This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 2734
Title
Antagonism Smoothened leads to Decrease, SMO relocation
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
| AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
|---|---|---|---|---|---|---|
| Antagonism of Smoothened receptor leading to orofacial clefting | adjacent | Moderate | Low | Jacob Reynolds (send email) | Under development: Not open for comment. Do not cite | Under Review |
Taxonomic Applicability
Sex Applicability
| Sex | Evidence |
|---|---|
| Unspecific | Not Specified |
Life Stage Applicability
| Term | Evidence |
|---|---|
| Embryo | High |
Key Event Relationship Description
The Smoothened (SMO) receptor is Class F G protein coupled receptor involved in signal transduction of the Sonic Hedgehog (SHH) pathway. It includes distinct functional groups including ligand binding pockets, cysteine rich domain (CRD), transmembrane helix (TM), extracellular loop (ECL), intracellular loop (ICL), and a carboxyl-terminal tail (C-term tail) (Arensdorf, Marada et al. 2016). SMO signaling is dependent upon its relocation to a subcellular location. This relocation occurs in the primary cilium (PC) in vertebrates (Huangfu and Anderson 2005). Relocation of SMO to the PC typically occurs within ~20 minutes of agonist stimulation (Arensdorf, Marada et al. 2016).
In the absence of SHH ligand, the Patched (PTCH) receptor suppresses the activation of SMO. When HH ligand binds to PTCH, suppression on SMO is released and SMO can relocate, accumulate, and signal to intracellular effectors (Denef, Neubüser et al. 2000, Rohatgi and Scott 2007). It has been shown that SMO localization to the tip of the primary cilia is essential for the SHH signaling cascade in vertebrates (Corbit, Aanstad et al. 2005, Rohatgi, Milenkovic et al. 2007, Rohatgi, Milenkovic et al. 2009). The exact mechanism through which PTCH and SMO interact is not known.
Evidence Collection Strategy
Pubmed was used as the primary database for evidence collection. Searches are organized by the date and search terms used in the supplementary table. Search results were initially screened through review of the title and abstract for potential for data relating antagonism of SMO and SMO relocation. Each selected publication and its’ data were then examined to determine if support or lack thereof existed for this KER. Papers that did not show any data relating to this KER were discarded. The search is detailed below in Table 1.
Evidence Supporting this KER
Biological Plausibility
SMO signaling is dependent upon its relocation to a subcellular location. This relocation occurs in the primary cilium (PC) in vertebrates (Huangfu and Anderson 2005). It has been shown that SMO localization to the tip of the primary cilia is essential for the SHH signaling cascade in vertebrates (Corbit, Aanstad et al. 2005, Rohatgi, Milenkovic et al. 2007, Rohatgi, Milenkovic et al. 2009)
Empirical Evidence
- In vitro
- NIH 3t3 (murine fibroblast) were used to study the effects of three SHH pathway antagonists, SANT 1, SANT2, and cyclopamine on SMO localization using fluorescent microscopy. Cells were treated with increasing concentrations of the antagonists in the presence of SHH ligand. SANT1 and SANT2 both blocked SMO localization in the cilia with IC50 values of 5 and 13nM respectively. Cyclopamine did not inhibit the accumulation of SMO in the cilia even when dosed at 5-10µm (>10 fold above kd). All three antagonists inhibited SHH pathway transduction and target gene expression (Rohatgi, Milenkovic et al. 2009).
- A small molecule screen of 10,000 compounds identified six inhibitors of SHH signaling, four of which bind directly to SMO (SANT1-4). Screening was conducted using NIH 3T3 SHH LightII cells cultured in media conditioned from HEK 293 transfected to stably express Shh-N. Cells were dosed with the compound library at 0.714ug/ml and SHH activity was quantified at 30h using Renilla luciferase activity. A fluorescent binding assay using BODIPY-cyclopamine was used to verify binding to SMO for the SANT compounds. Dose response reported as IC50 for the inhibition of SHH signaling was conducting in NIH 3T3 SHH light2, NIH 3T3 SmoA1-Light2, P2 Ptch1-/- (mouse embryonic fibroblasts) (Chen, Taipale et al. 2002).
|
Compound/Cell |
SHH-Light2 (nM) |
SmoA1-Light2 (nM) |
Ptch1-/- (nM) |
|
SANT-1 |
20 |
30 |
20 |
|
SANT-2 |
30 |
70 |
50 |
|
SANT-3 |
100 |
80 |
80 |
|
SANT-4 |
200 |
300 |
300 |
-
- Direct binding of cyclopamine to SMO was verified using a photoaffinity form of cyclopamine (PA-cyclopamine). PA-cyclopamine had previously been shown to inhibit SHH signaling in NIH 3T3 Shh-LightII cells with similar IC50 values to cyclopamine (300nm and 150nm respectively) (Taipale, Chen et al. 2000). Binding to SMO was verified using a COS-1 (fibroblast, monkey) line transfected to over express SMO. The location of cyclopamine binding was further investigated using BODIPY- cyclopamine and COS-1 cells modified to lack either a N-terminal, extracellular cysteine-rich domain, or the cytoplasmic C terminal of SMO. The findings support that cyclopamine does not require these domains and instead binds directly to the heptahelical domain (Chen, Taipale et al. 2002).
