To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:1253

Relationship: 1253


The title of the KER should clearly define the two KEs being considered and the sequential relationship between them (i.e., which is upstream and which is downstream). Consequently all KER titles take the form “upstream KE leads to downstream KE”.  More help

Binding, Immunophilins leads to Inhibition, Calcineurin Activity

Upstream event
Upstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help
Downstream event
Downstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

This table is automatically generated upon addition of a KER to an AOP. All of the AOPs that are linked to this KER will automatically be listed in this subsection. Clicking on the name of the AOP in the table will bring you to the individual page for that AOP. More help

Taxonomic Applicability

Select one or more structured terms that help to define the biological applicability domain of the KER. In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER. Authors can indicate the relevant taxa for this KER in this subsection. The process is similar to what is described for KEs (see pages 30-31 and 37-38 of User Handbook) More help
Term Scientific Term Evidence Link
Homo sapiens Homo sapiens High NCBI
Mus musculus Mus musculus High NCBI
Rattus norvegicus Rattus norvegicus High NCBI
Macaca mulatta Macaca mulatta High NCBI
Macaca fascicularis Macaca fascicularis High NCBI

Sex Applicability

Authors can indicate the relevant sex for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of the User Handbook). More help
Sex Evidence
Mixed High

Life Stage Applicability

Authors can indicate the relevant life stage for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of User Handbook). More help
Term Evidence
All life stages High

Key Event Relationship Description

Provide a brief, descriptive summation of the KER. While the title itself is fairly descriptive, this section can provide details that aren’t inherent in the description of the KEs themselves (see page 39 of the User Handbook). This description section can be viewed as providing the increased specificity in the nature of upstream perturbation (KEupstream) that leads to a particular downstream perturbation (KEdownstream), while allowing the KE descriptions to remain generalised so they can be linked to different AOPs. The description is also intended to provide a concise overview for readers who may want a brief summation, without needing to read through the detailed support for the relationship (covered below). Careful attention should be taken to avoid reference to other KEs that are not part of this KER, other KERs or other AOPs. This will ensure that the KER is modular and can be used by other AOPs. More help

The phosphatase activity of calcineurin (CN) is well known to be inhibited by CN inhibitors such as FK506 and cyclosporine A through complex formation with immunophilins.

Immunophilins are a general class of proteins that exhibit peptidyl-propyl isomerase (PPIase) activity, such as FKBP (FK506-binding protein) or cyclophilin (Barik. 2006). FKBP and cyclophilin bind with calcineurin (CN)-inhibitors FK506 and cyclosporin A to form complexes, which inhibit CN activity (Barik. 2006).

While FKBP12, FKBP12.6, FKBP13, and FKBP52 are all part of the FK506-binding FKBP family, FKBP12 has a significant involvement in the mechanism of action for FK506-induced immunosuppression (Siekierka et al. 1989, Kang et al. 2008).

FKBP12 is a 12-kDa protein localized in cytoplasm and has been isolated from Jurkat T-cells as a receptor that binds with the CN inhibitor FK506 (Bram et al. 1993). FKBP12 has an FK506-binding domain (FKBD) that comprises 108 amino acids, and is expressed in T‑cells, B‑cells, Langerhans cells, and mast cells (Siekierka et al. 1990, Panhans-Gross et al. 2001, Hultsch et al. 1991).

Cyclophilin and FKBP both exhibit PPIase activity, but no structural similarities have been found between them. Additionally, while immunophilin complexes formed with either substance do inhibit CN phosphatase activity, the PPlase activity and the inhibition of activity that they indicate are unrelated to CN regulation.

CN is a heterodimer that comprises a catalytic subunit (CnA) and a Ca-binding regulatory subunit (CnB). CnA handles phosphatase activity as well as calmodulin binding, and CnB regulates intracellular calcium and CnA (Klee et al. 1988, Zhang et al. 1996). CnA is a 59kDa protein with a serine-threonine phosphatase domain. A FK506-FKBP complex binds directly to CnA in the cell, causing steric hindrance of substrate binding to CN, which in turn inhibits phosphatase activity of CN (Schreiber and Crabtree 1992, Liu et al. 1993, Bierer et al. 1993, Bram et al. 1993, Rao et al. 1997, Liu et al. 1991). Cyclophilin-Cyclosprine A (CsA) complexes also function in the same manner, binding directly to CnA in the cell, which in turn inhibits CN phosphatase activity.

