API

Event: 1391

Key Event Title

?

Activation of Cyp2E1 in the liver

Short name

?

Activation of Cyp2E1 in the liver

Key Event Component

?

Process Object Action

Key Event Overview


AOPs Including This Key Event

?

AOP Name Role of event in AOP
Chronic Cyp2E1 Activation Leading to Liver Cancer MolecularInitiatingEvent

Stressors

?



Level of Biological Organization

?

Biological Organization
Molecular

Cell term

?



Organ term

?



Taxonomic Applicability

?



Life Stages

?



Sex Applicability

?



How This Key Event Works

?


Cyp2E1 is a membrane-bound monooxygenase that is primarily located in zone 3 hepatocytes (Ingelman-Sundberg, et al. 1988, Tsutsumi, et al. 1989). CYP2E1 is primarily located in the endoplasmic reticulum, but can also be present in the mitochondria.  It is a phase I metabolism enzyme that catalyzes the oxidation of low molecular weight substrates. Exposure to a substrate activates Cyp2E1, which leads to its stabilization, and thus significantly increases the half-life of the Cyp2E1 enzyme (Gonzalez 2007, Song, et al. 1989). 


How It Is Measured or Detected

?


  • Mixed function oxidase catalytic activity. These assays have been thoroughly reviewed by Cederbaum (2014). The paper describes preparation of microsomes from both liver homogenates and cell cultures for testing Cyp2E1 activity. Briefly, the ratio of 6-hydroxychlorzoxazone/chlorzoxazone can be used to estimate levels of CYP2E1 in humans (Girre, et al. 1994). In addition, the oxidation of para-nitrophenol (PNP) to para nitrocatechol is an efficient and relatively specific assay to determine catalytic activity dependent on CYP2E1 [e.g., (Koop 1986, Koop, et al. 1989, Reinke and Moyer 1985)]. Other assays are described within the review article by Cederbaum.
  • Western blot or Immunohistochemistry.  Following chemical treatment, Cyp2E1 protein levels should increase if it is involved in the metabolism of that substrate. Western blot (of protein extracted from liver or cultured cells) or immunohistochemistry (of fixed liver or cultured cells) using anti-Cyp2E1 antibodies is the most straightforward approach for directly measuring increased levels of Cyp2E1.
  • HepG2 cells. A compound’s Cyp2E1-dependence can be determined by comparing toxic effects in HepG2 versus HepG2-E47 cells. HepG2 cells are immortalized human hepatoma cells that do not express Cyp2E1; whereas, HepG2-E47 cells over-express Cyp2E1 (by recombinant retroviral infection). Chemicals that are metabolically activated by Cyp2E1 will cause cytotoxicity and oxidative stress in the E47 cells only. Toxicity can be blocked by treatment with antioxidants or Cyp2E1 inhibitors. Toxicity is exacerbated when glutathione is depleted (Wu and Cederbaum 2005) (e.g., ethanol (Cederbaum, et al. 2001, Chen and Cederbaum 1998, Chen, et al. 1998, Dai, et al. 1993).
  • Measurement of chemical oxidation by Cyp2E1 in liver microsomes; described in the methodology review by Cederbaum (Cederbaum 2014). Reactions use specific probes to confirm that the compound undergoes oxidation, and that this oxidation reaction is catalyzed by Cyp2E1. See also: (Koop 1986, Koop, et al. 1989, Reinke and Moyer 1985).
  • Cyp2E1 knock-out mouse. Chemical exposures in knockout mice are conducted and the production of the anticipated metabolites is measured. Lack of metabolite production indicates that Cyp2E1 is required for the chemical’s metabolism. Effects in knock-out mice are always measured in reference to wild-type (control) mice, which allows investigators to attribute the altered phenotype to gene product that has been knocked-out. Studies in Cyp2E1 knockout mice include: carbon tetrachloride (Wong, et al. 1998), acetone (Bondoc, et al. 1999), benzene (Powley and Carlson 2001), thioacetamide (Chilakapati, et al. 2007), trichloroethylene (Kim and Ghanayem 2006), acrylonitrile (El Hadri, et al. 2005), urethane (Hoffler, et al. 2003, Hoffler and Ghanayem 2005), acetaminophen (Lee, et al. 1996, Zaher, et al. 1998), and ethanol (Bardag-Gorce, et al. 2000).
  • Humanized Cyp2E1 mice. Two transgenic mice with human Cyp2E1 have been created. The first mouse reproduces and develops normally, and demonstrates Cyp2E1-dependent toxicity (Morgan, et al. 2002). However, these mice express human and endogenous Cyp2E1, which is not ideal. A true ‘humanized’ Cyp2E1 transgenic mouse was produced by the Gonzalez lab in which the endogenous Cyp2E1 gene was replaced with the human Cyp2E1 gene (Cheung, et al. 2005, Cheung and Gonzalez 2008). Studies in these mice are conducted in order to provide evidence that the Cyp2E1-dependent effects observed in experimental animals will also occur in humans.
  • 2-Piperidone. Z-Piperidone is a newly proposed biomarker of Cyp2E1 activity that is detected in urine (Cheng, et al. 2013).

 


Evidence Supporting Taxonomic Applicability

?


The Cyp2E1 gene is present across a variety of taxa including humans and primates, mice and rats. AceView (http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html) indicates high levels of Cyp2E1 expression from RNA-seq experiments in liver across primate species. 


Evidence for Perturbation by Stressor


Overview for Molecular Initiating Event

?

There are >85 known Cyp2E1 substrates. They are low molecular weight compounds, including: molecular oxygen, acetone, acetaminophen, carbon tetrachloride, pyrazole, vinyl chloride, furan, chloroform, ethanol, benzene, acrylonitrile, trichloroethylene, aniline, N-nitrosodimethylamine, N-nitrosodiethylamine, diethylnitrosamine,   thioacetamide, and toluene. A variety of substrates have been described (Lieber 1997, Tanaka, et al. 2000).



