This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 1764
Title
Increased pro-inflammatory mediators leads to Activation, Stellate cells
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|---|---|
Protein Alkylation leading to Liver Fibrosis | adjacent | High | Brigitte Landesmann (send email) | Open for citation & comment | WPHA/WNT Endorsed |
Taxonomic Applicability
Sex Applicability
Sex | Evidence |
---|---|
Unspecific | High |
Life Stage Applicability
Term | Evidence |
---|---|
All life stages | High |
Key Event Relationship Description
HSC Initiation is associated with rapid gene induction resulting from paracrine stimulation by inflammatory cells and injured hepatocytes . Also Kupffer cell infiltration and activation play a prominent role in HSC activation.[Li et al., 2008]
Lymphocytes, especially CD4 T-helper (Th) lymphocytes, help orchestrate the host response via cytokine production and can differentiate into Th1 and Th2 subsets. In general, Th1 cells produce cytokines promoting cell-mediated immunity, including interferon (IFN)-γ, TNF, and interleukin (IL)-2. Th2 cells produce IL-4, IL-5, IL-6, and IL-13 and promote humoral immunity. Results from previous experimental models imply that Th2 lymphocytes favor fibrogenesis in liver injury over Th1 lymphocytes. [Shi et al., 1997] However, recent studies of Wynn [Wynn,2004] suggest that more than two T-cell subsets underlying a highly complex, orchestrated response are involved, and they also provide us a more important paradigm for how these intersecting pathways may regulate fibrosis. In animal models, IL-13 has emerged as a key mediator because it increases TGF-β1 and MMP expression by macrophages, whereas IL-4 has a limited role. One study examined the activity of IL-13 in cultured HSCs and suggested that IL-4 and IL-13 directly affect HSCs by increasing collagen production and suppressing HSC proliferation. [Sugimoto et al., 2005]
Leukocytes recruited to the liver during injury join with Kupffer cells in producing compounds that modulate HSC behavior
Transforming growth factor beta 1 (TGF-β1) is the most potent fibrogenic factor for hepatic stellate cells (HSCs). In response to TGF-β1, HSCs activate into myofibroblast-like cells, producing type I, III and IV collagen, proteoglycans like biglycan and decorin, glycoproteins like laminin, fibronectin, tenascin and glycosaminoglycan. [Kisseleva and Brenner, 2007] In the further course of events activated HSCs themselves express TGF-β1. TGF-β1 induces its own mRNA to sustain high levels in local sites of liver injury. The effects of TGF-β1 are mediated by intracellular signalling via Smad proteins. Smads 2 and 3 are stimulatory whereas Smad 7 is inhibitory. Smad1/5/8, MAP kinase and PI3 kinase are further signalling pathways in different cell types for TGF-β1 effects. [Parsons et al., 2007] Concomitant with increased TGF-β production, HSC increase production of collagen. Connective tissue growth factor (CTGF) is a profibrogenic peptide induced by TGF-β, that stimulates the synthesis of collagen type I and fibronectin and may mediate some of the downstream effects of TGF-β. It is upregulated during activation of HSC, suggesting that its expression is another determinant of a fibrogenic response to TGF-β. [Williams et al.,2000] During fibrogenesis, tissue and blood levels of active TGF-β are elevated and overexpression of TGF-β1 in transgenic mice can induce fibrosis. Additionally, experimental fibrosis can be inhibited by anti-TGF-β treatments with neutralizing antibodies or soluble TbRs (TGF-β receptors). [Qi et al., 1999]
Evidence Collection Strategy
Evidence Supporting this KER
Biological Plausibility
There is good understanding and broad acceptance of this KER. [Kisseleva and Brenner, 2007; Williams et al., 2000; Qi et al., 1999; Gressner et al., 2002; Kolios et al., 2006; Bataller and Brenner, 2005; Guo and Friedman, 2007; Brenner, 2009; Kaimori et al., 2007; Kershenobich Stalnikowitz and Weissbrod, 2003; Li et al., 2008; Matsuoka and Tsukamoto, 1990; Kisseleva and Brenner, 2008; Poli, 2000; Parsons et al., 2007; Friedman, 2008; Liu et al., 2006]
Empirical Evidence
It is difficult to get experimental evidence in vitro for TGF-β1-induced HSC activation because HSCs undergo spontaneous activation when cultured on plastic; nevertheless qualitative empirical evidence for temporal and incidence concordance for this KER exists. Czaja et al could prove that treatment of cultured hepatic cells with TGF-β1 increased type I pro-collagen mRNA levels 13-fold due to post-transcriptional gene regulation. Tan et al. discovered that short TGF-β1 pulses can exert long-lasting effects on fibroblasts. HSCs activated in culture do not fully reproduce the changes in gene expression observed in vivo. De Minicis et al investigated gene expression changes in 3 different models of HSC activation and compared gene expression profiles in culture (mice HSCs in co-culture with KCs) and in vivo and did not find a proper correlation. [Czaja et al., 1989; Tan et al., 2013; Yin et al., 2013; De Minicis et al., 2007]
Uncertainties and Inconsistencies
Known modulating factors
Quantitative Understanding of the Linkage
Response-response Relationship
Time-scale
Known Feedforward/Feedback loops influencing this KER
Domain of Applicability
Human [Kolios et al., 2006; Guo and Friedman, 2007]
Rat [Dooley et al., 2000]
References
- Bataller, R. and D.A. Brenner (2005), Liver Fibrosis, J.Clin. Invest, vol. 115, no. 2, pp. 209-218.