The nuclear factor of activated T cells (NFAT) is a substrate of calcineurin (Rao et al. 1997). When CN activates through stimulus from outside of the cell, it binds directly to the N‑terminal of NFAT in cytoplasm, after which dephosphorylation of SP motifs exposes nuclear localization signal (NLS) and covers nuclear export signal (NES), thereby promoting nuclear localization of NFAT (Matsuda and Koyasu 2000, Zhu and McKeon 1999). When T-cell activation takes place, T-cell receptor (TCR)-mediated stimulus increases the intracellular concentration of calcium and activates CnB, which subsequently induces CnA phosphatase activation, leading to dephosphorylation of NFAT followed by nuclear localization.

When CN activity is inhibited by the binding of immunophilin complexes, dephosphorylation does not occur in NFAT, thereby interfering with nuclear localization.

Evidence Supporting this KER

Assembly and description of the scientific evidence supporting KERs in an AOP is an important step in the AOP development process that sets the stage for overall assessment of the AOP (see pages 49-56 of the User Handbook). To do this, biological plausibility, empirical support, and the current quantitative understanding of the KER are evaluated with regard to the predictive relationships/associations between defined pairs of KEs as a basis for considering WoE (page 55 of User Handbook). In addition, uncertainties and inconsistencies are considered. More help
Biological Plausibility
Define, in free text, the biological rationale for a connection between KEupstream and KEdownstream. What are the structural or functional relationships between the KEs? For example, there is a functional relationship between an enzyme’s activity and the product of a reaction it catalyses. Supporting references should be included. However, it is recognised that there may be cases where the biological relationship between two KEs is very well established, to the extent that it is widely accepted and consistently supported by so much literature that it is unnecessary and impractical to cite the relevant primary literature. Citation of review articles or other secondary sources, like text books, may be reasonable in such cases. The primary intent is to provide scientifically credible support for the structural and/or functional relationship between the pair of KEs if one is known. The description of biological plausibility can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured (see page 40 of the User Handbook for further information).   More help

The molecular structures and functions of calcineurin and NFAT are evident based on sufficient scientific findings. The well-known mechanisms for inhibition of calcineurin phosphatase activity by calcineurin inhibitors such as FK506 and cyclosporine A is initiated by their complex formations with their respective immunophilin species. Immunophilins are general classes of proteins that exhibit PPlase activity, but modification of these functions are unrelated to inhibition of CN activity and thought to arise in the molecular structure of the complexes (Schreiber and Crabtree 1992, Liu et al. 1993, Bierer et al. 1993, Bram et al. 1993, Rao et al. 1997, Liu et al. 1991).

It is also well known that inhibition of CN phosphatase activity interfere the dephosphorylation of NFAT leading to suppression of its nuclear localization.

Uncertainties and Inconsistencies
In addition to outlining the evidence supporting a particular linkage, it is also important to identify inconsistencies or uncertainties in the relationship. Additionally, while there are expected patterns of concordance that support a causal linkage between the KEs in the pair, it is also helpful to identify experimental details that may explain apparent deviations from the expected patterns of concordance. Identification of uncertainties and inconsistencies contribute to evaluation of the overall WoE supporting the AOPs that contain a given KER and to the identification of research gaps that warrant investigation (seep pages 41-42 of the User Handbook).Given that AOPs are intended to support regulatory applications, AOP developers should focus on those inconsistencies or gaps that would have a direct bearing or impact on the confidence in the KER and its use as a basis for inference or extrapolation in a regulatory setting. Uncertainties that may be of academic interest but would have little impact on regulatory application don’t need to be described. In general, this section details evidence that may raise questions regarding the overall validity and predictive utility of the KER (including consideration of both biological plausibility and empirical support). It also contributes along with several other elements to the overall evaluation of the WoE for the KER (see Section 4 of the User Handbook).  More help

CN and NFAT are expressed in T cells and other immune cells including B cells, DC and NKT cells, and cytokine productions from these immune cells and expression of IL-2 receptors (IL-2R) in DCs are lowered due to the inhibition of CN phosphatase activity by CN inhibitor treatment. Among them, reduced production of IL-2 and IL-4 from T cells plays a major role in suppression of TDAR as a result of lowed proliferation, differentiation and class switching of B cells, and there have been no reports showing that CN inhibitor-induced reduction of cytokines other than IL-2 and IL-4 as well as reduced expression of IL-2R resulted in TDAR suppression.

FKBP12, a specific immmunophilin that bind with FK506, is also an accessory molecule that bind to IP3 and Ryanodine receptors, both of which are Ca channel located on the membrane of endoplasmic reticulum and participating in the regulation of intracellular Ca concentration.  When binding with FK506, FKBP12 leaves from these receptors to increase the influx of Ca2+ from the endoplasmic reticulum to cytoplasm, which is expected to increase CN activity; however, FK506 treatment suppresses NFAT nuclear localization. In addition, FKBP12-knock out mice show no changes in immune functions including T cell functions.  These facts suggest that inhibition of CN-NFAT system induced by FK506 treatment result from direct inhibition of CN phosphatase activity by FK506-FKBP12 complex and not by affecting Ryanodine and IP3 receptors associated with FKBP12.