References

?


Bardag-Gorce, F., Yuan, Q.X., Li, J., French, B.A., Fang, C., Ingelman-Sundberg, M., French, S.W., 2000. The effect of ethanol-induced cytochrome p4502E1 on the inhibition of proteasome activity by alcohol. Biochem. Biophys. Res. Commun. 279, 23-29.

Bondoc, F.Y., Bao, Z., Hu, W.Y., Gonzalez, F.J., Wang, Y., Yang, C.S., Hong, J.Y., 1999. Acetone catabolism by cytochrome P450 2E1: studies with CYP2E1-null mice. Biochem. Pharmacol. 58, 461-463.

Cederbaum, A.I., 2014. Methodology to assay CYP2E1 mixed function oxidase catalytic activity and its induction. Redox Biol. 2C, 1048-1054.

Cheng, J., Chen, C., Kristopher, K.W., Manna, S.K., Scerba, M., Friedman, F.K., Luecke, H., Idle, J.R., Gonzalez, F.J., 2013. Identification of 2-piperidone as a biomarker of CYP2E1 activity through metabolomic phenotyping. Toxicol. Sci. 135, 37-47.

Cheung, C., Gonzalez, F.J., 2008. Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment. J. Pharmacol. Exp. Ther. 327, 288-299.

Chilakapati, J., Korrapati, M.C., Shankar, K., Hill, R.A., Warbritton, A., Latendresse, J.R., Mehendale, H.M., 2007. Role of CYP2E1 and saturation kinetics in the bioactivation of thioacetamide: Effects of diet restriction and phenobarbital. Toxicol. Appl. Pharmacol. 219, 72-84.

El Hadri, L., Chanas, B., Ghanayem, B.I., 2005. Comparative metabolism of methacrylonitrile and acrylonitrile to cyanide using cytochrome P4502E1 and microsomal epoxide hydrolase-null mice. Toxicol. Appl. Pharmacol. 205, 116-125.

Girre, C., Lucas, D., Hispard, E., Menez, C., Dally, S., Menez, J.F., 1994. Assessment of cytochrome P4502E1 induction in alcoholic patients by chlorzoxazone pharmacokinetics. Biochem. Pharmacol. 47, 1503-1508.

Gonzalez, F.J., 2007. The 2006 Bernard B. Brodie Award Lecture. Cyp2e1. Drug metabolism and disposition: the biological fate of chemicals 35, 1-8.

Hoffler, U., El-Masri, H.A., Ghanayem, B.I., 2003. Cytochrome P450 2E1 (CYP2E1) is the principal enzyme responsible for urethane metabolism: comparative studies using CYP2E1-null and wild-type mice. J. Pharmacol. Exp. Ther. 305, 557-564.

Hoffler, U., Ghanayem, B.I., 2005. Increased bioaccumulation of urethane in CYP2E1-/- versus CYP2E1+/+ mice. Drug Metab. Dispos. 33, 1144-1150.

Ingelman-Sundberg, M., Johansson, I., Penttila, K.E., Glaumann, H., Lindros, K.O., 1988. Centrilobular expression of ethanol-inducible cytochrome P-450 (IIE1) in rat liver. Biochem. Biophys. Res. Commun. 157, 55-60.

Kim, D., Ghanayem, B.I., 2006. Comparative metabolism and disposition of trichloroethylene in Cyp2e1-/-and wild-type mice. Drug Metab. Dispos. 34, 2020-2027.

Koop, D.R., 1986. Hydroxylation of p-nitrophenol by rabbit ethanol-inducible cytochrome P-450 isozyme 3a. Mol. Pharmacol. 29, 399-404.

Koop, D.R., Laethem, C.L., Tierney, D.J., 1989. The utility of p-nitrophenol hydroxylation in P450IIE1 analysis. Drug Metab. Rev. 20, 541-551.

Lee, S.S., Buters, J.T., Pineau, T., Fernandez-Salguero, P., Gonzalez, F.J., 1996. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J. Biol. Chem. 271, 12063-12067.

Lieber, C.S., 1997. Cytochrome P-4502E1: its physiological and pathological role. Physiol. Rev. 77, 517-544.

Morgan, K., French, S.W., Morgan, T.R., 2002. Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology 36, 122-134.

Powley, M.W., Carlson, G.P., 2001. Hepatic and pulmonary microsomal benzene metabolism in CYP2E1 knockout mice. Toxicology 169, 187-194.

Reinke, L.A., Moyer, M.J., 1985. p-Nitrophenol hydroxylation. A microsomal oxidation which is highly inducible by ethanol. Drug Metab. Dispos. 13, 548-552.

Song, B.J., Veech, R.L., Park, S.S., Gelboin, H.V., Gonzalez, F.J., 1989. Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization. J. Biol. Chem. 264, 3568-3572.

Tanaka, E., Terada, M., Misawa, S., 2000. Cytochrome P450 2E1: its clinical and toxicological role. J. Clin. Pharm. Ther. 25, 165-175.

Tsutsumi, M., Lasker, J.M., Shimizu, M., Rosman, A.S., Lieber, C.S., 1989. The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology 10, 437-446.

Wu, D., Cederbaum, A.I., 2005. Oxidative stress mediated toxicity exerted by ethanol-inducible CYP2E1. Toxicol. Appl. Pharmacol. 207, 70-76.

Zaher, H., Buters, J.T., Ward, J.M., Bruno, M.K., Lucas, A.M., Stern, S.T., Cohen, S.D., Gonzalez, F.J., 1998. Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol. Appl. Pharmacol. 152, 193-199.