To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:229

Relationship: 229


The title of the KER should clearly define the two KEs being considered and the sequential relationship between them (i.e., which is upstream and which is downstream). Consequently all KER titles take the form “upstream KE leads to downstream KE”.  More help

Binding of antagonist, NMDA receptors leads to Inhibition, NMDARs

Upstream event
Upstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help
Downstream event
Downstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

This table is automatically generated upon addition of a KER to an AOP. All of the AOPs that are linked to this KER will automatically be listed in this subsection. Clicking on the name of the AOP in the table will bring you to the individual page for that AOP. More help
AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities adjacent High Anna Price (send email) Open for citation & comment WPHA/WNT Endorsed
Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development leads to neurodegeneration with impairment in learning and memory in aging adjacent High Florianne Tschudi-Monnet (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Select one or more structured terms that help to define the biological applicability domain of the KER. In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER. Authors can indicate the relevant taxa for this KER in this subsection. The process is similar to what is described for KEs (see pages 30-31 and 37-38 of User Handbook) More help

Sex Applicability

Authors can indicate the relevant sex for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of the User Handbook). More help

Life Stage Applicability

Authors can indicate the relevant life stage for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of User Handbook). More help

Key Event Relationship Description

Provide a brief, descriptive summation of the KER. While the title itself is fairly descriptive, this section can provide details that aren’t inherent in the description of the KEs themselves (see page 39 of the User Handbook). This description section can be viewed as providing the increased specificity in the nature of upstream perturbation (KEupstream) that leads to a particular downstream perturbation (KEdownstream), while allowing the KE descriptions to remain generalised so they can be linked to different AOPs. The description is also intended to provide a concise overview for readers who may want a brief summation, without needing to read through the detailed support for the relationship (covered below). Careful attention should be taken to avoid reference to other KEs that are not part of this KER, other KERs or other AOPs. This will ensure that the KER is modular and can be used by other AOPs. More help

It is well documented that prolonged/chronic antagonism of NMDARs triggers the downstream KE named inhibition of NMDARs. Shorter term binding to the same receptors may trigger different downstream KEs, such as up-regulation of the NMDARs, resulting in toxic increased influx of calcium and to cell death. Consequently, this information can be captured in other KERs and AOP.

Evidence Supporting this KER

Assembly and description of the scientific evidence supporting KERs in an AOP is an important step in the AOP development process that sets the stage for overall assessment of the AOP (see pages 49-56 of the User Handbook). To do this, biological plausibility, empirical support, and the current quantitative understanding of the KER are evaluated with regard to the predictive relationships/associations between defined pairs of KEs as a basis for considering WoE (page 55 of User Handbook). In addition, uncertainties and inconsistencies are considered. More help
Biological Plausibility
Define, in free text, the biological rationale for a connection between KEupstream and KEdownstream. What are the structural or functional relationships between the KEs? For example, there is a functional relationship between an enzyme’s activity and the product of a reaction it catalyses. Supporting references should be included. However, it is recognised that there may be cases where the biological relationship between two KEs is very well established, to the extent that it is widely accepted and consistently supported by so much literature that it is unnecessary and impractical to cite the relevant primary literature. Citation of review articles or other secondary sources, like text books, may be reasonable in such cases. The primary intent is to provide scientifically credible support for the structural and/or functional relationship between the pair of KEs if one is known. The description of biological plausibility can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured (see page 40 of the User Handbook for further information).   More help

There is structural mechanistic understanding supporting the relationship between MIE (NMDARs, binding of antagonists) and KE (NMDARs, inhibition). Crystal structure studies are used to study the binding of antagonists/agonists to NMDA receptors. In case of NMDAR antagonists, the binding to the receptor causes LBD conformation changes which promote channel closure leading to reduced Ca+2 influx (Blanke and VanDongen, 2009). This lack of measurable ion flux is applied as an indication of NMDAR inhibition.

Uncertainties and Inconsistencies
In addition to outlining the evidence supporting a particular linkage, it is also important to identify inconsistencies or uncertainties in the relationship. Additionally, while there are expected patterns of concordance that support a causal linkage between the KEs in the pair, it is also helpful to identify experimental details that may explain apparent deviations from the expected patterns of concordance. Identification of uncertainties and inconsistencies contribute to evaluation of the overall WoE supporting the AOPs that contain a given KER and to the identification of research gaps that warrant investigation (seep pages 41-42 of the User Handbook).Given that AOPs are intended to support regulatory applications, AOP developers should focus on those inconsistencies or gaps that would have a direct bearing or impact on the confidence in the KER and its use as a basis for inference or extrapolation in a regulatory setting. Uncertainties that may be of academic interest but would have little impact on regulatory application don’t need to be described. In general, this section details evidence that may raise questions regarding the overall validity and predictive utility of the KER (including consideration of both biological plausibility and empirical support). It also contributes along with several other elements to the overall evaluation of the WoE for the KER (see Section 4 of the User Handbook).  More help