Response-response Relationship
This subsection should be used to define sources of data that define the response-response relationships between the KEs. In particular, information regarding the general form of the relationship (e.g., linear, exponential, sigmoidal, threshold, etc.) should be captured if possible. If there are specific mathematical functions or computational models relevant to the KER in question that have been defined, those should also be cited and/or described where possible, along with information concerning the approximate range of certainty with which the state of the KEdownstream can be predicted based on the measured state of the KEupstream (i.e., can it be predicted within a factor of two, or within three orders of magnitude?). For example, a regression equation may reasonably describe the response-response relationship between the two KERs, but that relationship may have only been validated/tested in a single species under steady state exposure conditions. Those types of details would be useful to capture.  More help
This sub-section should be used to provide information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). This can be useful information both in terms of modelling the KER, as well as for analyzing the critical or dominant paths through an AOP network (e.g., identification of an AO that could kill an organism in a matter of hours will generally be of higher priority than other potential AOs that take weeks or months to develop). Identification of time-scale can also aid the assessment of temporal concordance. For example, for a KER that operates on a time-scale of days, measurement of both KEs after just hours of exposure in a short-term experiment could lead to incorrect conclusions regarding dose-response or temporal concordance if the time-scale of the upstream to downstream transition was not considered. More help
Known modulating factors
This sub-section presents information regarding modulating factors/variables known to alter the shape of the response-response function that describes the quantitative relationship between the two KEs (for example, an iodine deficient diet causes a significant increase in the slope of the relationship; a particular genotype doubles the sensitivity of KEdownstream to changes in KEupstream). Information on these known modulating factors should be listed in this subsection, along with relevant information regarding the manner in which the modulating factor can be expected to alter the relationship (if known). Note, this section should focus on those modulating factors for which solid evidence supported by relevant data and literature is available. It should NOT list all possible/plausible modulating factors. In this regard, it is useful to bear in mind that many risk assessments conducted through conventional apical guideline testing-based approaches generally consider few if any modulating factors. More help
Known Feedforward/Feedback loops influencing this KER
This subsection should define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits? In some cases where feedback processes are measurable and causally linked to the outcome, they should be represented as KEs. However, in most cases these features are expected to predominantly influence the shape of the response-response, time-course, behaviours between selected KEs. For example, if a feedback loop acts as compensatory mechanism that aims to restore homeostasis following initial perturbation of a KE, the feedback loop will directly shape the response-response relationship between the KERs. Given interest in formally identifying these positive or negative feedback, it is recommended that a graphical annotation (page 44) indicating a positive or negative feedback loop is involved in a particular upstream to downstream KE transition (KER) be added to the graphical representation, and that details be provided in this subsection of the KER description (see pages 44-45 of the User Handbook).  More help

Domain of Applicability

As for the KEs, there is also a free-text section of the KER description that the developer can use to explain his/her rationale for the structured terms selected with regard to taxonomic, life stage, or sex applicability, or provide a more generalizable or nuanced description of the applicability domain than may be feasible using standardized terms. More help

FKBP is found in a wide variety of organisms, from prokaryotes to multicellular organisms (Siekierka et al. 1989). Multiple subfamilies of FKBP have been reported, with at least eight types having been found in mammals. FKBP12 is reported to be expressed in B-cells, Langerhans cells, and mast cells as well as in T-cells of humans, mice, and other mammalian species.

Cyclophilins have been found in mammals, plants, insects, fungi, and bacteria. They are structurally conserved throughout evolution and all have PPIase activity (Wang P et al. 2005).

CN is broadly distributed throughout the body, including T- and B-cells, and the structure of CnA and CnB is highly conserved from yeasts to humans. Also highly conserved are the amino acid sequences of the catalytic and regulatory domains of CnA isoforms from different organisms (Kincaid. 1993).

NFAT expresses in B cells, mast cells, neutrophil granulocytes, dendritic cells, macrophages, and natural killer cells as well as T cells from humans, rodents, and other mammalian species (Rao et al. 1997).


