></p>
  • <br>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakawa T, Yukuhiro F, Noda H. 2008. Insecticidal effect of a fungicide containing polyoxin B on the larvae of <em>Bombyx mori</em> (Lepidoptera: Bombycidae), <em>Mamestra brassicae</em>, <em>Mythimna separata</em>, and <em>Spodoptera litura</em> (Lepidoptera: Noctuidae). Appl Entomol Zool. 43(2):173&ndash;181. doi:10.1303/aez.2008.173.</span></p>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakawa T, Yukuhiro F, Noda H. 2008. Insecticidal effect of a fungicide containing polyoxin B on the larvae of <em>Bombyx mori</em> (Lepidoptera: Bombycidae), <em>Mamestra brassicae</em>, <em>Mythimna separata</em>, and <em>Spodoptera litura</em> (Lepidoptera: Noctuidae). Appl Entomol Zool. 43(2):173&ndash;181. doi:10.1303/aez.2008.173.</span></p>
  • <p><span style="font-size:14px">Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in <em>Pieris brassicae</em> (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87&ndash;94. doi:10.1016/0048-3575(79)90098-1.</span></p>
  • <p><span style="font-size:14px">OECD. 2004. Test No. 202: <em>Daphnia sp.</em> Acute Immobilisation Test. OECD OECD Guidelines for the Testing of Chemicals, Section 2. [accessed 2020 Mar 3]. https://www.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en.</span></p>
  • <p><span style="font-size:14px">Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. 2000. Insect chitin synthase. cDNA sequence, gene organization and expression. Eur J Biochem. 267(19):6025&ndash;6043. doi:10.1046/j.1432-1327.2000.01679.x.</span></p>
  • <br>
  • <!-- end event text -->
  • </div>
  • <h2>Appendix 2</h2>
  • <h2>List of Key Event Relationships in the AOP</h2>
  • <!-- Evidence for relationship links section, this lists the relationships and then supports them -->
  • <div id="evidence_supporting_links">
  • <hr>
  • <h3>List of Adjacent Key Event Relationships</h3>
  • <div>
  • <h4><a href="/relationships/1742">Relationship: 1742: Increase, CHS-1 inhibition leads to Decrease, Cuticular chitin content</a></h4>
  • <div id="evidence_supporting_links">
  • <h3>List of Adjacent Key Event Relationships</h3>
  • <div>
  • <h4><a href="/relationships/1742">Relationship: 1742: Inhibition, CHS-1 leads to Decrease, Cuticular chitin content</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/342">S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>adjacent</td>
  • <td></td>
  • <td></td>
  • </tr>
  • <tr>
  • <th>AOP Name</th>
  • <th>Adjacency</th>
  • <th>Weight of Evidence</th>
  • <th>Quantitative Understanding</th>
  • <td><a href="/aops/360">Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Low</td>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <th><a href="/aops/342">S-adenosylmethionine depletion leading to population decline (1)</a></th>
  • <th>adjacent</th>
  • <th> </th>
  • <th></th>
  • </tr>
  • <tr>
  • <th><a href="/aops/360">Chitin synthase 1 inhibition leading to mortality</a></th>
  • <th>adjacent</th>
  • <th>Moderate </th>
  • <th>Low</th>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <br>
  • <!-- loop to find taxonomic applicability under relationship -->
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Term</th>
  • <th>Scientific Term</th>
  • <th>Evidence</th>
  • <th>Links</th>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>crustaceans</td>
  • <td>Daphnia magna</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35525" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>insects</td>
  • <td>insects</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>crustaceans</td>
  • <td>Daphnia magna</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35525" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>insects</td>
  • <td>insects</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end loop for taxons -->
  • <!-- loop to find life stages under relationship -->
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Life Stage</th>
  • <th>Evidence</th>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end loop for life stages -->
  • <!-- sex terms -->
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Sex</th>
  • <th>Evidence</th>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end sex terms -->
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>Likely, this KER is applicable to the whole phylum of arthropods as they all depend on the synthesis of chitin.</span></p>
  • </div>
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>Likely, this KER is likely applicable to the whole phylum of arthropods as they all depend on the synthesis of chitin.</span></p>
  • <p><span style="font-size:14px"><strong>Life stage: </strong>This KER is applicable for organisms synthesizing chitin in order to grow and develop, namely larval stages of insects and all life stages of crustaceans and arachnids.</span></p>
  • <p><span style="font-size:14px"><strong>Sex: </strong>This KER is applicable to all sexes.</span></p>
  • <p><span style="font-size:14px"><strong>Chemical: </strong>Substances inducing both, the inhibition of CHS-1 and the decrease in cuticular chitin content are of the family of pyrimidine nucleosides (e.g. polyoxin D, polyoxin B and nikkomycin Z) (Gijswijt et al. 1979; Cohen and Casida 1982; Turnbull and Howells 1982; Calcott and Fatig 1984; Kuwano and Cohen 1984; Cohen and Casida 1990; Zhang and Yan Zhu 2013; Zhuo et al. 2014; Osada 2019). The phthalimide captan was also shown to induce CHS-1 inhibition and a decrease in cuticular chitin content (Cohen and Casida 1982; Gelman and Borkovec 1986). However, studies assessing both endpoints in sequence are lacking.</span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:14px">Chitin in the arthropod cuticle is synthesized by the chitin synthase isoform 1 (CHS-1) which spans the plasma membrane on the apical plasma membrane of epithelial cells (Locke and Huie 1979; Binnington 1985; Merzendorfer and Zimoch 2003; Merzendorfer 2006). Since CHS-1 is the enzyme to polymerize chitin from UDP-<em>N</em>-Acetylglucosamine (UDP-GlcNAc) (Merzendorfer 2006), it is solely responsible for the content of chitin in the exoskeleton. Consequently, the inhibition of CHS-1 leads to a decrease in chitin content in the arthropod cuticle.</span></p>
  • <h4>Evidence Supporting this KER</h4>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:14px">The process of chitin synthesis in arthropods is well characterized. Although the exact mechanism of the polymerization reaction remains elusive, CHS-1 is known to be the key enzyme in the biosynthesis of chitin and therefore, responsible for the cuticular chitin content (Merzendorfer and Zimoch 2003; Merzendorfer 2006). Therefore, the biological plausibility of this KER can be regarded as high.</span></p>
  • <strong>Empirical Evidence</strong>
  • <p><span style="font-size:14px">Empirical evidence for the occurrence of both KEs, the inhibition of CHS-1 and the decrease in cuticular chitin content exist. For example, the occurrence of chitin synthase inhibition was characterized using cell free crude enzyme preparations <em>in vitro </em>from coleopteran, lepidopteran and dipteran insect species upon treatment with polyoxin B, polyoxin D and nikkomycin Z (Cohen and Casida 1982; Kuwano and Cohen 1984; Cohen and Casida 1990; Zhang and Yan Zhu 2013). The cuticular chitin content was characterized <em>in vivo</em> in <em>Artemia salina </em>or using cultured integumental tissue from lepidopteran and dipteran species after exposure to polyoxin D and nikkomycin Z as well as the phthalimides captan, captafol, and folpet (Gijswijt et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Gelman and Borkovec 1986; Zhuo et al. 2014). Data from studies with specific stressors assessing both endpoints and therefore supporting dose concordance of the&nbsp;KER&nbsp;are lacking. However, results from studies where CHS-1 was knocked down by RNA interference support temporal concordance of the KER (Arakane et al. 2005, Li et al. 2017, Zhang X. et al. 2010). Given the support for temporal concordance and the lack of studies showing dose concordance, the empirical evidence for this KER was judged as moderate.</span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:14px">The major uncertainty in this KER is the absence of studies which assess both endpoints, the inhibition of the chitin synthase and the decrease in cuticular chitin content after exposure to specific stressors.</span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:14px">Due to the lack of studies linking the inhibition of CHS-1 to the decrease in cuticular chitin content, it is not possible to describe the nature of the response-response relationship.</span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:14px">Chitin in the arthropod cuticle is synthesized by the chitin synthase isoform 1 (CHS-1) which spans the plasma membrane on the apical plasma membrane of epithelial cells (Locke and Huie 1979; Binnington 1985; Merzendorfer and Zimoch 2003; Merzendorfer 2006). Since CHS-1 is the enzyme to polymerize chitin from UDP-<em>N</em>-Acetylglucosamine (UDP-GlcNAc) (Merzendorfer 2006), it is solely responsible for the content of chitin in the exoskeleton. Consequently, the inhibition of CHS-1 leads to a decrease in chitin content in the arthropod cuticle.</span></p>
  • <!-- if nothing shows up in any of these fields, then evidence supporting this KER will not be displayed -->
  • <h4>Evidence Supporting this KER</h4>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:14px">The process of chitin synthesis in arthropods is well characterized. Although the exact mechanism of the polymerization reaction remains elusive, CHS-1 is known to be the key enzyme in the biosynthesis of chitin and therefore, responsible for the cuticular chitin content (Merzendorfer and Zimoch 2003; Merzendorfer 2006). Therefore, the biological plausibility of this KER can be regarded as high.</span></p>
  • <strong>Empirical Evidence</strong>
  • <p><span style="font-size:14px">Empirical evidence for the occurrence of both KEs, the inhibition of CHS-1 and the decrease in cuticular chitin content exist. For example, the occurrence of chitin synthase inhibition was characterized using cell free crude enzyme preparations <em>in vitro </em>from coleopteran, lepidopteran and dipteran insect species upon treatment with polyoxin B, polyoxin D and nikkomycin Z (Cohen and Casida 1982; Kuwano and Cohen 1984; Cohen and Casida 1990; Zhang and Yan Zhu 2013). The cuticular chitin content was characterized <em>in vivo</em> in <em>Artemia salina </em>or using cultured integumental tissue from lepidopteran and dipteran species after exposure to polyoxin D and nikkomycin Z as well as the phthalimides captan, captafol, and folpet (Gijswijt et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Gelman and Borkovec 1986; Zhuo et al. 2014). However, studies assessing both endpoints and therefore linking both KEs are lacking.</span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:14px">The major uncertainty in this KER is the absence of studies which assess both, the inhibition of the chitin synthase and the decrease in cuticular chitin content.</span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:14px">Due to the lack of studies linking the inhibition of CHS-1 to the decrease in cuticular chitin content, it is not possible to describe the nature of the response-response relationship.</span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-size:14px">Due to the lack of studies assessing the inhibition of CHS-1 and the decrease in cuticular chitin content, it is not possible to make a statement on the timescale of the relationship. However, the expression of CHS-1 peaks at the time of ecdysis <!--[if supportFields]><span lang=EN-US style='font-size:11.0pt;
  • <strong>Time-scale</strong>
  • <p><span style="font-size:14px">Due to the lack of studies assessing the inhibition of CHS-1 and the decrease in cuticular chitin content, it is not possible to make a statement on the timescale of the relationship. However, the expression of CHS-1 peaks at the time of ecdysis <!--[if supportFields]><span lang=EN-US style='font-size:11.0pt;
