This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 2225
Key Event Title
Disrupted Lipid Storage
Short name
Biological Context
Level of Biological Organization |
---|
Cellular |
Cell term
Cell term |
---|
eukaryotic cell |
Organ term
Organ term |
---|
liver |
Key Event Components
Process | Object | Action |
---|---|---|
lipid storage | disrupted |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
PFOS binding to PPARs leads to liver steatosis | KeyEvent | Erik Mylroie (send email) | Under development: Not open for comment. Do not cite |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
Vertebrates | Vertebrates | High | NCBI |
Life Stages
Life stage | Evidence |
---|---|
Embryo | Moderate |
Juvenile | High |
Adult, reproductively mature | High |
Sex Applicability
Term | Evidence |
---|---|
Male | High |
Female | Moderate |
Key Event Description
This Key Event describes the disruption of normal lipid storage in liver cells. Disruption of lipid storage and transport can be identified by excess accumulation of fatty acids or other lipids in the liver or altered ratios of expected lipid species which can ultimately lead to liver steatosis (Ipsen et al. 2018). An example of an event that can cause disrupted lipid storage is the binding of stressor ligands to the PPAR isoforms with either agonist or antagonist interactions which can lead to effects on lipid storage and transport (Dixon et al. 2021). PPARγ over expression results in promotes storage of lipids in the liver and thus exacerbates hepatic steatosis (Yu et al. 2003; Patsouris et al. 2006). Conversely, deletion of PPARα resulted in an increased liver lipid (Patsouris et al. 2006). Wang et al. (2003) demonstrated that PPARβ/δ deficient mice had increased obesity which, while potentially not a function of improper lipid storage, underpins the importance of all PPAR isoforms in proper lipid homeostasis. Evidence of disruption of lipogenesis at the transcriptional level has also been observed across multiple studies using PFAS as the stressor (Tse et al. 2016; Cui et al. 2017; Huck et al. 2018; Liu et al. 2019; Martinez 2019; Yi et al. 2019; Louisse et al. 2020; Wang et al. 2022a).
How It Is Measured or Detected
There are numerous methodologies available for measuring disrupted lipid storage in the liver cells. Fatty acids and other lipid species can be measure directly or measured globally using lipidomic methodologies (Wang et al. 2022; Albers et al. 2024), and histopathology can confirm lipid deposits in liver sections (Huck et al. 2018; Wang et al. 2022). Also, targeted or global gene expression analyses can reveal disruptions in key genes responsible for proper lipid storage and transport (Tse et al. 2016; Yi et al. 2019; Louisse et al. 2020).
Domain of Applicability
The conservation of PPAR molecular structure and function among vertebrates (Gust et al 2020) indicates this key event is likely to be conserved among this broad phylogenetic group. Furthermore, PPAR isoforms play a crucial role in lipid metabolism across representative vertebrate species. However, given that species to species variation does exist in structure and specific function, it is important to exercise care when looking to extrapolate across species.
References
Albers, J., Mylroie, J., Kimble, A., Steward, C., Chapman, K., Wilbanks, M., Perkins, E. and Garcia-Reyero, N., 2024. Per-and Polyfluoroalkyl Substances: Impacts on Morphology, Behavior and Lipid Levels in Zebrafish Embryos. Toxics, 12(3), p.192.
Cui, Y., Lv, S., Liu, J., Nie, S., Chen, J., Dong, Q., Huang, C. and Yang, D., 2017. Chronic perfluorooctanesulfonic acid exposure disrupts lipid metabolism in zebrafish. Human & experimental toxicology, 36(3), pp.207-217.
Dixon, E.D., Nardo, A.D., Claudel, T. and Trauner, M., 2021. The role of lipid sensing nuclear receptors (PPARs and LXR) and metabolic lipases in obesity, diabetes and NAFLD. Genes, 12(5), p.645.
Huck, I., Beggs, K. and Apte, U., 2018. Paradoxical Protective Effect of Perfluorooctanesulfonic Acid Against High-Fat Diet–Induced Hepatic Steatosis in Mice. International journal of toxicology, 37(5), pp.383-392.
Ipsen, D.H., Lykkesfeldt, J. and Tveden-Nyborg, P., 2018. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cellular and molecular life sciences, 75, pp.3313-3327.
Liu, S., Yang, R., Yin, N., Wang, Y.L. and Faiola, F., 2019. Environmental and human relevant PFOS and PFOA doses alter human mesenchymal stem cell self-renewal, adipogenesis and osteogenesis. Ecotoxicology and environmental safety, 169, pp.564-572.
Martínez, R., Navarro-Martín, L., Luccarelli, C., Codina, A.E., Raldúa, D., Barata, C., Tauler, R. and Piña, B., 2019. Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos. Science of the Total Environment, 674, pp.462-471.
Patsouris, D., Reddy, J.K., Müller, M. and Kersten, S., 2006. Peroxisome proliferator-activated receptor α mediates the effects of high-fat diet on hepatic gene expression. Endocrinology, 147(3), pp.1508-1516.
Tse, W.K.F., Li, J.W., Tse, A.C.K., Chan, T.F., Ho, J.C.H., Wu, R.S.S., Wong, C.K.C. and Lai, K.P., 2016. Fatty liver disease induced by perfluorooctane sulfonate: Novel insight from transcriptome analysis. Chemosphere, 159, pp.166-177.
Wang, Y.X., Lee, C.H., Tiep, S., Ruth, T.Y., Ham, J., Kang, H. and Evans, R.M., 2003. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell, 113(2), pp.159-170.
Wang, Q., Huang, J., Liu, S., Wang, C., Jin, Y., Lai, H. and Tu, W., 2022. Aberrant hepatic lipid metabolism associated with gut microbiota dysbiosis triggers hepatotoxicity of novel PFOS alternatives in adult zebrafish. Environment International, 166, p.107351.
Yi, S., Chen, P., Yang, L. and Zhu, L., 2019. Probing the hepatotoxicity mechanisms of novel chlorinated polyfluoroalkyl sulfonates to zebrafish larvae: Implication of structural specificity. Environment international, 133, p.105262.
Yu, S., Matsusue, K., Kashireddy, P., Cao, W.Q., Yeldandi, V., Yeldandi, A.V., Rao, M.S., Gonzalez, F.J. and Reddy, J.K., 2003. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression. Journal of Biological Chemistry, 278(1), pp.498-505.