This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 1924

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Wnt ligand stimulation leads to Frizzled activation

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes.Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
Homo sapiens Homo sapiens High NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Unspecific High

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
All life stages Moderate

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

Wnt ligand binds to Frizzled receptor (FZD), which leads to the Wnt signaling activation (Nile, Mukund, Stanger, Wang, & Hannoush, 2017).

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER. For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help
Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

Upon the stimulation with Wnt ligand, Wnt ligand binds to FZD and form the complex with LRP5/6 (MacDonald et al., 2009).

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

Some Wnt ligands bind to FZD, leading to Wnt/beta-catenin signaling inactivation. DVL, a positive regulator of Wnt signaling, has a controversial role to promote Wnt receptor degradation (X. Jiang et al., 2015). DVL-dependent regulation of FZD level is involved in mTORC1 signaling suppression via Wnt/beta-catenin signaling (H. Zeng et al., 2018).

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help

The binding of Wnt and FZD induce the formation of the protein complex with the Dvl, Axin, CK1 GSK3, beta-catenin and APC to induce the beta-catenin translocation into the nucleus (Clevers & Nusse, 2012).

Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help

FZD5 can activate WNT3A/beta-catenin signaling in a dose-dependent manner (Hua et al., 2018). The increase in FZD5 protein enhances cell response to WNT3A. (Hua et al., 2018). LRP5 can augment WNT3A/beta-catenin signaling in a dose-dependent manner (Hua et al., 2018).

Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help

FZD7 enhances the activity of canonical Wnt/beta-catenin signaling with the treatment of WNT3A for 1 to 6 hrs (Cao et al., 2017).

Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

The Wnt ligand is antagonized with secreted Frizzled-related proteins (sFRPs) and Wnt inhibitory protein (WIF), both of which can bind Wnts and inhibit interactions between WNT and FZD (Bovolenta, Esteve, Ruiz, Cisneros, & Lopez-Rios, 2008; Clevers & Nusse, 2012).

The Dickkopf 1 (DKK1) can disrupts Wnt-induced FZD-LRP6 complex formation (Clevers & Nusse, 2012; Ellwanger et al., 2008; Semenov, Zhang, & He, 2008).

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

Wnt ligand stimulation leads to FZD activation in Homo sapiens (Clevers & Nusse, 2012).

References

List of the literature that was cited for this KER description. More help

Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci, 121(Pt 6), 737-746. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18322270. doi:10.1242/jcs.026096

Cao, T. T., Xiang, D., Liu, B. L., Huang, T. X., Tan, B. B., Zeng, C. M., . . . Fu, L. (2017). FZD7 is a novel prognostic marker and promotes tumor metastasis via WNT and EMT signaling pathways in esophageal squamous cell carcinoma. Oncotarget, 8(39), 65957-65968. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29029485. doi:10.18632/oncotarget.19586

Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-1205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22682243. doi:10.1016/j.cell.2012.05.012

Ellwanger, K., Saito, H., Clement-Lacroix, P., Maltry, N., Niedermeyer, J., Lee, W. K., . . . Niehrs, C. (2008). Targeted disruption of the Wnt regulator Kremen induces limb defects and high bone density. Mol Cell Biol, 28(15), 4875-4882. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18505822. doi:10.1128/MCB.00222-08

Hua, Y., Yang, Y., Li, Q., He, X., Zhu, W., Wang, J., & Gan, X. (2018). Oligomerization of Frizzled and LRP5/6 protein initiates intracellular signaling for the canonical WNT/beta-catenin pathway. J Biol Chem, 293(51), 19710-19724. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30361437. doi:10.1074/jbc.RA118.004434

Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C., & Garcia, K. C. (2012). Structural basis of Wnt recognition by Frizzled. Science, 337(6090), 59-64. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22653731. doi:10.1126/science.1222879

Jiang, X., Charlat, O., Zamponi, R., Yang, Y., & Cong, F. (2015). Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell, 58(3), 522-533. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25891077. doi:10.1016/j.molcel.2015.03.015

MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1), 9-26. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19619488. doi:10.1016/j.devcel.2009.06.016

Nile, A. H., Mukund, S., Stanger, K., Wang, W., & Hannoush, R. N. (2017). Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. Proc Natl Acad Sci U S A, 114(16), 4147-4152. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28377511. doi:10.1073/pnas.1618293114

Semenov, M. V., Zhang, X., & He, X. (2008). DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem, 283(31), 21427-21432. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18505732. doi:10.1074/jbc.M800014200

Zeng, H., Lu, B., Zamponi, R., Yang, Z., Wetzel, K., Loureiro, J., . . . Cong, F. (2018). mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Proc Natl Acad Sci U S A, 115(44), E10362-E10369. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30297426. doi:10.1073/pnas.1808575115