- Brenner, D.A. (2009), Molecular Pathogenesis of Liver Fibrosis, Trans Am Clin Climatol Assoc, vol. 120, pp. 361–368.
- Czaja, M.J. et al. (1989), In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis, J Cell Biol, vol. 108, no. 6, pp. 2477-2482.
- De Minicis, S. et al. (2007), Gene expression profiles during hepatic stellate cell activation in culture and in vivo, Gastroenterology, vol. 132, no. 5, pp. 1937-1946.
- Dooley, S. et al. (2000), Modulation of transforming growth factor b response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts,Hepatology, vol. 31, no. 5, pp. 1094-1106.
- Friedman, S.L. (2008), Mechanisms of Hepatic Fibrogenesis, Gastroenterology, vol. 134, no. 6, pp. 1655–1669.
- Gressner , A.M. et al. (2002), Roles of TGF-β in hepatic fibrosis. Front Biosci, vol. 7, pp. 793-807.
- Guo, J. and S. L. Friedman (2007), Hepatic fibrogenesis, Semin Liver Dis, vol. 27, no. 4, pp. 413-426.
- Jing-Ting Li, Zhang-Xiu Liao, Jie Ping, Dan Xu, and Hui Wang, Molecular mechanism of hepatic stellate cell activation and antifi brotic therapeutic strategies, J Gastroenterol 2008; 43:419–428
- Kaimori, A. et al. (2007), Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro, J Biol Chem, vol. 282, no. 30, pp. 22089-22101.
- Kershenobich Stalnikowitz, D. and A.B. Weissbrod (2003), Liver Fibrosis and Inflammation. A Review, Annals of Hepatology, vol. 2, no. 4, pp.159-163.
- Kisseleva T and Brenner DA, (2008), Mechanisms of Fibrogenesis, Exp Biol Med, vol. 233, no. 2, pp. 109-122.
- Kisseleva, T. and Brenner, D.A. (2007), Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis, Journal of Gastroenterology and Hepatology, vol. 22, Suppl. 1; pp. S73–S78.
- Kolios, G., V. Valatas and E. Kouroumalis (2006), Role of Kupffer cells in the pathogenesis of liver disease, World J.Gastroenterol, vol. 12, no. 46, pp. 7413-7420.
- Li, Jing-Ting et al. (2008), Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies, J Gastroenterol, vol. 43, no. 6, pp. 419–428.
- Liu, Xingjun et al. (2006), Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int, vol.26, no.1, pp. 8-22.
- Matsuoka, M. and H. Tsukamoto, (1990), Stimulation of hepatic lipocyte collagen production by Kupffer cell-derived transforming growth factor beta: implication for a pathogenetic role in alcoholic liver fibrogenesis, Hepatology, vol. 11, no. 4, pp. 599-605.
- Parsons, C.J., M.Takashima and R.A. Rippe (2007), Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol, vol. 22, Suppl.1, pp. S79-S84.
- Poli, G. (2000), Pathogenesis of liver fibrosis: role of oxidative stress, Mol Aspects Med, vol. 21, no. 3, pp. 49 – 98.
- Qi Z et al. (1999), Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat, Proc Natl Acad Sci USA, vol. 96, no. 5, pp. 2345-2349.
- Shi Z, Wakil AE, Rockey DC. Strain-specifi c differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci USA 1997;94:10663–8.
- Sugimoto R, Enjoji M, Nakamuta M, Ohta S, Kohjima M, Fukushima M, et al. Effect of IL-4 and IL-13 on collagen production in cultured LI90 human hepatic stellate cells. Liver Int 2005;25:420–8.
- Tan, A.B. et al. (2013), Cellular re- and de-programming by microenvironmental memory: why short TGF-β1 pulses can have long effects, Fibrogenesis Tissue Repair, vol. 6, no. 1, p. 12.
- Williams, E.J. et al. (2000), Increased expression of connective tissue growth factor in fibrotic human liver and in activated hepatic stellate cells, J Hepatol, vol. 32, no. 5, pp. 754-761.
- Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 2004;4:583–94.
- Yin, C. et al. (2013), Hepatic stellate cells in liver development, regeneration, and cancer, J Clin Invest, vol. 123, no. 5, pp. 1902–1910.