  • line-height:107%;font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
  • mso-fareast-font-family:Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:
  • minor-latin;mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;
  • mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><span
  • style='mso-element:field-begin;mso-field-lock:yes'></span>ADDIN CSL_CITATION {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1002/arch.20404&quot;,&quot;ISSN&quot;:&quot;07394462&quot;,&quot;PMID&quot;:&quot;21181720&quot;,&quot;abstract&quot;:&quot;Chitin
  • synthase catalyzes chitin synthesis in the exoskeleton, tracheal system and gut
  • during insect development. A chitin synthase 1 (CfCHS1) cDNA was identified and
  • cloned from the spruce budworm, Choristoneura fumiferana. The CfCHS1 cDNA is
  • 5,300 bp in length and codes a 1,564-amino acid protein with a molecular mass
  • of 178 kDa. The deduced protein contains 16 transmembrane helixes in its
  • domains A and C. The single copy CfCHS1 gene expressed during each of the
  • larval molts from the 3rd to the 6th instar. The gene expressed highly and
  • periodically in the epidermis during each of molts, whereas no transcripts were
  • detected in the midgut and fat body. 20-hydroxyecdysone and the ecdysone
  • agonist RH5992 suppressed CfCHS1 expression, whereas the juvenile hormone
  • analog methoprene induced CfCHS1 expression. These results implicate that
  • CfCHS1 is involved in the chitin synthase and new chitin formation during
  • molting in the insect. © 2010 Wiley Periodicals,
  • Inc.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Ampasala&quot;,&quot;given&quot;:&quot;Dinakar
  • R.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Zheng&quot;,&quot;given&quot;:&quot;Sichun&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Zhang&quot;,&quot;given&quot;:&quot;Dayu&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Ladd&quot;,&quot;given&quot;:&quot;Tim&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Doucet&quot;,&quot;given&quot;:&quot;Daniel&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Krell&quot;,&quot;given&quot;:&quot;Peter
  • J.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Retnakaran&quot;,&quot;given&quot;:&quot;Arthur&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Feng&quot;,&quot;given&quot;:&quot;Qili&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Archives
  • of Insect Biochemistry and
  • Physiology&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;2&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2011&quot;]]},&quot;page&quot;:&quot;83-96&quot;,&quot;title&quot;:&quot;An
  • epidermis-specific chitin synthase cDNA in Choristoneura fumiferana: Cloning,
  • characterization, developmental and hormonal-regulated
  • expression&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;76&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=78456367-9d86-42df-a700-577082943f66&quot;]},{&quot;id&quot;:&quot;ITEM-2&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/j.ibmb.2012.04.009&quot;,&quot;ISSN&quot;:&quot;09651748&quot;,&quot;PMID&quot;:&quot;22634163&quot;,&quot;abstract&quot;:&quot;Chitin
  • synthase (CHS) is an enzyme that is required for chitin formation in insect
  • cuticles and other tissues. In this study, CHS genes from two destructive rice
  • insect pests, the brown planthopper Nilaparvata lugens and the small brown
  • planthopper Laodelphax striatellus, were cloned. Phylogenetic analysis showed
  • that these genes belonged to class CHS1 of the CHS gene family. Most insects
  • possess two CHS genes (CHS1 and CHS2); however, genome and transcriptome
  • searches showed that N. lugens possibly possess only CHS1 in both databases.
  • Two transcript variants (CHS1a and CHS1b) resulting from exclusively
  • alternative splicing (exon 19a or 19b in N. lugens) were identified for each of
  • the two rice planthopper CHS1s. Gene structure comparison using the genomes
  • that are currently sequenced showed that the CHS1 genes in all insects except
  • Acyrthosiphon pisum have two transcript variants. Transcription of NlCHS1a
  • reached its highest level just after molting, whereas NlCHS1b reached its
  • highest expression level 1-2 days before molting. Injection of the N. lugens
  • nymphs with double-strand RNA (dsRNA) of CHS1, CHS1a and CHS1b reduced the
  • corresponding variant transcript levels and exhibited subsequent phenotypes.
  • Silencing of CHS1 and CHS1a resulted in elongated distal wing pads and the
  • \&quot; wasp-waisted\&quot; or crimpled cuticle phenotypes and eventually died,
  • whereas the phenotypes caused by injection of NlCHS1b dsRNA seem not so obvious
  • although slightly increased mortality was observed. Our results suggest that N.
  • lugens likely lacks CHS2 and CHS1 may be efficient target gene for RNAi-based
  • N. lugens control. © 2012 Elsevier
  • Ltd.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Wang&quot;,&quot;given&quot;:&quot;Ying&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Fan&quot;,&quot;given&quot;:&quot;Hai
  • Wei&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Huang&quot;,&quot;given&quot;:&quot;Hai
  • Jian&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Xue&quot;,&quot;given&quot;:&quot;Jian&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Wu&quot;,&quot;given&quot;:&quot;Wen
  • Juan&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Bao&quot;,&quot;given&quot;:&quot;Yan
  • Yuan&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Xu&quot;,&quot;given&quot;:&quot;Hai
  • Jun&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Zhu&quot;,&quot;given&quot;:&quot;Zeng
  • Rong&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Cheng&quot;,&quot;given&quot;:&quot;Jia
  • An&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Zhang&quot;,&quot;given&quot;:&quot;Chuan
  • Xi&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Insect
  • Biochemistry and Molecular
  • Biology&quot;,&quot;id&quot;:&quot;ITEM-2&quot;,&quot;issue&quot;:&quot;9&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2012&quot;]]},&quot;page&quot;:&quot;637-646&quot;,&quot;publisher&quot;:&quot;Elsevier
  • Ltd&quot;,&quot;title&quot;:&quot;Chitin synthase 1 gene and its two
  • alternative splicing variants from two sap-sucking insects,
  • &lt;i&gt;Nilaparvata lugens&lt;/i&gt; and &lt;i&gt;Laodelphax
  • striatellus&lt;/i&gt; (Hemiptera:
  • Delphacidae)&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;42&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=3f8db64f-95f3-4176-87b5-9f59fe556381&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Ampasala
  • et al. 2011; Wang et al.
  • 2012)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Ampasala et al. 2011;
  • Wang et al. 2012)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;[14],
  • [15]&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Ampasala et al. 2011; Wang et al. 2012)<!--[if supportFields]><span lang=EN-US
  • style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]-->, indicating the highest rate of chitin synthesis at this timepoint. Hence it can be assumed that a decrease in chitin content in the newly synthesized cuticle should become apparent shortly after.</span></p>
  • <strong>Known modulating factors</strong>
  • <p><span style="font-size:14px">CHS is dependent on bivalent ions as cofactor such as Mg<sup>2+</sup> or Mn<sup>2+ </sup>(Merzendorfer 2006). Both low and high levels of Mg<sup>2+ </sup>inhibited CHS activity <em>in vitro</em> (Zhang and Yan Zhu 2013).</span></p>
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p><span style="font-size:14px">Upon knockdown of CHS-1 in the salmon louse <em>Lepeophtheirus salmonis</em>, upregulation of the UDP-GlcNAc pyrophosphorylase (UAP), which catalyzes the conversion of GlcNAc to UDP-GlcNAc, was observed (Braden et al. 2020). The knockdown of UAP also led to upregulation of CHS-1 demonstrating a clear dependence of the two enzymes. Most likely, the upregulation of UAP is a compensatory mechanism with the goal to restore homeostasis in absence of CHS-1. The exact regulation of the feedback, however, remains to be investigated.</span></p>
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]-->, indicating the highest rate of chitin synthesis at this timepoint. Hence it can be assumed that a decrease in chitin content in the newly synthesized cuticle should become apparent shortly after. In studies where CHS-1 was knocked down, chitin contents were assessed after 3 and 7 days and found to be decreased&nbsp;(Arakane et al. 2005, Li et al. 2017, Zhang X. et al. 2010).</span></p>
  • <strong>Known modulating factors</strong>
  • <p><span style="font-size:14px">CHS is dependent on bivalent ions as cofactor such as Mg<sup>2+</sup> or Mn<sup>2+ </sup>(Merzendorfer 2006). Both low and high levels of Mg<sup>2+ </sup>inhibited CHS activity <em>in vitro</em> (Zhang and Yan Zhu 2013).</span></p>
  • <!--<!% unless aop_rel.relationship.relationship_taxons.blank? %>-->
  • <!--<!%= render 'snapshot_taxons', taxons: aop_rel.relationship.relationship_taxons %>-->
  • <!--<!% unless aop_rel.relationship.taxon_evidence.blank? %>-->
  • <!--<h3>Domain of Applicability</h3>-->
  • <!--<!%== aop_rel.relationship.taxon_evidence %>-->
  • <!--<!% end %>-->
  • <!--<!% end %>-->
  • <strong>Known Feedforward/Feedback loops influencing this KER</strong>
  • <p><span style="font-size:14px">Upon knockdown of CHS-1 in the salmon louse <em>Lepeophtheirus salmonis</em>, upregulation of the UDP-GlcNAc pyrophosphorylase (UAP), which catalyzes the conversion of GlcNAc to UDP-GlcNAc, was observed (Braden et al. 2020). The knockdown of UAP also led to upregulation of CHS-1 demonstrating a clear dependence of the two enzymes. Most likely, the upregulation of UAP is a compensatory mechanism with the goal to restore homeostasis in absence of CHS-1. The exact regulation of the feedback, however, remains to be investigated.</span></p>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Ampasala DR, Zheng S, Zhang D, Ladd T, Doucet D, Krell PJ, Retnakaran A, Feng Q. 2011. An epidermis-specific chitin synthase cDNA in Choristoneura fumiferana: Cloning, characterization, developmental and hormonal-regulated expression. Arch Insect Biochem Physiol. 76(2):83&ndash;96. doi:10.1002/arch.20404.</span></p>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Ampasala DR, Zheng S, Zhang D, Ladd T, Doucet D, Krell PJ, Retnakaran A, Feng Q. 2011. An epidermis-specific chitin synthase cDNA in Choristoneura fumiferana: Cloning, characterization, developmental and hormonal-regulated expression. Arch Insect Biochem Physiol. 76(2):83&ndash;96. doi:10.1002/arch.20404.</span></p>
  • <p><span style="font-size:14px">Arakane, Y.; Muthukrishnan, S.; Kramer, K. J.; Specht, C. A.; Tomoyasu, Y.; Lorenzen, M. D.; Kanost, M.; Beeman, R. W. The Tribolium Chitin Synthase Genes TcCHS1 and TcCHS2 Are Specialized for Synthesis of Epidermal Cuticle and Midgut Peritrophic Matrix. Insect Mol. Biol. 2005, 14 (5), 453&ndash;463. https://doi.org/10.1111/j.1365-2583.2005.00576.x.</span></p>
  • <p><span style="font-size:14px">Binnington KC. 1985. Ultrastructural changes in the cuticle of the sheep blowfly, <em>Lucilia</em>, induced by certain insecticides and biological inhibitors. Tissue Cell. 17(1):131&ndash;140. doi:10.1016/0040-8166(85)90021-7.</span></p>
  • <p><span style="font-size:14px">Braden L, Michaud D, Igboeli OO, Dondrup M, Hamre L, Dalvin S, Purcell SL, Kongshaug H, Eichner C, Nilsen F, et al. 2020. Identification of critical enzymes in the salmon louse chitin synthesis pathway as revealed by RNA interference-mediated abrogation of infectivity. Int J Parasitol. 50(10&ndash;11):873&ndash;889. doi:10.1016/j.ijpara.2020.06.007. https://doi.org/10.1016/j.ijpara.2020.06.007.</span></p>
  • <p><span style="font-size:14px">Calcott PH, Fatig RO. 1984. Inhibition of Chitin metabolism by Avermectin in susceptible Organisms. J Antibiot (Tokyo). 37(3):253&ndash;259. doi:10.7164/antibiotics.37.253.</span></p>
  • <p><span style="font-size:14px">Cohen E, Casida JE. 1982. Properties and inhibition of insect integumental chitin synthetase. Pestic Biochem Physiol. 17(3):301&ndash;306. doi:10.1016/0048-3575(82)90141-9.</span></p>
