This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 1493

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Increased Pro-inflammatory mediators

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Increased pro-inflammatory mediators
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Tissue

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
acute inflammatory response increased

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE.Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
Oxidative stress and Developmental impairment in learning and memory KeyEvent Marie-Gabrielle Zurich (send email) Open for citation & comment WPHA/WNT Endorsed
Protein Alkylation to Liver Fibrosis KeyEvent Brigitte Landesmann (send email) Open for citation & comment WPHA/WNT Endorsed
lysosomal uptake induced liver fibrosis KeyEvent Marina Kuburic (send email) Under development: Not open for comment. Do not cite Under Review
Increased DNA damage leading to breast cancer KeyEvent Jessica Helm (send email) Under development: Not open for comment. Do not cite Under Development
RONS leading to breast cancer KeyEvent Jessica Helm (send email) Under development: Not open for comment. Do not cite Under Development
TLR9 activation leading to Multi Organ Failure and ARDS KeyEvent Gillina Bezemer (send email) Under development: Not open for comment. Do not cite
Ionizing Radiation-Induced AML KeyEvent Dag Anders Brede (send email) Under development: Not open for comment. Do not cite
Deposition of energy leads to abnormal vascular remodeling KeyEvent Vinita Chauhan (send email) Open for citation & comment Under Review

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
human Homo sapiens NCBI
Vertebrates Vertebrates NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
All life stages

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Unspecific

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

Inflammatory mediators are soluble, diffusible molecules that act locally at the site of tissue damage and infection, and at more distant sites. They can be divided into exogenous and endogenous mediators. 

Exogenous mediators of inflammation are bacterial products or toxins like endotoxin or lipopolysaccharides (LPS). Endogenous mediators of inflammation are produced from within the (innate and adaptive) immune system itself, as well as other systems. They can be derived from molecules that are normally present in the plasma in an inactive form, such as peptide fragments of some components of complement, coagulation, and kinin systems. Or they can be released at the site of injury by a number of cell types that either contain them as preformed molecules within storage granules, e.g. histamine, or which can rapidly switch on the machinery required to synthesize the mediators. 

This event occurs equally in various tissues and does not require tissue-specific descriptions. Nevertheless, there are some specificities such as the release of glutamate by brain reactive glial cells (Brown & Bal-Price, 2003; Vesce et al., 2007). The differences may rather reside in the type of insult favouring the increased expression and/or release of a specific class of inflammatory mediators, as well the time after the insult reflecting different stages of the inflammatory process. For these reasons, the analyses of the changes of a battery of inflammatory mediators rather than of a single one is a more adequate measurement of this KE

Table1: A non-exhaustive list of examples for pro-inflammatory mediators.

Classes of inflammatory mediators

Examples

Pro-inflammatory cytokines

TNF-a, Interleukins (IL-1, IL-6, IL-8), Interferons  (IFN-g), chemokines (CXCL, CCL, GRO-α, MCP-1), GM-CSF

Prostaglandins

PGE2

Bradykinin

Vasoactive amines

histamine, serotonin

Reactive oxygen species (ROS)

O2-, H2O2

Reactive nitrogen species (RNS)

NO, iNOS

The increased production of pro-inflammatory mediators can have negative consequences on the parenchymal cells leading even to cell death, as described for TNF-a or peroxynitrite on neurons (Chao et al, 1995; Brown and Bal-Price, 2003). Along with TNF-α, IL-1β and IL-6 have been shown to exhibit negative consequences on neurogenesis and neuronal precursor cell proliferation when overexpressed. IFN-γ is also associated with neuronal damage, although it is not as extensively studied compared to TNF-α, IL-1β and IL-6.  In addition, via a feedback loop, they can act on the reactive resident cells thus maintaining or exacerbating their reactive state; and by modifying elements of their signalling pathways, they can favour the M1 phenotypic polarization and the chronicity of the inflammatory process (Taetzsch et al., 2015).

Basically, this event occurs equally in various tissues and does not require tissue-specific descriptions. Nevertheless, there are some specificities such as the release of glutamate by brain reactive glial cells (Brown and Bal-Price, 2003; Vesce et al., 2007). The differences may rather reside in the type of insult favouring the increased expression and/or release of a specific class of inflammatory mediators, as well the time after the insult reflecting different stages of the inflammatory process. For these reasons, the analyses of the changes of a battery of inflammatory mediators rather than of a single one is a more adequate measurement of this KE.

Regulatory examples using the KE

CD54 and CD 86 as well as IL-8 expression is used to assess skin sensitization potential (OECD TG 442E). IL-2 expression is used to assess immunotoxicity (and will become an OECD test guideline); for the latter see also doi: 10.1007/s00204-018-2199-7.