Pb2+ has been found to produce either potentiation or inhibition depending on: a) the subunit composition of NMDA receptors, b) endogenous glutamate concentration and c) Pb2+ dosage. In case that the NMDA receptors are saturated by agonist, Pb2+ at low concentrations (<1 µM) acts as a positive modulator of agonist action at NR1b-2AC and NR1a-2AB subunit complexes, whereas at higher concentrations, Pb2+ it behaves as a potent inhibitor of all recombinant NMDA receptors tested and was least potent at NR1b-2AC (Omelchenko et al., 1996; 1997), meaning that Pb2+ is not always acting as NMDAR inhibitor but it can also behave as NMDAR activator under certain conditions.

As an alternative mechanism of toxicity, Pb was shown to cause oxidative stress. In addition, it has the ability to substitute other bivalent cations like Ca2+,Mg2+, Fe2+ and monovalent cations like Na+ (for review, see Flora et al., 2012)

Response-response Relationship
This subsection should be used to define sources of data that define the response-response relationships between the KEs. In particular, information regarding the general form of the relationship (e.g., linear, exponential, sigmoidal, threshold, etc.) should be captured if possible. If there are specific mathematical functions or computational models relevant to the KER in question that have been defined, those should also be cited and/or described where possible, along with information concerning the approximate range of certainty with which the state of the KEdownstream can be predicted based on the measured state of the KEupstream (i.e., can it be predicted within a factor of two, or within three orders of magnitude?). For example, a regression equation may reasonably describe the response-response relationship between the two KERs, but that relationship may have only been validated/tested in a single species under steady state exposure conditions. Those types of details would be useful to capture.  More help
This sub-section should be used to provide information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). This can be useful information both in terms of modelling the KER, as well as for analyzing the critical or dominant paths through an AOP network (e.g., identification of an AO that could kill an organism in a matter of hours will generally be of higher priority than other potential AOs that take weeks or months to develop). Identification of time-scale can also aid the assessment of temporal concordance. For example, for a KER that operates on a time-scale of days, measurement of both KEs after just hours of exposure in a short-term experiment could lead to incorrect conclusions regarding dose-response or temporal concordance if the time-scale of the upstream to downstream transition was not considered. More help
Known modulating factors
This sub-section presents information regarding modulating factors/variables known to alter the shape of the response-response function that describes the quantitative relationship between the two KEs (for example, an iodine deficient diet causes a significant increase in the slope of the relationship; a particular genotype doubles the sensitivity of KEdownstream to changes in KEupstream). Information on these known modulating factors should be listed in this subsection, along with relevant information regarding the manner in which the modulating factor can be expected to alter the relationship (if known). Note, this section should focus on those modulating factors for which solid evidence supported by relevant data and literature is available. It should NOT list all possible/plausible modulating factors. In this regard, it is useful to bear in mind that many risk assessments conducted through conventional apical guideline testing-based approaches generally consider few if any modulating factors. More help
Known Feedforward/Feedback loops influencing this KER
This subsection should define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits? In some cases where feedback processes are measurable and causally linked to the outcome, they should be represented as KEs. However, in most cases these features are expected to predominantly influence the shape of the response-response, time-course, behaviours between selected KEs. For example, if a feedback loop acts as compensatory mechanism that aims to restore homeostasis following initial perturbation of a KE, the feedback loop will directly shape the response-response relationship between the KERs. Given interest in formally identifying these positive or negative feedback, it is recommended that a graphical annotation (page 44) indicating a positive or negative feedback loop is involved in a particular upstream to downstream KE transition (KER) be added to the graphical representation, and that details be provided in this subsection of the KER description (see pages 44-45 of the User Handbook).  More help

Domain of Applicability

As for the KEs, there is also a free-text section of the KER description that the developer can use to explain his/her rationale for the structured terms selected with regard to taxonomic, life stage, or sex applicability, or provide a more generalizable or nuanced description of the applicability domain than may be feasible using standardized terms. More help