  • <p><span style="font-size:14px">Cohen E, Casida JE. 1990. Insect and Fungal Chitin Synthetase Activity: Specificity of Lectins as Enhancers and Nucleoside Peptides as Inhibitors. Pestic Biochem Physiol. 37(3):249&ndash;253. doi:10.1016/0048-3575(90)90131-K.</span></p>
  • <p><span style="font-size:14px">Gelman DB, Borkovec AB. 1986. The pharate adult clasper as a tool for measuring chitin synthesis and for identifying new chitin synthesis inhibitors. Comp Biochem Physiol Part C, Comp. 85(1):193&ndash;197. doi:10.1016/0742-8413(86)90073-3.</span></p>
  • <p><span style="font-size:14px">Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in <em>Pieris brassicae</em> (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87&ndash;94. doi:10.1016/0048-3575(79)90098-1.</span></p>
  • <p><span style="font-size:14px">Kuwano E, Cohen E. 1984. The use of a <em>Tribolium</em> chitin synthetase assay in studying the effects of benzimidazoles with a terpene moiety and related compounds. Agric Biol Chem. 48(6):1617&ndash;1620. doi:10.1080/00021369.1984.10866362.</span></p>
  • <p><span style="font-size:14px">Li, T.; Chen, J.; Fan, X.; Chen, W.; Zhang, W. MicroRNA and DsRNA Targeting Chitin Synthase A Reveal a Great Potential for Pest Management of the Hemipteran Insect Nilaparvata Lugens. Pest Manag. Sci. 2017, 73 (7), 1529&ndash;1537. https://doi.org/10.1002/ps.4492.</span></p>
  • <p><span style="font-size:14px">Locke M, Huie P. 1979. Apolysis and the Turnover of Plasmamembrane Plaques during Cuticle formation in an Insect. Tissue Cell. 11(2):277&ndash;291. doi:10.1016/0040-8166(79)90042-9.</span></p>
  • <p><span style="font-size:14px">Merzendorfer H. 2006. Insect chitin synthases: A review. J Comp Physiol B Biochem Syst Environ Physiol. doi:10.1007/s00360-005-0005-3.</span></p>
  • <p><span style="font-size:14px">Merzendorfer H, Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol. 206(24):4393 LP &ndash; 4412. doi:10.1242/jeb.00709. http://jeb.biologists.org/content/206/24/4393.abstract.</span></p>
  • <p><span style="font-size:14px">Osada H. 2019. Discovery and applications of nucleoside antibiotics beyond polyoxin. J Antibiot (Tokyo). 72(12):855&ndash;864. doi:10.1038/s41429-019-0237-1. http://dx.doi.org/10.1038/s41429-019-0237-1.</span></p>
  • <p><span style="font-size:14px">Turnbull IF, Howells AJ. 1982. Effects of several larvicidal compounds on chitin biosynthesis by isolated larval integuments of the sheep blowfly <em>Lucilia cuprina</em>. Aust J Biol Sci. 35(5):491&ndash;504. doi:10.1071/BI9820491.</span></p>
  • <p><span style="font-size:14px">Wang Y, Fan HW, Huang HJ, Xue J, Wu WJ, Bao YY, Xu HJ, Zhu ZR, Cheng JA, Zhang CX. 2012. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, <em>Nilaparvata lugens</em> and <em>Laodelphax striatellus</em> (Hemiptera: Delphacidae). Insect Biochem Mol Biol. 42(9):637&ndash;646. doi:10.1016/j.ibmb.2012.04.009. http://dx.doi.org/10.1016/j.ibmb.2012.04.009.</span></p>
  • <p><span style="font-size:14px">Zhang, X.; Zhang, J.; Zhu, K. Y. Chitosan/Double-Stranded RNA Nanoparticle-Mediated RNA Interference to Silence Chitin Synthase Genes through Larval Feeding in the African Malaria Mosquito (Anopheles Gambiae). Insect Mol. Biol. 2010, 19 (5), 683&ndash;693. https://doi.org/10.1111/j.1365-2583.2010.01029.x.</span></p>
  • <p><span style="font-size:14px">Zhang X, Yan Zhu K. 2013. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, <em>Anopheles gambiae</em>. Insect Sci. 20(2):158&ndash;166. doi:10.1111/j.1744-7917.2012.01568.x.</span></p>
  • <p><span style="font-size:14px">Zhuo W, Fang Y, Kong L, Li X, Sima Y, Xu S. 2014. Chitin synthase A: A novel epidermal development regulation gene in the larvae of <em>Bombyx mori</em>. Mol Biol Rep. 41(7):4177&ndash;4186. doi:10.1007/s11033-014-3288-1.</span></p>
  • </div>
  • <br>
  • <div>
  • <div>
  • <h4><a href="/relationships/1743">Relationship: 1743: Decrease, Cuticular chitin content leads to Increase, Premature molting</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/343">S-adenosylmethionine depletion leading to population decline (2)</a></td>
  • <td>adjacent</td>
  • <td></td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/aops/342">S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>adjacent</td>
  • <td></td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/aops/360">Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Low</td>
  • </tr>
  • <tr>
  • <th>AOP Name</th>
  • <th>Adjacency</th>
  • <th>Weight of Evidence</th>
  • <th>Quantitative Understanding</th>
  • <td><a href="/aops/361">Sulfonylureareceptor binding leading to mortality</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Moderate</td>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <th><a href="/aops/343">S-adenosylmethionine depletion leading to population decline (2)</a></th>
  • <th>adjacent</th>
  • <th> </th>
  • <th></th>
  • </tr>
  • <tr>
  • <th><a href="/aops/342">S-adenosylmethionine depletion leading to population decline (1)</a></th>
  • <th>adjacent</th>
  • <th> </th>
  • <th></th>
  • </tr>
  • <tr>
  • <th><a href="/aops/360">Chitin synthase 1 inhibition leading to mortality</a></th>
  • <th>adjacent</th>
  • <th>Moderate </th>
  • <th>Low</th>
  • </tr>
  • <tr>
  • <th><a href="/aops/361">Sulfonylureareceptor binding leading to mortality</a></th>
  • <th>adjacent</th>
  • <th>Moderate </th>
  • <th>Moderate</th>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <br>
  • <!-- loop to find taxonomic applicability under relationship -->
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Term</th>
  • <th>Scientific Term</th>
  • <th>Evidence</th>
  • <th>Links</th>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>crustaceans</td>
  • <td>Daphnia magna</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35525" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>insects</td>
  • <td>insects</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>crustaceans</td>
  • <td>Daphnia magna</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35525" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>insects</td>
  • <td>insects</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end loop for taxons -->
  • <!-- loop to find life stages under relationship -->
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Life Stage</th>
  • <th>Evidence</th>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end loop for life stages -->
  • <!-- sex terms -->
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Sex</th>
  • <th>Evidence</th>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end sex terms -->
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>In all likelihood, this KER is applicable to the whole phylum of arthropods as they all depend on the synthesis of chitin and molting in order to develop.</span></p>
  • </div>
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>In all likelihood, this KER is applicable to the whole phylum of arthropods as they all depend on the synthesis of chitin and molting in order to develop.</span></p>
  • <p><span style="font-size:14px"><strong>Life stage: </strong>This KER is applicable for organisms synthesizing chitin and molting in order to grow and develop, namely larval stages of insects and all life stages of crustaceans and arachnids.</span></p>
  • <p><span style="font-size:14px"><strong>Sex: </strong>This KER is applicable to all sexes.</span></p>
  • <p><span style="font-size:14px"><strong>Chemical: </strong>Occurrence of a decrease in cticular chitin content as well as premature molting was observed after treatment with the pyrimidine nucleosides polyoxin D, polyoxin B and nikkomycin Z (Gijswijt et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Gelman and Borkovec 1986; Tellam et al. 2000; Arakawa et al. 2008; Zhuo et al. 2014). However, studies causally linking both endpoints are lacking.</span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:14px">As the arthropod cuticle is a central part in the molting process, its proper composition is indispensable for a proper molt. The ecdysis motor program, the behavioral part of ecdysis, constitutes a distinct motor pattern to split and shed the old cuticle <!--[if supportFields]><span lang=EN-US
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:14px">As the arthropod cuticle is a central part in the molting process, its proper composition is indispensable for a proper molt. The ecdysis motor program, the behavioral part of ecdysis, constitutes a distinct motor pattern to split and shed the old cuticle <!--[if supportFields]><span lang=EN-US
  • style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-begin;mso-field-lock:
  • yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1242/jeb.023879&quot;,&quot;ISSN&quot;:&quot;00220949&quot;,&quot;PMID&quot;:&quot;19181892&quot;,&quot;abstract&quot;:&quot;A
  • possible role of the insect stomatogastric nervous system (STNS) in ecdysis was
  • first implied in early studies reporting on internal air pressure build-up in
  • the digestive tract and air swallowing during ecdysis. The frontal ganglion, a
  • major component of the insect STNS, was suggested to play an important part in
  • this behaviour. Recent neurophysiological studies have confirmed the critical
  • role of the STNS in the successful completion of both larval and adult moults
  • in insects. In aquatic arthropods, though much less studied, the STNS plays an
  • equally important and probably very similar role in water swallowing. Water
  • uptake is instrumental in splitting the crustacean cuticle and allowing
  • successful ecdysis. Current data are presented in a comparative view that
  • contributes to our understanding of the role of the STNS in arthropod
  • behaviour. It also sheds light on the question of homology of the STNS among
  • the different arthropod groups. New insights into the neurohormonal control of
  • ecdysis, related to the STNS in both insects and crustaceans, are also
  • presented and comparatively
  • discussed.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Ayali&quot;,&quot;given&quot;:&quot;Amir&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Journal
  • of Experimental
  • Biology&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;4&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2009&quot;]]},&quot;page&quot;:&quot;453-459&quot;,&quot;title&quot;:&quot;The
  • role of the arthropod stomatogastric nervous system in moulting behaviour and
  • ecdysis&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;212&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=636f3b9d-69cd-4358-8d2d-9451f22f3bf7&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Ayali
  • 2009)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Ayali
  • 2009)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;(Ayali
  • 2009)&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Ayali 2009)<!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]-->. As the cuticle supports muscular function <!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-begin;mso-field-lock:
  • yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/j.asd.2004.05.006&quot;,&quot;ISSN&quot;:&quot;14678039&quot;,&quot;abstract&quot;:&quot;Since
  • nearly all adult insects fly, the cuticle has to provide a very efficient and
  • lightweight skeleton. Information is available about the mechanical properties
  • of cuticle - Young's modulus of resilin is about 1 MPa, of soft cuticles about
  • 1kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of
  • sclerotised cuticle ranges between 25 and 80kgfmm-2; density is 1-1.3 kg m-3 -
  • and one of its components, chitin nanofibres, the Young's modulus of which is
  • more than 150 GPa. Experiments based on fracture mechanics have not been
  • performed although the layered structure probably provides some toughening. The
  • structural performance of wings and legs has been measured, but our
  • understanding of the importance of buckling is lacking: it can stiffen the
  • structure (by elastic postbuckling in wings, for example) or be a failure mode.