LIVER:

When activated, resident macrophages (Kupffer cells) release inflammatory mediators including cytokines, chemokines, lysosomal, and proteolytic enzymes and are a main source of TGF-β1 - the most potent pro-fibrogenic cytokine. Following the role of TGF-β is described in more detail.

Transforming growth factor β (TGF-β) is a pleiotropic cytokine with potent regulatory and inflammatory activity [Sanjabi et al., 2009; Li and Flavell, 2008a;2008b]. The multi-faceted effects of TGF-β on numerous immune functions are cellular and environmental context dependent [Li et al., 2006]. TGF-β binds to TGF-β receptor II (TGF-βRII) triggering the kinase activity of the cytoplasmic domain that in turn activates TGF-βRI. The activated receptor complex leads to nuclear translocation of Smad molecules, and transcription of target genes [Li et al., 2006a]. The role of TGF-β as an immune modulator of T cell activity is best exemplified by the similarities between TGF-β1 knockout and T cell specific TGF-β receptor II knockout mice [Li et al., 2006b; Marie et al., 2006;Shull et al., 1992]. The animals in both of these models develop severe multi-organ autoimmunity and succumb to death within a few weeks after birth [Li et al., 2006b; Marie et al., 2006; Shull et al., 1992]. In addition, in mice where TGF-β signaling is blocked specifically in T cells, the development of natural killer T (NKT) cells, natural regulatory T (nTreg) cells, and CD8+ T cells was shown to be dependent on TGF-β signaling in the thymus [Li et al., 2006b; Marie et al., 2006].

TGF-β plays a major role under inflammatory conditions. TGF-β in the presence of IL-6 drives the differentiation of T helper 17 (Th17) cells, which can promote further inflammation and augment autoimmune conditions [Korn et al., 2009]. TGF-β orchestrates the differentiation of both Treg and Th17 cells in a concentration-dependent manner [Korn et al., 2008]. In addition, TGF-β in combination with IL-4, promotes the differentiation of IL-9- and IL-10-producing T cells, which lack suppressive function and also promote tissue inflammation [Dardalhon  et al., 2008; Veldhoen et al., 2008]. The biological effects of TGF-β under inflammatory conditions on effector and memory CD8+ T cells are much less understood. In a recent study, it was shown that TGF-β has a drastically opposing role on naïve compared to antigen-experienced/memory CD8+ T cells [Filippi et al., 2008]. When cultured in vitro, TGF-β suppressed naïve CD8+ T cell activation and IFN-γ production, whereas TGF-β enhanced survival of memory CD8+ T cells and increased the production of IL-17 and IFN-γ [Filippi et al., 2008]. TGF-β also plays an important role in suppressing the cells of the innate immune system.

The transforming growth factor beta (TGF-β) family of cytokines are ubiquitous, multifunctional, and essential to survival. They play important roles in growth and development, inflammation and repair, and host immunity. The mammalian TGF-β isoforms (TGF-β1, β2 and β3) are secreted as latent precursors and have multiple cell surface receptors of which at least two mediate signal transduction. Autocrine and paracrine effects of TGF-βs can be modified by extracellular matrix, neighbouring cells and other cytokines. The vital role of the TGF-β family is illustrated by the fact that approximately 50% of TGF-1 gene knockout mice die in utero and the remainder succumb to uncontrolled inflammation after birth. The role of TGF-β in homeostatic and pathogenic processes suggests numerous applications in the diagnosis and treatment of various diseases characterised by inflammation and fibrosis. [Clark and Coker, 1998; Santibañez et al., 2011; Pohlers et al., 2009] Abnormal TGF-β regulation and function are implicated in a growing number of fibrotic and inflammatory pathologies, including pulmonary fibrosis, liver cirrhosis, glomerulonephritis and diabetic nephropathy, congestive heart failure, rheumatoid arthritis, Marfan syndrome, hypertrophic scars, systemic sclerosis, myocarditis, and Crohn’s disease. [Gordon and Globe,2008] TGF-β1 is a polypeptide member of the TGF-β superfamily of cytokines. TGF-β is synthesized as a non-active pro-form, forms a complex with two latent associated proteins latency-associated protein (LAP) and latent TGF- β binding protein (LTBP) and undergoes protolithic cleavage by the endopeptidase furin to generate the mature TGF-β dimer. Among the TGF-βs, six distinct isoforms have been discovered although only the TGF-β1, TGF-β2 and TGF-β3 isoforms are expressed in mammals, and their human genes are located on chromosomes 19q13, 1q41 and 14q24, respectively. Out of the three TGF-β isoforms (β1, β2 and β3) only TGF-β1 was linked to fibrogenesis and is the most potent fibrogenic factor for hepatic stellate cells. [Roberts, 1998; Govinden and Bhoola, 2003]. During fibrogenesis, tissue and blood levels of active TGF-β are elevated and overexpression of TGF-β1 in transgenic mice can induce fibrosis. Additionally, experimental fibrosis can be inhibited by anti-TGF-β treatments with neutralizing antibodies or soluble TGF-β receptors [Qi et al.; 1999; Shek and Benyon , 2004; De Gouville et al., 2005; Chen et al., 2009]. TGF-β1 induces its own mRNA to sustain high levels in local sites of injury. The effects of TGF-β1 are classically mediated by intracellular signalling via Smad proteins. Smads 2 and 3 are stimulatory whereas Smad 7 is inhibitory. [Parsons et al., 2013; Friedman, 2008; Kubiczkova et al., 2012] Smad1/5/8, MAP kinase (mitogen-activated protein) and PI3 kinase are further signalling pathways in different cell types for TGF-β1 effects.

