This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 2224
Key Event Title
Dysregulation of transcriptional expression within PPAR signaling network
Short name
Biological Context
Level of Biological Organization |
---|
Molecular |
Cell term
Cell term |
---|
eukaryotic cell |
Organ term
Organ term |
---|
liver |
Key Event Components
Process | Object | Action |
---|---|---|
regulation of gene expression | disrupted |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
PFOS binding to PPARs leads to liver steatosis | KeyEvent | Erik Mylroie (send email) | Under development: Not open for comment. Do not cite |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
Vertebrates | Vertebrates | High | NCBI |
Life Stages
Life stage | Evidence |
---|---|
Embryo | High |
Juvenile | High |
Adult, reproductively mature | High |
Sex Applicability
Term | Evidence |
---|---|
Male | High |
Female | Moderate |
Key Event Description
This Key Event describes dysregulation of PPAR mediated transcriptional expression within the PPAR signaling network following the binding of stressor ligands to the PPAR isoforms with either agonist or antagonist interactions. There is abundant evidence of showing how synthetic ligands can affect transcriptional expression in the PPAR signaling network and of key genes involved in lipid homeostasis (Meierhofer et al. 2014; Li et al. 2020; Cariello et al. 2021; Heintz et al. 2022; Eide et al. 2023; Heintz et al. 2024). Specifically, pathway and gene ontology (GO) enrichment analyses have identified lipid metabolism, lipid transport, fatty acid degradation, PPAR signaling pathway, and lipid homeostasis as being transcriptionally altered in response to PFOS exposure (Chen et al. 2014; Jacobsen et al. 2018; Rodríguez-Jorquera et al. 2018; Martinez et al. 2019; Christou et al. 2020; Dong et al. 2021; Lee et al. 2021; Mylroie et al. 2021; Beale et al. 2022; Davidsen et al. 2022; Haimbuagh et al. 2022; Wang et al. 2022; Mylroie et al. IN PREP).
How It Is Measured or Detected
Targeted gene expression assays along with “omic” tools such as transcriptomics or proteomics can be used to determine if known or suspected ligands of the PPAR isoforms disrupt gene expression in the PPAR pathway. There are abundant resources available describing methodologies to assess disruption of 1 or more of the PPAR isoform pathways (Meierhofer et al. 2014; Li et al. 2020; Cariello et al. 2021; Mylroie et al. 2021; Heintz et al. 2022; Eide et al. 2023; Heintz et al. 2024).
Domain of Applicability
The conservation of PPAR molecular structure and function among vertebrates (Gust et al 2020) indicates this key event is likely to be conserved among this broad phylogenetic group. Furthermore, PPAR isoforms play a crucial role in lipid metabolism across representative vertebrate species. However, given that species to species variation does exist in structure and specific function, it is important to exercise care when looking to extrapolate across species.
References
Cariello, M., Piccinin, E. and Moschetta, A., 2021. Transcriptional regulation of metabolic pathways via lipid-sensing nuclear receptors PPARs, FXR, and LXR in NASH. Cellular and molecular gastroenterology and hepatology, 11(5), pp.1519-1539.
Chen, J., Tanguay, R.L., Tal, T.L., Gai, Z., Ma, X., Bai, C., Tilton, S.C., Jin, D., Yang, D., Huang, C. and Dong, Q., 2014. Early life perfluorooctanesulphonic acid (PFOS) exposure impairs zebrafish organogenesis. Aquatic toxicology, 150, pp.124-132.
Christou, M., Fraser, T.W., Berg, V., Ropstad, E. and Kamstra, J.H., 2020. Calcium signaling as a possible mechanism behind increased locomotor response in zebrafish larvae exposed to a human relevant persistent organic pollutant mixture or PFOS. Environmental Research, 187, p.109702.
Davidsen, N., Ramhøj, L., Lykkebo, C.A., Kugathas, I., Poulsen, R., Rosenmai, A.K., Evrard, B., Darde, T.A., Axelstad, M., Bahl, M.I. and Hansen, M., 2022. PFOS-induced thyroid hormone system disrupted rats display organ-specific changes in their transcriptomes. Environmental Pollution, 305, p.119340.
de la Rosa Rodriguez, M.A., Sugahara, G., Hooiveld, G.J., Ishida, Y., Tateno, C. and Kersten, S., 2018. The whole transcriptome effects of the PPARα agonist fenofibrate on livers of hepatocyte humanized mice. BMC genomics, 19, pp.1-16.