  • We know nothing of fatigue properties (yet, for instance, the insect wing must
  • undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical
  • performance and efficiency of cuticle can be analysed and compared with those
  • of other materials using material property charts and material indices.
  • Presented in this paper are four: Young's modulus - density (stiffness per unit
  • weight), specific Young's modulus - specific strength (elastic hinges, elastic
  • energy storage per unit weight), toughness - Young's modulus (fracture
  • resistance under various loading conditions), and hardness (wear resistance).
  • In conjunction with a structural analysis of cuticle these charts help to
  • understand the relevance of microstructure (fibre orientation effects in
  • tendons, joints and sense organs, for example) and shape (including surface
  • structure) of this fibrous composite for a given function. With modern techniques
  • for analysis of structure and material, and emphasis on nanocomposites and
  • self-assembly, insect cuticle should be the archetype for composites at all
  • levels of scale. © 2004 Elsevier Ltd. All rights
  • reserved.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Vincent&quot;,&quot;given&quot;:&quot;Julian
  • F.V.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Wegst&quot;,&quot;given&quot;:&quot;Ulrike
  • G.K.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Arthropod
  • Structure and
  • Development&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;3&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2004&quot;]]},&quot;page&quot;:&quot;187-199&quot;,&quot;title&quot;:&quot;Design
  • and mechanical properties of insect
  • cuticle&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;33&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=0a16940f-fa66-43c3-8dc5-a683f3a36ac4&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Vincent
  • and Wegst 2004)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Vincent and
  • Wegst 2004)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;(Vincent and
  • Wegst
  • 2004)&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Vincent and Wegst 2004)<!--[if supportFields]><span lang=EN-US
  • style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]-->, it needs to possess a certain integrity in order to successfully molt. The integrity of the cuticle is also important after ecdysis as&nbsp; arthropods, such as insects and crustaceans, expand the new cuticle by swallowing air or water in order to build up pressure to split the old and expand the new exoskeleton and provide stability to the soft new cuticle <!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-begin;mso-field-lock:
  • yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.2307/1547867&quot;,&quot;ISSN&quot;:&quot;0278-0372&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;deFur&quot;,&quot;given&quot;:&quot;Peter
  • L.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Mangum&quot;,&quot;given&quot;:&quot;Charlotte
  • P.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;McMahon&quot;,&quot;given&quot;:&quot;Brian
  • R.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Journal
  • of Crustacean
  • Biology&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issue&quot;:&quot;2&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1985&quot;]]},&quot;page&quot;:&quot;207-215&quot;,&quot;title&quot;:&quot;Cardiovascular
  • and Ventilatory Changes During Ecdysis in the Blue Crab &lt;i&gt;Callinectes
  • Sapidus&lt;/i&gt;
  • Rathbun&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;5&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=5f9a7253-f58f-47c7-9979-dff8837e3df5&quot;]},{&quot;id&quot;:&quot;ITEM-2&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/0022-0981(78)90074-6&quot;,&quot;ISSN&quot;:&quot;00220981&quot;,&quot;abstract&quot;:&quot;Water
  • ingestion at ecdysis by the western rock lobster. Panulirus longipes (Milne
  • Edwards) was investigated using the reference markers 51Cr-EDTA and 58Co-EDTA.
  • Two possible mechanisms controlling water absorption were examined: first,
  • changes in osmolarity of blood and muscle and secondly, the effects of extracts
  • of central nervous system. Water ingestion was 16.071 ± 2.365 ml kg-1 h-1
  • during swelling just before ecdysis (stage D4(S)) and 23.099 ± 1.238 ml kg-1
  • h-1 during stage A. There was no significant absorption in the foregut or
  • hindgut and the digestive gland appeared to be the site of major absorption.
  • Total water ingested during stages D4(S) and A was 13.7% of the proecdysis
  • weight. Calculating total water uptake by wet weight differences plus wet weight
  • of exuviae gave a value that was too high and instead weight increases were
  • calculated from a carapace length-weight formula. Allowing for postecdysis
  • increase in weight the net increase at ecdysis was 18.4-21.4% which was
  • 4.7-7.7% more than the water ingested. It was concluded from this that water
  • enters the body at ecdysis both by ingestion and by absorption through the
  • external surface. It is suggested that water ingestion provides the main source
  • of swelling of the cephalothorax in stage D4(S) and after ecdysis both ingested
  • water and external absorption enables the flaccid abdomen and appendages to
  • swell rapidly. Statistically significant differences were found in the
  • concentrations of total cations and chloride in leg muscle during the
  • transition from stage C4 to late D4 but the trends were not consistent and
  • probably have no functional significance. There were no changes in the
  • concentration of osmotically active organic constituents. The freezing-point
  • depression of the blood in stage D4 was significantly higher than that in stage
  • C4(P &lt; 0.02) but the mean difference was only 1.8%. It was concluded that
  • osmoticchanges were unlikely to be an important mechanism of water uptake.
  • Water-soluble extract (WSE) and acetone-soluble extract (ASE) of brains and
  • first ventral ganglia were without significant effect when compared together
  • with controls. There was a barely significant decrease, however, in water in
  • the proventriculus of WSE-treated animals compared with that of controls (P
  • &lt; 0.05). and further investigation on the effects of such extracts on water
  • uptake at ecdysis is warranted. ©
  • 1978.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Dall&quot;,&quot;given&quot;:&quot;W.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Smith&quot;,&quot;given&quot;:&quot;D.
  • M.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Press&quot;,&quot;given&quot;:&quot;Biomedical&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Journal
  • of Experimental Marine Biology and
  • Ecology&quot;,&quot;id&quot;:&quot;ITEM-2&quot;,&quot;issue&quot;:&quot;1960&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1978&quot;]]},&quot;title&quot;:&quot;Water
  • uptake at ecdysis in the western rock lobster&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;35&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=7de2ab94-c05e-4646-957b-a900dc162056&quot;]},{&quot;id&quot;:&quot;ITEM-3&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/0022-1910(61)90090-7&quot;,&quot;ISSN&quot;:&quot;00221910&quot;,&quot;abstract&quot;:&quot;Two
  • methods of estimating insect blood volume are discussed. A method based on
  • haemocyte counts before and after injection of a measured volume of saline is
  • shown to be invalid, whereas a method based on the dilution of amaranth dye by
  • the haemolymph gave repeatable and consistent results. The blood volume of
  • Schistocerca gregaria Forsk. rises during the latter half of an instar, and
  • attains its highest level just prior to ecdysis. This high blood volume is
  • maintained for about 24 hr after ecdysis, then falls sharply to a mid-instar or
  • adult value, which is constant under the conditions described herein. The
  • increase in blood volume is shown to be due partly to changes in the
  • distribution of water within the body, and not merely to an intake of water
  • from the exterior. During periods of dietary water deficiency, the blood of the
  • desert locust can act as a reserve of water for other tissue requirements. ©
  • 1961.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Lee&quot;,&quot;given&quot;:&quot;R.