TGF-β is found in all tissues, but is particularly abundant in bone, lung, kidney and placental tissue. TGF-β is produced by many, but not all parenchymal cell types, and is also produced or released by infiltrating cells such as lymphocytes, monocytes/macrophages, and platelets. Following wounding or inflammation, all these cells are potential sources of TGF-β. In general, the release and activation of TGF-β stimulates the production of various extracellular matrix proteins and inhibits the degradation of these matrix proteins [Branton and Kopp, 1999]. TGF-β 1 is produced by every leukocyte lineage, including lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these immune cells. [Letterio and Roberts; 1998]

In the liver TGF-β1 is released by activated Kupffer cells, liver sinusoidal endothelial cells, and platelets; in the further course of events also activated hepatic stellate cells express TGF-β1. Hepatocytes do not produce TGF-β1 but are implicated in intracellular activation of latent TGF-β1. [Roth et al., 1998; Kisseleva and Brenner, 2007; Kisseleva and Brenner, 2008; Poli, 2000; Liu et al., 2006]

TGF-β1 is the most established mediator and regulator of epithelial-mesenchymal-transition (EMT) which further contributes to the production of extracellular matrix. It has been shown that TGF-β1 mediates EMT by inducing snail-1 transcription factor and tyrosine phosphorylation of Smad2/3 with subsequent recruitment of Smad4. [Kolios et al., 2006; Bataller and Brenner, 2005; Guo and Friedman,2007; Brenner,2009; Kaimori et al., 2007; Gressner et al., 2002; Kershenobich Stalnikowitz and Weisssbrod, 2003; Li et al., 2008; Matsuoka and Tsukamoto, 1990; Kisseleva and Brenner, 2008; Poli, 200; Parsons et al., 2007; Friedman 2008; Liu et al., 2006]

TGF-β1 induces apoptosis and angiogenesis in vitro and in vivo through the activation of vascular endothelial growth factor (VEGF) High levels of VEGF and TGF-β1 are present in many tumors. Crosstalk between the signalling pathways activated by these growth factors controls endothelial cell apoptosis and angiogenesis. [Clark and Coker; 1998]

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

Listed below are common methods for detecting the KE, however there may be other comparable methods that are not listed. 

Assay 

Reference 

Description 

OECD Approved Assay 

  • RT-qPCR 

  • Q-PCR 

(Veremeyko et al., 2012; Alwine et al, 1977; Forlenza et al., 2012) 

Measures mRNA expression of cytokines, chemokines and inflammatory markers  

No 

Immunoblotting (western blotting) 

(Lee et al., 2008) 

Uses antibodies specific to proteins of interest, can used to detect presence of pro-inflammatory mediators in samples of cell or tissue lysate 

No 

Whole blood stimulation assay 

(Thurm & Halsey, 2005) 

 Detects inflammatory cytokines in blood 

No 

Imaging tests 

(Rollins & Miskolci, 2014) 

A qualitative technique using a cytokine specific antibodies and fluorophores can be used to visualize expression patterns, subcellular location of the target and protein-protein interactions.  

Common examples include double immunofluorescence confocal microscopy or other molecular imaging modalities. 

No 

Flow-cytometry 

(Karanikas et al., 2000) 

Detects the intracellular cytokines with stimulation. 

No 

Immunoassays (ex. enzyme-linked immunosorbent assay (ELISA), enzyme-linked immunospot (ELISpot), radioimmunoassay) 

(Amsen et al., 2009; Engvall & Perlmann, 1972; Ji & Forsthuber, 2016; Goldsmith, 1975) 

Plate based assay technique using antibodies to detect presence of a protein in a liquid sample.  