- To investigate whether SMO localization is regulated by SHH, a renal epithelial MDCK (Madin-Darby canine kidney) line was engineered to express Myc-tagged SMO. Following culture for 1hr in SHH conditioned media SMO presence in the primary cilium is upregulated while cells cultured in the presence of cyclopamine see a downregulation of SMO in the primary cilia (Corbit, Aanstad et al. 2005)
- To determine whether PTCH1 regulates localization of SMO MEFs from PTCH1-/- mice were used. These showed SHH activity and SMO localization in the primary cilium in the absence of SHH ligand or SAG. Reintroduction of PTCH1 via a retrovirus suppressed SHH activity and prevented SMO accumulation in primary cilia (Rohatgi and Scott 2007)
- A high content assay to detect compounds that block SMO accumulation to the primary cilia in the presence of SHH was used to screen a library of ~5600 compounds. This screen identified 26 hits with DY131 and its analog GSK4716 further investigated as potent hits. These compounds inhibited SHH induced accumulation of SMO::EGFP with IC50s of 0.8um and 2um respectively. DY131 and GSK4716 both inhibited the activation of a Glireporter with IC50s of 2um and 10um respectively (Wang, Arvanites et al. 2012).
- In vivo
- Two-week-old mice were dosed with 40mg/kg vismodegib (GDC-0449) via ip injection twice a day for 3 consecutive days. Quantification of immunofluorescence and ciliary length showed that like SMOfl/+ mice, ciliary M71/M72 OR was reduced while cilia lengths were not changed. To determine if SMO regulates ciliary localization an OMP-CRE mouse line was used. It was found that immunofluorescence of M71/M72 was reduced in both SMOfl/+, SMOfl/fl, as compared to SMO+/+ control (Maurya, Bohm et al. 2017).
- Cyclopamine was found to inhibit SHH signaling in White leghorn neural plate explants. Explants were dissected from stage 9-10 embryo chicks and cultured in collagen gels. Tissues were cultured in Shh-N media from COS-1 cells. Cyclopamine was dissolved in ethanol and added to test tissues. Tissues were fixed at 24-29hr and processed for immunofluorescence. 120nm cyclopamine was found to repress SHH induction as determined by Pax7 repression and the blockage of floor plate and motor neuron induction (Incardona, Gaffield et al. 1998).
-
- Multiple ciliopathies associated with clefting in humans including Meckel-Gruber syndrome (OMIM 249000) and Ellis-van Creveld syndrome (OMIM 225500)(Brugmann, Cordero et al. 2010)
Uncertainties and Inconsistencies
While we know that entry to the cilia is tightly controlled, the exact mechanism of SMO ciliary trafficking is not fully understood. The PC is separated from the plasma membrane by the ciliary pockets and the transition zone which function together to regulate the movement of lipids and proteins in and out of the organelle (Goetz, Ocbina et al. 2009, Rohatgi and Snell 2010). The SHH receptor PTCH contains a ciliary localization sequence in its’ carboxy tail. Localization of PTCH to the PC is essential for inhibition of SMO as deletion of the CLS in PTCH prevents PTCH localization as well as inhibition of SMO (Kim, Hsia et al. 2015) (53). SMO also contains a CLS, but only accumulates in the PC upon ligand binding (Corbit, Aanstad et al. 2005). The entry of SMO into the PC is thought to occur either laterally through the ciliary pockets or internally via recycling endosomes (Milenkovic, Scott et al. 2009). Once inside the PC, SMO can diffuse freely, however it will usually accumulate in specific locations depending upon its’ activation state. Inactive SMO will accumulate more at the base of the PC while active SMO will accumulate in the tip of the PC (Milenkovic, Weiss et al. 2015).