  • M.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Journal
  • of Insect
  • Physiology&quot;,&quot;id&quot;:&quot;ITEM-3&quot;,&quot;issue&quot;:&quot;1&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1961&quot;]]},&quot;page&quot;:&quot;36-51&quot;,&quot;title&quot;:&quot;The
  • variation of blood volume with age in the desert locust (&lt;i&gt;Schistocerca
  • gregaria&lt;/i&gt;
  • Forsk.)&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;6&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=7d2a6590-2216-4800-aee1-b3fb31ed55c7&quot;]},{&quot;id&quot;:&quot;ITEM-4&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1111/j.1365-3032.1957.tb00361.x&quot;,&quot;ISSN&quot;:&quot;13653032&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Clarke&quot;,&quot;given&quot;:&quot;Kenneth
  • U.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Proceedings
  • of the Royal Entomological Society of London. Series A, General
  • Entomology&quot;,&quot;id&quot;:&quot;ITEM-4&quot;,&quot;issue&quot;:&quot;1-3&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;1957&quot;]]},&quot;page&quot;:&quot;35-39&quot;,&quot;title&quot;:&quot;On
  • the Increase in Linear Size During Growth in &lt;i&gt;Locusta
  • Migratoria&lt;/i&gt;
  • L.&quot;,&quot;type&quot;:&quot;article-journal&quot;,&quot;volume&quot;:&quot;32&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=eea788ce-c9d2-42b7-a36e-598377701670&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Clarke
  • 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Clarke
  • 1957; Lee 1961; Dall et al. 1978; deFur et al.
  • 1985)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;(Clarke 1957; Lee
  • 1961; Dall et al. 1978; deFur et al.
  • 1985)&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Clarke 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985)<!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]-->. The arthropod cuticle mostly consists of chitin embedded in and crosslinked with a matrix of proteins <!--[if supportFields]><span
  • lang=EN-US style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-begin;mso-field-lock:
  • yes'></span>ADDIN CSL_CITATION
  • {&quot;citationItems&quot;:[{&quot;id&quot;:&quot;ITEM-1&quot;,&quot;itemData&quot;:{&quot;DOI&quot;:&quot;10.1016/B978-0-12-384747-8.10007-8&quot;,&quot;ISBN&quot;:&quot;9780123847478&quot;,&quot;abstract&quot;:&quot;This
  • chapter highlights some of the recent and important findings obtained from
  • studies conducted on the synthesis, structure, physical state, modification,
  • organization, and degradation of chitin in insect tissues, as well as the
  • interplay of chitin with chitin-binding proteins, the regulation of genes
  • responsible for chitin metabolism, and, finally, the targeting of chitin metabolism
  • for insect-control purposes. Chitin is the major polysaccharide present in
  • insects and many other invertebrates as well as in several microbes, including
  • fungi. It serves as the skeletal polysaccharide of several animal phyla, such
  • as the Arthropoda, Annelida, Molluska, and Coelenterata. In several groups of
  • fungi, chitin replaces cellulose as the structural polysaccharide. In insects,
  • it is found in the body wall or cuticle, gut lining or peritrophic matrix (PM),
  • salivary gland, trachea, eggshells, and muscle attachment points. In the course
  • of evolution, insects have made excellent use of the rigidity and chemical
  • stability of the polymeric chitin to assemble both hard and soft extracellular
  • structures such as the cuticle (exoskeleton) and PM respectively, both of which
  • enable insects to be protected from the environment while allowing for growth,
  • mobility, respiration, and communication. All of these structures are primarily
  • composites of chitin fibers and proteins with varying degrees of hydration and trace
  • materials distributed along the structures. © 2012 Elsevier B.V. All rights
  • reserved.&quot;,&quot;author&quot;:[{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Muthukrishnan&quot;,&quot;given&quot;:&quot;Subbaratnam&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Merzendorfer&quot;,&quot;given&quot;:&quot;Hans&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Arakane&quot;,&quot;given&quot;:&quot;Yasuyuki&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;},{&quot;dropping-particle&quot;:&quot;&quot;,&quot;family&quot;:&quot;Kramer&quot;,&quot;given&quot;:&quot;Karl
  • J.&quot;,&quot;non-dropping-particle&quot;:&quot;&quot;,&quot;parse-names&quot;:false,&quot;suffix&quot;:&quot;&quot;}],&quot;container-title&quot;:&quot;Insect
  • Molecular Biology and Biochemistry&quot;,&quot;id&quot;:&quot;ITEM-1&quot;,&quot;issued&quot;:{&quot;date-parts&quot;:[[&quot;2012&quot;]]},&quot;number-of-pages&quot;:&quot;193-235&quot;,&quot;publisher&quot;:&quot;Elsevier
  • B.V.&quot;,&quot;title&quot;:&quot;Chitin Metabolism in
  • Insects&quot;,&quot;type&quot;:&quot;book&quot;},&quot;uris&quot;:[&quot;http://www.mendeley.com/documents/?uuid=24c204e2-9cb5-413f-81eb-5a90926cf1ed&quot;]}],&quot;mendeley&quot;:{&quot;formattedCitation&quot;:&quot;(Muthukrishnan
  • et al. 2012)&quot;,&quot;plainTextFormattedCitation&quot;:&quot;(Muthukrishnan
  • et al. 2012)&quot;,&quot;previouslyFormattedCitation&quot;:&quot;(Muthukrishnan
  • et al.
  • 2012)&quot;},&quot;properties&quot;:{&quot;noteIndex&quot;:0},&quot;schema&quot;:&quot;https://github.com/citation-style-language/schema/raw/master/csl-citation.json&quot;}<span
  • style='mso-element:field-separator'></span></span><![endif]-->(Muthukrishnan et al. 2012)<!--[if supportFields]><span lang=EN-US
  • style='font-size:11.0pt;line-height:107%;font-family:"Calibri",sans-serif;
  • mso-ascii-theme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
  • minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";
  • mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
  • EN-US;mso-bidi-language:AR-SA'><span style='mso-element:field-end'></span></span><![endif]-->. If the chitin content is too low, the cuticle may not possess enough integrity to support muscular function or withstand the beforementioned stresses of ecdysis, which leads to the organism being stuck in the old cuticle or the rupture of the new cuticle.</span></p>
  • <h4>Evidence Supporting this KER</h4>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:14px">The ecdysis motor program, the behavioral part of ecdysis, constitutes a distinct motor pattern to split and shed the old cuticle (Ayali 2009). As the cuticle supports muscular function (Vincent and Wegst 2004), it needs to possess a certain integrity in order to successfully molt. The integrity of the cuticle is also important after ecdysis as&nbsp; arthropods, such as insects and crustaceans, expand the new cuticle by swallowing air or water in order to build up pressure to expand the new exoskeleton and provide stability to the soft new cuticle (Clarke 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985). The arthropod cuticle mostly consists of chitin embedded in and crosslinked with a matrix of proteins (Muthukrishnan et al. 2012). Given the well biological understanding of the processes, the biological plausibility can be regarded as high.</span></p>
  • <!-- if nothing shows up in any of these fields, then evidence supporting this KER will not be displayed -->
  • <h4>Evidence Supporting this KER</h4>
  • <strong>Empirical Evidence</strong>
  • <p><span style="font-size:14px">The cuticular chitin content was characterized <em>in vivo</em> in <em>Artemia salina </em>or using cultured integumental tissue from lepidopteran and dipteran insect species after exposure to polyoxin D and nikkomycin Z as well as the phthalimides captan, captafol, and folpet (Gijswijt et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Gelman and Borkovec 1986; Zhuo et al. 2014). The event of premature molting was not assessed as endpoint in studies involving specific stressors rather than mentioned after exposure to polyoxin D, polyoxin B and nikkomycin Z (Gijswijt et al. 1979; Tellam et al. 2000; Arakawa et al. 2008).&nbsp;However, results from studies where CHS-1 was knocked down by RNA interference support temporal concordance of the KER (Arakane et al. 2005, Li et al. 2017, Zhang X. et al. 2010). Given the support for temporal concordance and the lack of studies showing dose concordance, the empirical evidence for this KER was judged as moderate.</span></p>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:14px">The ecdysis motor program, the behavioral part of ecdysis, constitutes a distinct motor pattern to split and shed the old cuticle (Ayali 2009). As the cuticle supports muscular function (Vincent and Wegst 2004), it needs to possess a certain integrity in order to successfully molt. The integrity of the cuticle is also important after ecdysis as&nbsp; arthropods, such as insects and crustaceans, expand the new cuticle by swallowing air or water in order to build up pressure to expand the new exoskeleton and provide stability to the soft new cuticle (Clarke 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985). The arthropod cuticle mostly consists of chitin embedded in and crosslinked with a matrix of proteins (Muthukrishnan et al. 2012). Given the well biological understanding of the processes, the biological plausibility can be regarded as high.</span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:14px">The absence of studies (quantitatively) assessing premature molting constitutes a major data gap. A further data gap is the absence of studies which assess both, the decrease in cuticular chitin content and the increase in premature molting.</span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:14px">Due to the lack of studies linking the decrease in cuticular chitin content with the increase in premature molting, it is not possible to describe the nature of the response-response relationship.</span></p>
  • <strong>Empirical Evidence</strong>
