This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 926
Key Event Title
Oxidation, Glutathione (To be considered with MIE)
Short name
Biological Context
Level of Biological Organization |
---|
Molecular |
Cell term
Organ term
Key Event Components
Process | Object | Action |
---|---|---|
antioxidant activity | glutathione | abnormal |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
Oxidative stress in chronic kidney disease | KeyEvent | Frederic Y. Bois (send email) | Under development: Not open for comment. Do not cite | |
Oxidation of Reduced Glutathione Leading to Mortality | MolecularInitiatingEvent | Zarin Hossain (send email) | Open for citation & comment |
Taxonomic Applicability
Life Stages
Life stage | Evidence |
---|---|
All life stages | High |
Sex Applicability
Term | Evidence |
---|---|
Unspecific | High |
Key Event Description
**NOTE** : This KE has been revised to be part of the MIE; Peptide Oxidation.
Glutathione (GSH) oxidation refers to the conversion of reduced glutathione to its oxidized form glutathione disulfide (GSSG) in the presence of oxidative species. GSH plays an important role as an anti-oxidant in regulating cellular redox homeostasis, and is mainly present in the cell as the reduced form (98%). Deficiency in GSH or a decrease in GSH/GSSG ratio results in decreased anti-oxidant function and increased susceptibility to oxidative stress, thus making it a marker of cellular redox status. An imbalance in GSH/GSSG ratio has been implicated in the onset and progression of human diseases, such as neurodegenerative diseases, cancers, pulmonary diseases and cardiovascular diseases (Ballatori et al., 2009; Kalinina et al., 2014).
How It Is Measured or Detected
GSH and GSSG levels can be determined by high-performance liquid chromatography HPLC, capillary electrophoresis, or biochemically in microplates. Several different assays have been designed to measure glutathione in samples. Enzyme recycling is a widely accepted method to determine total glutathione, in which GSH reacts with DTNB (Ellman's reagent) in the presence of glutathione reductase. Glutathione reductase reduces GSSG to GSH, which then reacts with DTNB to produce a yellow colored 5-thio-2-nitrobenzoic acid (TNB), which absorbs light at a wavelength of 412 nm (Tipple and Rogers, 2012). Another method uses HPLC separation and fluorometric detection, where iodoactetic acid is added as a thiol akylating agent followed by dansyl chloride derivatization for fluorometric detection. Similarly, monochlorobimane can be added to culture medium in order to form a fluorescent GSH-monochlorobimane adduct that can be measured fluorometrically (Kamencic et al., 2000).
Domain of Applicability
The concentrations of GSH and GSSG have been shown in tissues of human and laboratory animals, including rats, mice and cows (Chen et al., 2010; Giustarini et al., 2013).
References
Ballatori, N., Krance, S.M., Notenboom, S., Shi, S., Tieu, K., and Hammond, C.L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biol. Chem. 390, 191–214.
Chen, C.-A., Wang, T.-Y., Varadharaj, S., Reyes, L.A., Hemann, C., Talukder, M.A.H., Chen, Y.-R., Druhan, L.J., and Zweier, J.L. (2010). S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468, 1115–1118.
Giustarini, D., Dalle-Donne, I., Milzani, A., Fanti, P., and Rossi, R. (2013). Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat. Protoc. 8, 1660–1669.
Kalinina, E.V., Chernov, N.N., and Novichkova, M.D. (2014). Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochem. Biokhimii︠a︡ 79, 1562–1583.
Kamencic, H., Lyon, A., Paterson, P.G., and Juurlink, B.H. (2000). Monochlorobimane fluorometric method to measure tissue glutathione. Anal. Biochem. 286, 35–37.
Tipple, T.E., and Rogers, L.K. (2012). Methods for the Determination of Plasma or Tissue Glutathione Levels. Methods Mol. Biol. Clifton NJ 889, 315–324.