List of the literature that was cited for this KER description using the appropriate format. Ideally, the list of references should conform, to the extent possible, with the OECD Style Guide (OECD, 2015). More help
  1. Barik, S. (2006). Immunophilins: for the love of proteins. Cellular and Molecular Life Sciences 63(24): 2889-900.
  2. Bierer, B.E., Holländer, G., Fruman, D. and Burakoff, S.J. (1993). Cyclosporin A and FK506: molecular mechanisms of immunosuppression and probes for transplantation biology. Current opinion in immunology 5 (5): 763-73.
  3. Bram, R.J., Hung, D.T., Martin, P.K., Schreiber, S.L. and Crabtree, G.R. (1993). Identification of the immunophilins capable of mediating inhibition of signal transduction by cyclosporin A and FK506: roles of calcimeurin binding and cellular location. Molecular and cellular biology 13 (8): 4760-9.
  4. Flanagan, W.M., Corthésy, B., Bram, R.J. and Crabtree, G.R. (1991). Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352 (6338): 803-7.
  5. Fruman, D. A., Klee, C. B., Bierer, B. E. and Burakoff, S. J. (1992). Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proceedings of the National Academy of Sciences of the United States of America. 89(9):3686-90.
  6. Fruman, D. A., Bierer, B. E., Benes, J. E., Burakoff, S. J., Austen, K. F. and Katz, H. R. (1995). The complex of FK506-binding protein 12 and FK506 inhibits calcineurin phosphatase activity and IgE activation-induced cytokine transcripts, but not exocytosis, in mouse mast cells. Journal of Immunology.154(4):1846-51.
  7. Hultsch, T., Albers, M. W., Schreiber, S.L. and Hohman, R. J. (1991). Immunophilin ligands demonstrate common features of signal transduction leading to exocytosis or transcription. Proceedings of the national academic science of the United States of America. 14: 6229-6233.
  8. Kang, C. B., Hong, Y., Dhe-Paganon, S. and Yoon, H. S. (2008). FKBP family proteins: immunophilins with versatile biological functions. Neurosignals. 16: 318-325.
  9. Kincaid, R .L. (1993). Calmodulin-dependent protein phosphatases from microorganisms to man. A study in structural conservatism and biological diversity. Adv Second Messenger Phosphoprotein Res. 27:1-23.
  10. Klee, C. B., Draetta, G. F. and Hubbard, M. J. (1988). Calcineurin. Advances in enzymology and related areas of molecular biology. 61:149-200.
  11. Liu, J., Farmer, J. D. Jr., Lane, W. S., Friedman, J., Weissman, I. and Schreiber, S. L. (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 66(4): 807-815.
  12. Liu, J., Albers, M. W., Wandless, T. J., Luan, S., Alberg, D. G., Belshaw, P. J., Cohen, P., MacKintosh, C., Klee, C. B. and Schreiber, S.L.. (1992). Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry. 31(16):3896-901.
  13. Liu, J. (1993). FK506 and cyclosporin, molecular probes for studying intracellular signal transduction. Immunology today. 14(6): 290-305.
  14. Maguire O, Tornatore KM, O'Loughlin KL, Venuto RC and Minderman H. (2013) Nuclear translocation of nuclear factor of activated T cells (NFAT) as a quantitative pharmacodynamic parameter for tacrolimus. Cytometry A. 83(12):1096-104.
  15. Matsuda, S., Koyasu, S. (2000). A second target of cyclosporin A and FK506. Tanpakushitsu kakusan koso. 45(11): 1823-1831.
  16. Panhans-Gross, A., Novak, N., Kraft, S. and Bieber, T. (2001). Human epidermal Langerhans' cells are targets for the immunosuppressive macrolide tacrolimus (FK506). Journal of Allergy and Clinical Immunology 107(2): 345-52.
  17. Rao, A., Luo, C. and Hogan, PG. (1997). Transcription factors of the NFAT family: regulation and function. Annual Review of Immunology 15: 707-47.
  18. Schreiber, SL. and Crabtree, GR. (1992). The mechanism of action of cyclosporin A and FK506. Immunology Today 13(4): 136-42. >
  19. Siekierka, JJ., Hung, SH., Poe, M., Lin, CS. and Sigal, NH. (1989). A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341(6244): 755-57.
  20. Siekierka, JJ., Wiederrecht, G., Greulich, H., Boulton, D., Hung, SH., Cryan, J., Hodges, PJ. and Sigal, NH. (1990). The cytosolic-binding protein for the immunosuppressant FK-506 is both a ubiquitous and highly conserved peptidyl-prolyl cis-trans isomerase. Journal of Biological Chemistry 265(34): 21011-5.
  21. Wang, P. and Heitman, J. (2005) The cyclophilins. Genome Biology 6 (7):226.
  22. Zhang, B.W., Zimmer, G., Chen, J., Ladd, D., Li, E., Alt, F.W., Wiederrecht, G., Cryan, J., O'Neill, E.A., Seidman, C.E., Abbas, A.K. and Seidman, J.G. (1996). T cell responses in calcineurin A alpha-deficient mice. Journal of experimental medicine 183(2): 413-20.
  23. Zhu, J. and McKeon, F. (1999). NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature. 398(6724): 256-60.