  • <p><span style="font-size:14px">The cuticular chitin content was characterized <em>in vivo</em> in <em>Artemia salina </em>or using cultured integumental tissue from lepidopteran and dipteran insect species after exposure to polyoxin D and nikkomycin Z as well as the phthalimides captan, captafol, and folpet (Gijswijt et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Gelman and Borkovec 1986; Zhuo et al. 2014). The event of premature molting was not assessed as endpoint in studies involving specific stressors rather than mentioned after exposure to polyoxin D, polyoxin B and nikkomycin Z (Gijswijt et al. 1979; Tellam et al. 2000; Arakawa et al. 2008). Evidence from studies which assess and link both endpoints is lacking.</span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-size:14px">Due to the nature of the process, premature molting onsets at the time of ecdysis after the decrease in cuticular chitin content.</span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:14px">The absence of studies (quantitatively) assessing premature molting constitutes a major data gap. A further data gap is the absence of studies which assess both, the decrease in cuticular chitin content and the increase in premature molting.</span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:14px">Due to the lack of studies linking the decrease in cuticular chitin content with the increase in premature molting, it is not possible to describe the nature of the response-response relationship.</span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-size:14px">Due to the nature of the process, premature molting onsets at the time of ecdysis after the decrease in cuticular chitin content.</span></p>
  • <!--<!% unless aop_rel.relationship.relationship_taxons.blank? %>-->
  • <!--<!%= render 'snapshot_taxons', taxons: aop_rel.relationship.relationship_taxons %>-->
  • <!--<!% unless aop_rel.relationship.taxon_evidence.blank? %>-->
  • <!--<h3>Domain of Applicability</h3>-->
  • <!--<!%== aop_rel.relationship.taxon_evidence %>-->
  • <!--<!% end %>-->
  • <!--<!% end %>-->
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakawa T, Yukuhiro F, Noda H. 2008. Insecticidal effect of a fungicide containing polyoxin B on the larvae of <em>Bombyx mori</em> (Lepidoptera: Bombycidae), <em>Mamestra brassicae</em>, <em>Mythimna separata</em>, and <em>Spodoptera litura</em> (Lepidoptera: Noctuidae). Appl Entomol Zool. 43(2):173&ndash;181. doi:10.1303/aez.2008.173.</span></p>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakane, Y.; Muthukrishnan, S.; Kramer, K. J.; Specht, C. A.; Tomoyasu, Y.; Lorenzen, M. D.; Kanost, M.; Beeman, R. W. The Tribolium Chitin Synthase Genes TcCHS1 and TcCHS2 Are Specialized for Synthesis of Epidermal Cuticle and Midgut Peritrophic Matrix. Insect Mol. Biol. 2005, 14 (5), 453&ndash;463. https://doi.org/10.1111/j.1365-2583.2005.00576.x.</span></p>
  • <p><span style="font-size:14px">Arakawa T, Yukuhiro F, Noda H. 2008. Insecticidal effect of a fungicide containing polyoxin B on the larvae of <em>Bombyx mori</em> (Lepidoptera: Bombycidae), <em>Mamestra brassicae</em>, <em>Mythimna separata</em>, and <em>Spodoptera litura</em> (Lepidoptera: Noctuidae). Appl Entomol Zool. 43(2):173&ndash;181. doi:10.1303/aez.2008.173.</span></p>
  • <p><span style="font-size:14px">Ayali A. 2009. The role of the arthropod stomatogastric nervous system in moulting behaviour and ecdysis. J Exp Biol. 212(4):453&ndash;459. doi:10.1242/jeb.023879.</span></p>
  • <p><span style="font-size:14px">Calcott PH, Fatig RO. 1984. Inhibition of Chitin metabolism by Avermectin in susceptible Organisms. J Antibiot (Tokyo). 37(3):253&ndash;259. doi:10.7164/antibiotics.37.253.</span></p>
  • <p><span style="font-size:14px">Clarke KU. 1957. On the Increase in Linear Size During Growth in <em>Locusta Migratoria</em> L. Proc R Entomol Soc London Ser A, Gen Entomol. 32(1&ndash;3):35&ndash;39. doi:10.1111/j.1365-3032.1957.tb00361.x.</span></p>
  • <p><span style="font-size:14px">Dall W, Smith DM, Press B. 1978. Water uptake at ecdysis in the western rock lobster. J Exp Mar Bio Ecol. 35(1960). doi:10.1016/0022-0981(78)90074-6.</span></p>
  • <p><span style="font-size:14px">deFur PL, Mangum CP, McMahon BR. 1985. Cardiovascular and Ventilatory Changes During Ecdysis in the Blue Crab <em>Callinectes Sapidus</em> Rathbun. J Crustac Biol. 5(2):207&ndash;215. doi:10.2307/1547867.</span></p>
  • <p><span style="font-size:14px">Gelman DB, Borkovec AB. 1986. The pharate adult clasper as a tool for measuring chitin synthesis and for identifying new chitin synthesis inhibitors. Comp Biochem Physiol Part C, Comp. 85(1):193&ndash;197. doi:10.1016/0742-8413(86)90073-3.</span></p>
  • <p><span style="font-size:14px">Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in <em>Pieris brassicae</em> (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87&ndash;94. doi:10.1016/0048-3575(79)90098-1.</span></p>
  • <p><span style="font-size:14px">Lee RM. 1961. The variation of blood volume with age in the desert locust (<em>Schistocerca gregaria</em> Forsk.). J Insect Physiol. 6(1):36&ndash;51. doi:10.1016/0022-1910(61)90090-7.</span></p>
  • <p><span style="font-size:14px">Li, T.; Chen, J.; Fan, X.; Chen, W.; Zhang, W. MicroRNA and DsRNA Targeting Chitin Synthase A Reveal a Great Potential for Pest Management of the Hemipteran Insect Nilaparvata Lugens. Pest Manag. Sci. 2017, 73 (7), 1529&ndash;1537. https://doi.org/10.1002/ps.4492.</span></p>
  • <p><span style="font-size:14px">Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ. 2012. Chitin Metabolism in Insects. Elsevier B.V. http://dx.doi.org/10.1016/B978-0-12-384747-8.10007-8.</span></p>
  • <p><span style="font-size:14px">Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. 2000. Insect chitin synthase. cDNA sequence, gene organization and expression. Eur J Biochem. 267(19):6025&ndash;6043. doi:10.1046/j.1432-1327.2000.01679.x.</span></p>
  • <p><span style="font-size:14px">Turnbull IF, Howells AJ. 1982. Effects of several larvicidal compounds on chitin biosynthesis by isolated larval integuments of the sheep blowfly <em>Lucilia cuprina</em>. Aust J Biol Sci. 35(5):491&ndash;504. doi:10.1071/BI9820491.</span></p>
  • <p><span style="font-size:14px">Vincent JFV, Wegst UGK. 2004. Design and mechanical properties of insect cuticle. Arthropod Struct Dev. 33(3):187&ndash;199. doi:10.1016/j.asd.2004.05.006.</span></p>
  • <p><span style="font-size:14px">Zhang, X.; Zhang, J.; Zhu, K. Y. Chitosan/Double-Stranded RNA Nanoparticle-Mediated RNA Interference to Silence Chitin Synthase Genes through Larval Feeding in the African Malaria Mosquito (Anopheles Gambiae). Insect Mol. Biol. 2010, 19 (5), 683&ndash;693. https://doi.org/10.1111/j.1365-2583.2010.01029.x.</span></p>
  • <p><span style="font-size:14px">Zhuo W, Fang Y, Kong L, Li X, Sima Y, Xu S. 2014. Chitin synthase A: A novel epidermal development regulation gene in the larvae of <em>Bombyx mori</em>. Mol Biol Rep. 41(7):4177&ndash;4186. doi:10.1007/s11033-014-3288-1.</span></p>
  • </div>
  • <br>
  • <div>
  • <div>
  • <h4><a href="/relationships/1744">Relationship: 1744: Increase, Premature molting leads to Increase, Mortality</a></h4>
  • <h4>AOPs Referencing Relationship</h4>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">AOP Name</th>
  • <th scope="col">Adjacency</th>
  • <th scope="col">Weight of Evidence</th>
  • <th scope="col">Quantitative Understanding</th>
  • </tr>
  • </thead>
  • <tbody class="tbody-striped">
  • <tr>
  • <td><a href="/aops/343">S-adenosylmethionine depletion leading to population decline (2)</a></td>
  • <td>adjacent</td>
  • <td></td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/aops/342">S-adenosylmethionine depletion leading to population decline (1)</a></td>
  • <td>adjacent</td>
  • <td></td>
  • <td></td>
  • </tr>
  • <tr>
  • <td><a href="/aops/358">Chitinase inhibition leading to mortality</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Low</td>
  • </tr>
  • <tr>
  • <td><a href="/aops/359">Chitobiase inhibition leading to mortality</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Low</td>
  • </tr>
  • <tr>
  • <th>AOP Name</th>
  • <th>Adjacency</th>
  • <th>Weight of Evidence</th>
  • <th>Quantitative Understanding</th>
  • <td><a href="/aops/360">Chitin synthase 1 inhibition leading to mortality</a></td>
  • <td>adjacent</td>
  • <td>Moderate</td>
  • <td>Low</td>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <th><a href="/aops/343">S-adenosylmethionine depletion leading to population decline (2)</a></th>
  • <th>adjacent</th>
  • <th> </th>
  • <th></th>
  • </tr>
  • <tr>
  • <th><a href="/aops/342">S-adenosylmethionine depletion leading to population decline (1)</a></th>
  • <th>adjacent</th>
  • <th> </th>
  • <th></th>
  • </tr>
  • <tr>
  • <th><a href="/aops/358">Chitinase inhibition leading to mortality</a></th>
  • <th>adjacent</th>
  • <th>Moderate </th>
  • <th>Low</th>
  • </tr>
  • <tr>
  • <th><a href="/aops/359">Chitobiase inhibition leading to mortality</a></th>
  • <th>adjacent</th>
  • <th>Moderate </th>
  • <th>Low</th>
  • </tr>
  • <tr>
  • <th><a href="/aops/360">Chitin synthase 1 inhibition leading to mortality</a></th>
  • <th>adjacent</th>
  • <th>Moderate </th>
  • <th>Low</th>
  • </tr>
  • <tr>
  • <th><a href="/aops/361">Sulfonylureareceptor binding leading to mortality</a></th>
  • <th>adjacent</th>
  • <th>High </th>
  • <th>High</th>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <br>
  • <!-- loop to find taxonomic applicability under relationship -->
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • <tr>
  • <th>Term</th>
  • <th>Scientific Term</th>
  • <th>Evidence</th>
  • <th>Links</th>
  • <tr>
  • <td><a href="/aops/361">Sulfonylureareceptor binding leading to mortality</a></td>
  • <td>adjacent</td>
  • <td>High</td>
  • <td>High</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • <h4>Evidence Supporting Applicability of this Relationship</h4>
  • <div>
  • <strong>Taxonomic Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th scope="col">Term</th>
  • <th scope="col">Scientific Term</th>
  • <th scope="col">Evidence</th>
  • <th scope="col">Links</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>crustaceans</td>
  • <td>Daphnia magna</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35525" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tr>