Can be used to identify presence of an inflammatory cytokine of interest especially when in low concentrations.  

No 

Inflammatory cytokine arrays 

(Amsen et al., 2009) 

Similar to the ELISA, except using a membrane-based rather than plate-based approach. Can be used to measure multiple cytokine targets concurrently.  

No 

Immunohistochemistry (IHC) 

(Amsen et al., 2009; Coons et al., 1942) 

Immobilized tissue or cell cultures are stained using antibodies for specificity of ligands of interest. Versions of the assays can be used to visualize localization of inflammatory cytokines.  

No 

Olink 

(Wang et al., 2022); 

Highly specific and sensitive proximity extension assay technology which uses an inflammation panel to categorize pro-inflammatory markers. 

No 

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

Taxonomic applicability: The inflammatory response and increase of the pro-inflammatory mediators has been observed across species from simple invertebrates such as Daphnia to higher order vertebrates (Weavers & Martin, 2020).  

Life stage applicability: This key event is not life stage specific (Kalm et al., 2013; Veeraraghan et al., 2011; Hladik & Tapio, 2016).  

Sex applicability:  Most studies conducted were on male models, although sex-dependent differences in pro-inflammatory markers have been previously reported (Cekanaviciute et al., 2018; Parihar et al., 2020).  

Evidence for perturbation by a prototypic stressor: There is evidence of the increase of pro-inflammatory mediators following perturbation from a variety of stressors including exposure to ionizing radiation. (Abdel-Magied et al., 2019; Cho et al., 2017; Gaber et al., 2003; Ismail et al., 2016; Kim et al. 2002; Lee et al., 2010; Parihar et al., 2018) 

References

List of the literature that was cited for this KE description. More help

Abdel-Magied, N., S. M., Shedid and Ahmed, A. G. (2019), “Mitigating effect of biotin against irradiation-induced cerebral cortical and hippocampal damage in the rat brain tissue”, Environmental Science and Pollution Research, Vol. 26/13, Springer, London, https://doi.org/10.1007/S11356-019-04806-X. 

  

Alwine, J. C., D. J. Kemp and G. R. Stark (1977), “Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl- paper and hybridization with DNA probes”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 74/12, United States National Academy of Sciences, Washington, D.C., https://doi.org/10.1073/pnas.74.12.5350 

  

Amsen, D., de Visser, K. E., and Town, T. (2009), “Approaches to determine expression of inflammatory cytokines”, in Inflammation and Cancer, Humana Press, Totowa, https://doi.org/10.1007/978-1-59745-447-6_5 

  

Cekanaviciute, E., S. Rosi and S. Costes. (2018), "Central Nervous System Responses to Simulated Galactic Cosmic Rays", International Journal of Molecular Sciences, Vol. 19/11, Multidisciplinary Digital Publishing Institute (MDPI) AG, Basel, https://doi.org/10.3390/ijms19113669. 

  

Cho, H. J. et al. (2017), “Role of NADPH Oxidase in Radiation-induced Pro-oxidative and Pro-inflammatory Pathways in Mouse Brain”, International Journal of Radiation Biology, Vol. 93/11, Informa, London, https://doi.org/10.1080/09553002.2017.1377360. 

  

Coons, A. H. et al. (1942), “The Demonstration of Pneumococcal Antigen in Tissues by the Use of Fluorescent Antibody”, The Journal of Immunology, Vol. 45/3, American Association of Immunologists, Minneapolis, pp. 159-169 

  

Engvall, E., and P. Perlmann (1972), “Enzyme-Linked Immunosorbent Assay, Elisa”, The Journal of Immunology, Vol. 109/1, American Association of Immunologists, Minneapolis, pp. 129-135 

  

Fan, L. W. and Y. Pang. (2017), "Dysregulation of neurogenesis by neuroinflammation: Key differences in neurodevelopmental and neurological disorders", Neural Regeneration Research, Vol. 12/3, Wolters Kluwer, Alphen aan den Rijn, https://doi.org/10.4103/1673-5374.202926. 

  

Forlenza, M. et al. (2012), “The use of real-time quantitative PCR for the analysis of cytokine mRNA levels” in Cytokine Protocols, Springer, New York, https://doi.org/10.1007/978-1-61779-439-1_2 

  

Gaber, M. W. et al. (2003), “Differences in ICAM-1 and TNF-alpha expression between large single fraction and fractionated irradiation in mouse brain”, International Journal of Radiation Biology, Vol. 79/5, Informa, London, https://doi.org/10.1080/0955300031000114738. 