Dong, G., Zhang, R., Huang, H., Lu, C., Xia, Y., Wang, X. and Du, G., 2021. Exploration of the developmental toxicity of TCS and PFOS to zebrafish embryos by whole-genome gene expression analyses. Environmental Science and Pollution Research, 28(40), pp.56032-56042.
Eide, M., Goksøyr, A., Yadetie, F., Gilabert, A., Bartosova, Z., Frøysa, H.G., Fallahi, S., Zhang, X., Blaser, N., Jonassen, I. and Bruheim, P., 2023. Integrative omics-analysis of lipid metabolism regulation by peroxisome proliferator-activated receptor a and b agonists in male Atlantic cod. Frontiers in physiology, 14, p.1129089.
Haimbaugh, A., Wu, C.C., Akemann, C., Meyer, D.N., Connell, M., Abdi, M., Khalaf, A., Johnson, D. and Baker, T.R., 2022. Multi-and transgenerational effects of developmental exposure to environmental levels of PFAS and PFAS mixture in zebrafish (Danio rerio). Toxics, 10(6), p.334.
Heintz MM, Chappell GA, Thompson CM, Haws LC. Evaluation of transcriptomic responses in livers of mice exposed to the short-chain PFAS compound HFPO-DA. Frontiers in Toxicology. 2022 Jun 27;4:937168.
Heintz, M.M., Klaren, W.D., East, A.W., Haws, L.C., McGreal, S.R., Campbell, R.R. and Thompson, C.M., 2024. Comparison of transcriptomic profiles between HFPO-DA and prototypical PPARα, PPARγ, and cytotoxic agents in mouse, rat, and pooled human hepatocytes. Toxicological Sciences, p.kfae044.
Jacobsen, A.V., Nordén, M., Engwall, M. and Scherbak, N., 2018. Effects of perfluorooctane sulfonate on genes controlling hepatic fatty acid metabolism in livers of chicken embryos. Environmental Science and Pollution Research, 25, pp.23074-23081.
Lee, H., Sung, E.J., Seo, S., Min, E.K., Lee, J.Y., Shim, I., Kim, P., Kim, T.Y., Lee, S. and Kim, K.T., 2021. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. Environment International, 157, p.106802.
Li, Y., Zhang, Q., Fang, J., Ma, N., Geng, X., Xu, M., Yang, H. and Jia, X., 2020. Hepatotoxicity study of combined exposure of DEHP and ethanol: A comprehensive analysis of transcriptomics and metabolomics. Food and chemical toxicology, 141, p.111370.
Martínez, R., Navarro-Martín, L., Luccarelli, C., Codina, A.E., Raldúa, D., Barata, C., Tauler, R. and Piña, B., 2019. Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos. Science of the Total Environment, 674, pp.462-471.
Meierhofer, D., Weidner, C. and Sauer, S., 2014. Integrative analysis of transcriptomics, proteomics, and metabolomics data of white adipose and liver tissue of high-fat diet and rosiglitazone-treated insulin-resistant mice identified pathway alterations and molecular hubs. Journal of proteome research, 13(12), pp.5592-5602.
Mylroie, J.E., Wilbanks, M.S., Kimble, A.N., To, K.T., Cox, C.S., McLeod, S.J., Gust, K.A., Moore, D.W., Perkins, E.J. and Garcia‐Reyero, N., 2021. Perfluorooctanesulfonic acid–induced toxicity on zebrafish embryos in the presence or absence of the chorion. Environmental toxicology and chemistry, 40(3), pp.780-791.
Mylroie, J.E., Gust, K.A., Kimble, A.N., Wilbanks, M.W., Steward, C., Chapman, K.A., Kennedy, A.L., Jensen, K., Erickson, R., Ankley G.T, Conder, J., Vinas, N.G., Moore, D.W., Histological and Transcriptomic Evidence of Disrupted Lipid Metabolism in a Three-Generation Exposure of the Zebrafish (Danio rerio) to Perfluorooctane Sulfonate (PFOS). IN PREP.
Rodríguez-Jorquera, I.A., Colli-Dula, R.C., Kroll, K., Jayasinghe, B.S., Parachu Marco, M.V., Silva-Sanchez, C., Toor, G.S. and Denslow, N.D., 2018. Blood transcriptomics analysis of fish exposed to perfluoro alkyls substances: assessment of a non-lethal sampling technique for advancing aquatic toxicology research. Environmental science & technology, 53(3), pp.1441-1452.
Wang, Q., Huang, J., Liu, S., Wang, C., Jin, Y., Lai, H. and Tu, W., 2022. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish. Environment International, 166, p.107351.