The biophysical properties of rat and human receptors have been mostly assessed through recombinant studies, whereas the pharmacological properties of rat and human NMDA receptors have not been fully explored and compared yet (Hedegaard et al., 2012). Mean channel open times for human NMDA receptor subtypes in recombinant protein studies are similar to those of the corresponding rat NMDA receptor subtypes. However, mean single-channel conductances for human NMDA receptor subtypes appear lower than those of the corresponding rat NMDA receptor subtypes. Regarding pharmacological properties of the receptors, the differences were less than 2-fold and were not observed at the same subtypes for all the antagonists tested, suggesting that the molecular pharmacology of NMDA receptor is conserved between human and rat, although some inter-species differences are seen in IC50 values using two-electrode voltage-clamp recordings (Hedegaard et al., 2012),


List of the literature that was cited for this KER description using the appropriate format. Ideally, the list of references should conform, to the extent possible, with the OECD Style Guide (OECD, 2015). More help

Alkondon M, Costa AC, Radhakrishnan V, Aronstam RS, Albuquerque EX. (1990) Selective blockade of NMDA-activated channel currents may be implicated in learning deficits caused by lead. FEBS Lett. 261: 124-130.

Blanke ML, VanDongen AMJ. (2009) Activation Mechanisms of the NMDA Receptor. In: Van Dongen AM, editor. Biology of the NMDA Receptor. Boca Raton (FL): CRC Press; Chapter 13. Available from:

de Marchena J, Roberts AC, Middlebrooks PG, Valakh V, Yashiro K, Wilfley LR, Philpot BD. (2008) NMDA receptor antagonists reveal age-dependent differences in the properties of visual cortical plasticity. J Neurophysiol. 100: 1936-1948.

Flora G, Gupta D, Tiwari A. 2012. Toxicity of lead: A review with recent updates. Interdisciplinary toxicology 5(2): 47-58.

Gavazzo P, Gazzoli A, Mazzolini M, Marchetti C. (2001) Lead inhibition of NMDA channels in native and recombinant receptors. NeuroReport. 12: 3121-3125.

Gavazzo P, Zanardi I, Baranowska-Bosiacka I, Marchetti C. (2008) Molecular determinants of Pb2+ interaction with NMDA receptor channels. Neurochem Int. 52: 329-337.

Guilarte TR, Miceli RC. (1992) Age-dependent effects of lead on [3H]-MK-801 binding to the NMDA receptor-gated ionophore: In vitro and in vivo studies. Neurosci Lett. 148: 27-30.

Guilarte TR. (1997) Pb2+ Inhibits Nmda Receptor Function at High and Low Affinity Sites: Developmental and Regional Brain Expression. Neurotoxicology 18: 43-51.

Guilarte TR, McGlothan JL. (1998) Hippocampal NMDA Receptor mRNA Undergoes Subunit Specific Changes During Developmental Lead Exposure. Brain Res. 790: 98-107.

Hedegaard MK, Hansen KB, Andersen KT, Bräuner-Osborne H, Traynelis SF. (2012) Molecular pharmacology of human NMDA receptors. Neurochem Int. 61: 601-609.

Lasley SM, Gilbert ME. (1999) Lead inhibits the rat N-methyl-d-aspartate receptor channel by binding to a site distinct from the zinc allosteric site. Toxicol Appl Pharmacol. 159: 224-233.

MacDonald JF, Jackson MF, Beazely MA. (2006) Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol. 18: 71-84.

Neal AP, Worley PF, Guilarte TR. (2011) Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology 32: 281-289.

Nihei MK, Guilarte TR. (1999) NMDAR-2A subunit protein expression is reduced in the hippocampus of rats exposed to Pb2+ during development. Brain Res Mol Brain Res. 66: 42-49.

Omelchenko IA, Nelson CS, Marino JL., Allen CN. (1996). The sensitivity of N-methyl-d-aspartate receptors to lead inhibition is dependent on the receptor subunit composition. J Pharmacol Exp Ther. 278: 15-20.

Omelchenko IA, Nelson CS, Allen CN. (1997) Lead inhibition of N-Methyl-D-aspartate receptors containing NR2A, NR2C and NR2D subunits. J Pharmacol Exp Ther. 282: 1458-1464.

Rumbaugh G, Vicini S. (1999) Distinct Synaptic and Extrasynaptic NMDA Receptors in Developing Cerebellar Granule Neurons. J Neurosc. 19: 10603-10610.

Traynelis S, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 62: 405-496.

Zhang XY, Liu AP, Ruan DY, Liu J. (2002) Effect of developmental lead exposure on the expression of specific NMDA receptor subunit mRNAs in the hippocampus of neonatal rats by digoxigenin-labeled in situ hybridization histochemistry. Neurotox Teratol 24: 149-160.