  • <td>insects</td>
  • <td>insects</td>
  • <td>Moderate</td>
  • <td>
  • <a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" , target="_blank">NCBI</a>
  • </td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>crustaceans</td>
  • <td>Daphnia magna</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=35525" target="_blank">NCBI</a></td>
  • </tr>
  • <tr>
  • <td>insects</td>
  • <td>insects</td>
  • <td>Moderate</td>
  • <td><a href="http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=0" target="_blank">NCBI</a></td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end loop for taxons -->
  • <!-- loop to find life stages under relationship -->
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • </div>
  • <div>
  • <strong>Life Stage Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Life Stage</th>
  • <th>Evidence</th>
  • <th scope="col">Life Stage</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Larvae</td>
  • <td>High</td>
  • </tr>
  • <tr>
  • <td>Juvenile</td>
  • <td>Moderate</td>
  • </tr>
  • <tr>
  • <td>Adult</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end loop for life stages -->
  • <!-- sex terms -->
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="panel panel-default">
  • <table class="table table-bordered table-striped">
  • <thead>
  • </div>
  • <div>
  • <strong>Sex Applicability</strong>
  • <div class="table-responsive">
  • <table class="table table-bordered table-fullwidth">
  • <thead class="thead-light">
  • <tr>
  • <th>Sex</th>
  • <th>Evidence</th>
  • <th scope="col">Sex</th>
  • <th scope="col">Evidence</th>
  • </tr>
  • </thead>
  • <tbody>
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • <tbody class="tbody-striped">
  • <tr>
  • <td>Unspecific</td>
  • <td>Moderate</td>
  • </tr>
  • </tbody>
  • </table>
  • </div>
  • </div>
  • <!-- end sex terms -->
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>Likely, this KER is applicable to the whole phylum of arthropods as they all depend on molting in order to develop.</span></p>
  • </div>
  • <p><span style="font-size:14px"><strong>Taxonomic: </strong>Likely, this KER is applicable to the whole phylum of arthropods as they all depend on molting in order to develop.</span></p>
  • <p><span style="font-size:14px"><strong>Life stage: </strong>This KER is applicable for organisms molting in order to grow and develop, namely larval stages of insects and all life stages of crustaceans and arachnids.</span></p>
  • <p><span style="font-size:14px"><strong>Sex: </strong>This KER is applicable to all sexes.</span></p>
  • <p><span style="font-size:14px"><strong>Chemical: </strong>Occurrence of premature molting and an increase in mortality observed after treatment with the pyrimidine nucleosides ( e.g. polyoxin D, polyoxin B and nikkomycin Z) (Gijswijt et al. 1979; Tellam et al. 2000; Tellam and Eisemann 2000; Arakawa et al. 2008; New Zealand Environmental Protection Authority 2015). &nbsp;However, studies causally linking both endpoints are lacking.</span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:14px">During molting, arthropods pause food uptake and in certain cases also respiration (Camp et al. 2014; Song et al. 2017a). If molting is disrupted and the organism is not able to shed the old exoskeleton, the organism may eventually die of starvation, suffocation or the rupture of the exoskeleton.</span></p>
  • <h4>Evidence Supporting this KER</h4>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:14px">In order to grow and develop, arthropods need to molt periodically (Heming 2018). Since molting is a determining point in arthropod development, the disruption of molting leads to increased mortality (Arakawa et al. 2008; Merzendorfer et al. 2012; Song et al. 2017a; Song et al. 2017b). During ecdysis, arthropods pause food intake and respiration (Camp et al. 2014; Song et al. 2017a). Therefore, if the molt cannot be completed, the organism may die of starvation or suffocation. Additionally, if the cuticle is immature, it may not withstand the stresses associated with ecdysis (Clarke 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985), and the organism may die of desiccation or increased susceptibility to pathogens. Given the well understood biological processes, the biological plausibility of this KER was rated as high.</span></p>
  • <strong>Empirical Evidence</strong>
  • <p><span style="font-size:14px">The event of premature molting is not well characterized. It gets mentioned as cause of death in studies with <em>Pieris brassicae, Spodoptera litura</em>, <em>Bombyx mori &nbsp;</em>and <em>Lucilia cuprina </em>after treatment with polyoxin D, polyoxin B, polyoxin AL (a mixture of polyoxins) and nikkomycin Z (Gijswijt et al. 1979; Tellam et al. 2000; Arakawa et al. 2008). The increase in mortality was reported in studies with <em>Lucilia cuprina</em>,<em> Spodoptera litura</em> and <em>Bombyx mori </em>(Tellam et al. 2000; Tellam and Eisemann 2000; Arakawa et al. 2008). Evidence from&nbsp;studies which assess and link both endpoints, and therefore would support dose concordance, is lacking.&nbsp;However, results from studies where CHS-1 was knocked down by RNA interference support temporal concordance of the KER (Arakane et al. 2005, Li et al. 2017, <span style="font-family:Calibri,sans-serif">Chen et al., 2008; Mohammed et al., 2017; Shang et al., 2016; Wang et al., 2012, 2019; Yang et al., 2013; Ye et al., 2019; Zhai et al., 2017; Zhang et al., 2010</span>). Given the support for temporal concordance and the lack of studies showing dose concordance, the empirical evidence for this KER was judged as moderate.</span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:14px">The absence of studies (quantitatively) assessing premature molting constitutes a major data gap. A further data gap is the absence of studies which assess both, increase in premature molting and the increase in mortality are lacking.</span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:14px">Due to the lack of studies linking the increase in premature molting with the increase in mortality, it is not possible to describe the nature of the response-response relationship.</span></p>
  • <h4>Key Event Relationship Description</h4>
  • <p><span style="font-size:14px">During molting, arthropods pause food uptake and in certain cases also respiration (Camp et al. 2014; Song et al. 2017a). If molting is disrupted and the organism is not able to shed the old exoskeleton, the organism may eventually die of starvation, suffocation or the rupture of the exoskeleton.</span></p>
  • <!-- if nothing shows up in any of these fields, then evidence supporting this KER will not be displayed -->
  • <h4>Evidence Supporting this KER</h4>
  • <strong>Biological Plausibility</strong>
  • <p><span style="font-size:14px">In order to grow and develop, arthropods need to molt periodically (Heming 2018). Since molting is a determining point in arthropod development, the disruption of molting leads to increased mortality (Arakawa et al. 2008; Merzendorfer et al. 2012; Song et al. 2017a; Song et al. 2017b). During ecdysis, arthropods pause food intake and respiration (Camp et al. 2014; Song et al. 2017a). Therefore, if the molt cannot be completed, the organism may die of starvation or suffocation. Additionally, if the cuticle is immature, it may not withstand the stresses associated with ecdysis (Clarke 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985), and the organism may die of desiccation or increased susceptibility to pathogens. Given the well understood biological processes, the biological plausibility of this KER was rated as high.</span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-size:14px">Death occurs after premature molting. However, an exact time frame in which death occurs cannot be defined yet.</span></p>
  • <strong>Empirical Evidence</strong>
  • <p><span style="font-size:14px">The event of premature molting is not well characterized. It gets mentioned as cause of death in studies with <em>Pieris brassicae, Spodoptera litura</em>, <em>Bombyx mori &nbsp;</em>and <em>Lucilia cuprina </em>after treatment with polyoxin D, polyoxin B, polyoxin AL (a mixture of polyoxins) and nikkomycin Z (Gijswijt et al. 1979; Tellam et al. 2000; Arakawa et al. 2008). The increase in mortality was reported in studies with <em>Lucilia cuprina</em>,<em> Spodoptera litura</em> and <em>Bombyx mori </em>(Tellam et al. 2000; Tellam and Eisemann 2000; Arakawa et al. 2008). However, evidence of studies which assess and link both endpoints is lacking.</span></p>
  • <strong>Uncertainties and Inconsistencies</strong>
  • <p><span style="font-size:14px">The absence of studies (quantitatively) assessing premature molting constitutes a major data gap. A further data gap is the absence of studies which assess both, increase in premature molting and the increase in mortality are lacking.</span></p>
  • <h4>Quantitative Understanding of the Linkage</h4>
  • <strong>Response-response relationship</strong>
  • <p><span style="font-size:14px">Due to the lack of studies linking the increase in premature molting with the increase in mortality, it is not possible to describe the nature of the response-response relationship.</span></p>
  • <strong>Time-scale</strong>
  • <p><span style="font-size:14px">Death occurs after premature molting. However, an exact time frame in which death occurs cannot be defined yet.</span></p>
  • <!--<!% unless aop_rel.relationship.relationship_taxons.blank? %>-->
  • <!--<!%= render 'snapshot_taxons', taxons: aop_rel.relationship.relationship_taxons %>-->
  • <!--<!% unless aop_rel.relationship.taxon_evidence.blank? %>-->
  • <!--<h3>Domain of Applicability</h3>-->
  • <!--<!%== aop_rel.relationship.taxon_evidence %>-->
  • <!--<!% end %>-->
  • <!--<!% end %>-->
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakawa T, Yukuhiro F, Noda H. 2008. Insecticidal effect of a fungicide containing polyoxin B on the larvae of <em>Bombyx mori</em> (Lepidoptera: Bombycidae), <em>Mamestra brassicae</em>, <em>Mythimna separata</em>, and <em>Spodoptera litura</em> (Lepidoptera: Noctuidae). Appl Entomol Zool. 43(2):173&ndash;181. doi:10.1303/aez.2008.173.</span></p>