  

Goldsmith, S. J. (1975), "Radioimmunoassay: Review of basic principles", Seminars in Nuclear Medicine, Vol. 5/2, https://doi.org/10.1016/S0001-2998(75)80028-6. 

  

Hladik, D. and S. Tapio. (2016), "Effects of ionizing radiation on the mammalian brain", Mutation Research/Reviews in Mutation Research, Vol. 770, Elsevier B. b., Amsterdam, https://doi.org/10.1016/j.mrrev.2016.08.003. 

  

Ismail, A. F. M., A.A.M. Salem and M.M.T. Eassawy (2016), “Modulation of gamma-irradiation and carbon tetrachloride induced oxidative stress in the brain of female rats by flaxseed oil”, Journal of Photochemistry and Photobiology B: Biology, Vol. 161, Elsevier, Amsterdam, https://doi.org/10.1016/J.JPHOTOBIOL.2016.04.031. 

  

Ji, N. and T. G. Forsthuber. (2014), "ELISPOT Techniques" (pp. 63–71), https://doi.org/10.1007/7651_2014_111. 

  

Kalm, M., K. Roughton and K. Blomgren. (2013), "Lipopolysaccharide sensitized male and female juvenile brains to ionizing radiation", Cell Death & Disease, Vol. 4/12, Nature Publishing Group, Berlin, https://doi.org/10.1038/cddis.2013.482. 

  

Karanikas, V. et al. (2000), “Flow cytometric measurement of intracellular cytokines detects immune responses in MUC1 immunotherapy”, Clinical Cancer Research, Vol. 6/3, American Association for Cancer Research, Philadelphia, pp. 829–837 

  

Kim, S. H. et al. (2002), “Expression of TNF-alpha and TGF-beta 1 in the rat brain after a single high-dose irradiation”, Journal of Korean Medical Science, Vol. 17/2, Korean Medical Association, Seoul, https://doi.org/10.3346/JKMS.2002.17.2.242. 

  

Lee, J. W. et al. (2008), “Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation”, Journal of Neuroinflammation, Vol. 5/1, BioMed Central, London, https://doi.org/10.1186/1742-2094-5-37 

  

Lee, W. H. et al. (2010), “Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain”, International Journal of Radiation Biology, Vol. 86/2, Informa, London, https://doi.org/10.3109/09553000903419346. 

  

Parihar, V. K. et al. (2018), “Persistent nature of alterations in cognition and neuronal circuit excitability after exposure to simulated cosmic radiation in mice”, Experimental Neurology, Vol. 305, Elsevier, Amsterdam, https://doi.org/10.1016/J.EXPNEUROL.2018.03.009. 

  

Parihar, V. K. et al. (2020), "Sex-Specific Cognitive Deficits Following Space Radiation Exposure", Frontiers in Behavioral Neuroscience, Vol. 14, https://doi.org/10.3389/fnbeh.2020.535885. 

Rollins, J. and V. Miskolci (2014), “Immunofluorescence and subsequent confocal microscopy of intracellular TNF in human neutrophils” in Cytokines Bioassays, Springer, London, https://doi.org/10.1007/978-1-4939-0928-5_24 

  

Thurm, C. W. and J. F. Halsey (2005), “Measurement of Cytokine Production Using Whole Blood”, in Current Protocols in Immunology, John Wiley & Sons, Inc., Hoboken, https://doi.org/10.1002/0471142735.im0718bs66 

  

Veeraraghavan, J. et al. (2011), "Low-dose γ-radiation-induced oxidative stress response in mouse brain and gut: Regulation by NFκB–MnSOD cross-signaling", Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Vol. 718/1–2, Elsevier, Amsterdam, https://doi.org/10.1016/j.mrgentox.2010.10.006. 

  

Veremeyko, T. et al. (2012), “Detection of microRNAs in microglia by real-time PCR in normal CNS and during neuroinflammation”, Journal of Visualized Experiments: JoVE, Vol. 65, MyJove Corporation, Cambridge, https://doi.org/10.3791/4097 

  

Wang, X. et al. (2022), “Plasma Olink Proteomics Identifies CCL20 as a Novel Predictive and Diagnostic Inflammatory Marker for Preeclampsia”, Journal of proteome research, Vol. 21/12, American Chemical Society, Washington,  https://doi.org/10.1021/acs.jproteome.2c00544  

  

Weavers, H. and P. Martin (2020), “The cell biology of inflammation: From common traits to remarkable immunological adaptations”, Journal of Cell Biology, Vol. 219, Rockefeller University Press, New York, https://doi.org/10.1083/jcb.202004003