  • <h4>References</h4>
  • <p><span style="font-size:14px">Arakawa T, Yukuhiro F, Noda H. 2008. Insecticidal effect of a fungicide containing polyoxin B on the larvae of <em>Bombyx mori</em> (Lepidoptera: Bombycidae), <em>Mamestra brassicae</em>, <em>Mythimna separata</em>, and <em>Spodoptera litura</em> (Lepidoptera: Noctuidae). Appl Entomol Zool. 43(2):173&ndash;181. doi:10.1303/aez.2008.173.</span></p>
  • <p><span style="font-size:14px">Camp AA, Funk DH, Buchwalter DB. 2014. A stressful shortness of breath: Molting disrupts breathing in the mayfly <em>Cloeon dipterum</em>. Freshw Sci. 33(3):695&ndash;699. doi:10.1086/677899.</span></p>
  • <p><span style="font-size:14px">Chen, X.; Tian, H.; Zou, L.; Tang, B.; Hu, J.; Zhang, W. Disruption of Spodoptera Exigua Larval Development by Silencing Chitin Synthase Gene A with RNA Interference. Bull. Entomol. Res. 2008, 98 (6), 613&ndash;619. https://doi.org/10.1017/S0007485308005932.</span></p>
  • <p><span style="font-size:14px">Mohammed, A. M. A.; DIab, M. R.; Abdelsattar, M.; Khalil, S. M. S. Characterization and RNAi-Mediated Knockdown of Chitin Synthase A in the Potato Tuber Moth, Phthorimaea Operculella. Sci. Rep. 2017, 7 (1), 1&ndash;12. https://doi.org/10.1038/s41598-017-09858-y.</span></p>
  • <p><span style="font-size:14px">Clarke KU. 1957. On the Increase in Linear Size During Growth in <em>Locusta Migratoria</em> L. Proc R Entomol Soc London Ser A, Gen Entomol. 32(1&ndash;3):35&ndash;39. doi:10.1111/j.1365-3032.1957.tb00361.x.</span></p>
  • <p><span style="font-size:14px">Dall W, Smith DM, Press B. 1978. Water uptake at ecdysis in the western rock lobster. J Exp Mar Bio Ecol. 35(1960). doi:10.1016/0022-0981(78)90074-6.</span></p>
  • <p><span style="font-size:14px">deFur PL, Mangum CP, McMahon BR. 1985. Cardiovascular and Ventilatory Changes During Ecdysis in the Blue Crab <em>Callinectes Sapidus</em> Rathbun. J Crustac Biol. 5(2):207&ndash;215. doi:10.2307/1547867.</span></p>
  • <p><span style="font-size:14px">Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in <em>Pieris brassicae</em> (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87&ndash;94. doi:10.1016/0048-3575(79)90098-1.</span></p>
  • <p><span style="font-size:14px">Heming BS. 2018. Insect development and evolution. Ithaca: Cornell University Press.</span></p>
  • <p><span style="font-size:14px">Lee RM. 1961. The variation of blood volume with age in the desert locust (<em>Schistocerca gregaria</em> Forsk.). J Insect Physiol. 6(1):36&ndash;51. doi:10.1016/0022-1910(61)90090-7.</span></p>
  • <p><span style="font-size:14px">Merzendorfer H, Kim HS, Chaudhari SS, Kumari M, Specht CA, Butcher S, Brown SJ, Robert Manak J, Beeman RW, Kramer KJ, et al. 2012. Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species <em>Tribolium castaneum</em>. Insect Biochem Mol Biol. 42(4):264&ndash;276. doi:10.1016/j.ibmb.2011.12.008. http://dx.doi.org/10.1016/j.ibmb.2011.12.008.</span></p>
  • <p><span style="font-size:14px">New Zealand Environmental Protection Authority. 2015. Application for approval to import ESTEEM for release. https://www.epa.govt.nz/assets/FileAPI/hsno-ar/APP202334/fbce9a39e6/APP202334-APP202334-Staff-Report-Final-updated.pdf.</span></p>
  • <p><span style="font-size:14px">Shang, F.; Xiong, Y.; Xia, W. K.; Wei, D. D.; Wei, D.; Wang, J. J. Identification, Characterization and Functional Analysis of a Chitin Synthase Gene in the Brown Citrus Aphid, Toxoptera Citricida (Hemiptera, Aphididae). Insect Mol. Biol. 2016, 25 (4), 422&ndash;430. https://doi.org/10.1111/imb.12228.</span></p>
  • <p><span style="font-size:14px">Song Y, Evenseth LM, Iguchi T, Tollefsen KE. 2017b. Release of chitobiase as an indicator of potential molting disruption in juvenile <em>Daphnia magna</em> exposed to the ecdysone receptor agonist 20-hydroxyecdysone. J Toxicol Environ Heal - Part A Curr Issues. 80(16&ndash;18):954&ndash;962. doi:10.1080/15287394.2017.1352215. https://doi.org/10.1080/15287394.2017.1352215.</span></p>
  • <p><span style="font-size:14px">Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE. 2017a. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. Environ Sci Technol. 51(8):4142&ndash;4157. doi:10.1021/acs.est.7b00480.</span></p>
  • <p><span style="font-size:14px">Tellam RL, Eisemann C. 2000. Chitin is only a minor component of the peritrophic matrix from larvae of <em>Lucilia cuprina</em>. Insect Biochem Mol Biol. 30(12):1189&ndash;1201. doi:10.1016/S0965-1748(00)00097-7.</span></p>
  • <p><span style="font-size:14px">Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. 2000. Insect chitin synthase. cDNA sequence, gene organization and expression. Eur J Biochem. 267(19):6025&ndash;6043. doi:10.1046/j.1432-1327.2000.01679.x.</span></p>
  • <p><span style="font-size:14px">Wang, Z.; Yang, H.; Zhou, C.; Yang, W. J.; Jin, D. C.; Long, G. Y. Molecular Cloning, Expression, and Functional Analysis of the Chitin Synthase 1 Gene and Its Two Alternative Splicing Variants in the White-Backed Planthopper, Sogatella Furcifera (Hemiptera: Delphacidae). Sci. Rep. 2019, 9 (1), 1&ndash;14. https://doi.org/10.1038/s41598-018-37488-5.</span></p>
  • <p><span style="font-size:14px">Wang, Y.; Fan, H. W.; Huang, H. J.; Xue, J.; Wu, W. J.; Bao, Y. Y.; Xu, H. J.; Zhu, Z. R.; Cheng, J. A.; Zhang, C. X. Chitin Synthase 1 Gene and Its Two Alternative Splicing Variants from Two Sap-Sucking Insects, Nilaparvata Lugens and Laodelphax Striatellus (Hemiptera: Delphacidae). Insect Biochem. Mol. Biol. 2012, 42 (9), 637&ndash;646. https://doi.org/10.1016/j.ibmb.2012.04.009.</span></p>
  • <p><span style="font-size:14px">Yang, W. J.; Xu, K. K.; Cong, L.; Wang, J. J. Identification, mRNA Expression, and Functional Analysis of Chitin Synthase 1 Gene and Its Two Alternative Splicing Variants in Oriental Fruit Fly, Bactrocera Dorsalis. Int. J. Biol. Sci. 2013, 9 (4), 331&ndash;342. https://doi.org/10.7150/ijbs.6022.</span></p>
  • <p><span style="font-size:14px">Ye, C.; Jiang, Y. Di; An, X.; Yang, L.; Shang, F.; Niu, J.; Wang, J. J. Effects of RNAi-Based Silencing of Chitin Synthase Gene on Moulting and Fecundity in Pea Aphids (Acyrthosiphon Pisum). Sci. Rep. 2019, 9 (1), 1&ndash;10. https://doi.org/10.1038/s41598-019-39837-4.</span></p>
  • <p><span style="font-size:14px">Zhai, Y.; Fan, X.; Yin, Z.; Yue, X.; Men, X.; Zheng, L.; Zhang, W. Identification and Functional Analysis of Chitin Synthase A in Oriental Armyworm, Mythimna Separata. Proteomics 2017, 17 (21), 1&ndash;11. https://doi.org/10.1002/pmic.201700165.</span></p>
  • <p><span style="font-size:14px">Zhang, J. et al. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem. Mol. Biol. 40, 824&ndash;833 (2010).</span></p>
  • </div>
  • <br>
  • </div>
  • <!-- end relationship loop -->
  • </div>
  • </div>
  • </div>
  • </div>
  • </div>
  • <footer class="footer">
  • <div class="navbar navbar-fixed-bottom navbar-inverse">
  • <div class="container">
  • <ul class="nav navbar-nav">
  • <li ><a href="/info_pages/2">Help</a></a></li>
  • <li ><a href="/info_pages/3">About</a></a></li>
  • <li ><a href="/info_pages/4">FAQ</a></a></li>
  • <li ><a href="/info_pages/5">Downloads</a></a></li>
  • <li><a href="/metrics_summary">Metrics </a></li>
  • </ul>
  • </div>
  • </div>
  • <br />
  • <br />
  • <br />
  • </footer>
  • </div>
  • </div>
  • </div>
  • </main>
  • <nav class="navbar navbar-expand nav-footer navbar-dark bg-dark mt-auto">
  • <div class="container-fluid">
  • <ul class="navbar-nav mx-auto">
  • <li class="nav-item"><a class="nav-link" href="/info_pages/2" target="_blank">Help</a></li>
  • <li class="nav-item"><a class="nav-link" href="/info_pages/3">About</a></li>
  • <li class="nav-item"><a class="nav-link" href="/info_pages/4">FAQ</a></li>
  • <li class="nav-item d-none d-sm-block"><a class="nav-link" href="/info_pages/5">Download Options</a></li>
  • <li class="nav-item"><a class="nav-link" href="/metrics_summary">Metrics</a></li>
  • </ul>
  • </div>
  • </nav>
  • <script crossorigin="anonymous" integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=" src="https://code.jquery.com/jquery-3.5.1.min.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-VazP97ZCwtekAsvgPBSUwPFKdrwD3unUfSGVYrahUqU=" src="https://code.jquery.com/ui/1.12.1/jquery-ui.min.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-sXPRAPYJk5w3GI/IBiN2AK31ZAMCcJ/5LRpLHpsk5vY=" src="https://cdn.jsdelivr.net/npm/@rails/ujs@6.0.3-2/lib/assets/compiled/rails-ujs.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-9nt4LsWmLI/O24lTW89IzAKuBqEZ47l/4rh1+tH/NY8=" src="https://cdn.jsdelivr.net/npm/bootstrap@4.5.2/dist/js/bootstrap.bundle.min.js"></script>
  • <script crossorigin="anonymous" integrity="sha256-5VhCqFam2Cn+yjw61zbBNrbHVJ6SRydPeKopYlngbiQ=" src="https://cdn.jsdelivr.net/npm/cookieconsent@3.1.1/build/cookieconsent.min.js" data-cfasync="false"></script>
  • <script src="https://aopwiki.org/lib/tablefilter/tablefilter.js"></script>
  • <script src="/assets/application-96edc378629b3622fc73b5b7dec98d7ad1e925d3a8492bc29501bd324c32c74c.js"></script>
  • <script>
  • function getCookie(cookieName) {
  • let cookies = decodeURIComponent(document.cookie).split(';');
  • for (let idx = 0; idx < cookies.length; idx++) {
  • let cookie = cookies[idx].trim().split("=");
  • if (cookie[0] === cookieName) {
  • return cookie[1];
  • }
  • }
  • return "";
  • }
  • function setGtagConfig() {
  • gtag('config','UA-172534727-1',{'send_page_view':getCookie("cookieconsent_status")==="allow"});
  • }
  • window.dataLayer=window.dataLayer||[];
  • function gtag(){dataLayer.push(arguments);}
  • gtag('js',new Date());
  • setGtagConfig();
  • window.cookieconsent.initialise({
  • "palette": { "popup": {"background":"#252e39" }, "button": {"background":"#14a7d0" } },
  • "theme": "classic", "position": "bottom-right", "type": "opt-out",
  • "content": { "dismiss": "I accept cookies", "deny": "I refuse cookies" },
  • onStatusChange: function() { setGtagConfig(); }
  • });
  • </script>
  • <script type="text/javascript" id="flash">
  • </script>
  • </body>