An endogenous ligand for SMO has not been discovered although evidence for one exists and that PTCH controls SMO by controlling its’ availability or accessibility. To support this, it has been shown that PTCH and SMO do not physically interact (Chen and Struhl 1998). PTCH acts catalytically with SMO with one PTCH receptor capable of controlling many (~50) SMO receptors (Taipale, Cooper et al. 2002). Since PTCH includes a sterol sensing domain and shares characteristics of ancient bacterial transporters, a model of PTCH functioning by pumping a sterol-like MSO regulator has been proposed (Mukhopadhyay and Rohatgi 2014). SMO is constitutively active in the absence of PTCH suggesting that the elusive molecule is an agonist (Rohatgi and Scott 2007). Conversely, the discovery that oxysterols bind to the CRD binding domain acting as positive modulators suggest that the molecule could be an agonist with PTCH functioning to sequester away or limit cellular concentration (Corcoran and Scott 2006, Nachtergaele, Mydock et al. 2012)
The activity of SMO is controlled by ligand binding (Kobilka 2007). Two separate binding pockets, one in the groove of the extracellular CRD and the other in the helices of the TMD have been identified (Nachtergaele, Mydock et al. 2012, Rana, Carroll et al. 2013, Wang, Wu et al. 2013, Byrne, Sircar et al. 2016, Huang, Zheng et al. 2018). These two binding pockets have been shown to interact in an allosteric manner (Nachtergaele, Mydock et al. 2012). The binding pocket in the helices of the TMD binds several SMO agonists including SAG as well as antagonists Vismodegib and Sonidegib. The CRD binding pocket binds cholesterol and its’ oxidized derivates (Byrne, Luchetti et al. 2018). The antagonist cyclopamine binds to the TMD binding pocket and inhibits SHH signal transduction. However, in mSMO carrying the mutations D477G/E552K that disable the TMD binding pocket, cyclopamine binds to the CRD pocket and activates the pathway (Huang, Nedelcu et al. 2016). To date several oxysterols including 20(S)-hydroxylcholesterol, 22(S)-hydroxylcholesterol, 7-keto-25-hydroxylcholesterol and 7-keto-27-hydroxylcholesterol have been identified as activators of SMO (Dwyer, Sever et al. 2007, Nachtergaele, Mydock et al. 2012, Myers, Sever et al. 2013). A binding site for 24(S),25-epoxycholesterol has been identified in the TMD pocket using cryo-EM of SMO in complex with 24(S),25-epoxycholesterol (Qi, Liu et al. 2019).
While it is well understood that cyclopamine is an antagonist of SMO, contradictory in vivo data was found regarding whether cyclopamine blocks SMO relocation to the primary cilia. Rohatgi et al used NIH 3T3s cell and found that cyclopamine did not inhibit the accumulation of SMO in the cilia even when dosed at 5-10um (>10 fold above kd). All three antagonists inhibited SHH pathway transduction and target gene expression (Rohatgi, Milenkovic et al. 2009). Corbit et al used a renal epithelial MDCK (Madin-Darby canine kidney) line was engineered to express Myc-tagged SMO. Following culture for 1hr in SHH conditioned media SMO presence in the primary cilium is upregulated while cells cultured in the presence of cyclopamine see a downregulation of SMO in the primary cilia (Corbit, Aanstad et al. 2005). Further work is required to determine if SMO antagonism via cyclopamine results in decrease in SMO relocation.
Known modulating factors
Quantitative Understanding of the Linkage
The data presented in support of this KER includes both in vitro and in vivo studies. The in vivo work identifies multiple antagonists of SMO and validates that they directly bind to SMO. These studies also offer data to show that antagonism of SMO causes a down regulation in SMO relocation the primary cilia. Dose dependent SMO localization is seen in the studies performed by Rohtagi et al 2009 and Chen et al 2002.The response time of SMO antagonism and subsequent time for a decrease in SMO relocation and activation has not been reported. No dose dependent in vivo data for antagonism of SMO and relocation to the cilia was found and all in vivo evidence is conducted under steady state exposure. Dose response data for disruption of SHH using the antagonists exists and is well charactered however quantification of ciliary relocation is lacking. Further studies are needed to expand our quantitative understanding of this linkage.
Response-response Relationship
No studies identified
Time-scale
Relocation of SMO to the PC typically occurs within ~20 minutes of agonist stimulation (Arensdorf, Marada et al. 2016). No data was found on how fast antagonism of SMO will stop its’ relocation to the primary cilia.
Known Feedforward/Feedback loops influencing this KER
None identified
Domain of Applicability
The relationship between antagonism of SMO and a decrease in SMO relocation and activation has been shown repeatedly in mice models as detailed in the empirical evidence section. The relationship is biologically plausible in human, but to date no specific experiments have addressed this question. The SHH pathway is well understood to be fundamental to proper embryonic development and that aberrant SHH signaling during embryonic development can cause birth defects indculding orofacial clefts (OFCs). For this reason, this KER is applicable to the embryonic stage with a high level of confidence.
References
Alexandre, C., A. Jacinto and P. W. Ingham (1996). "Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins." Genes Dev 10(16): 2003-2013.
Arensdorf, A. M., S. Marada and S. K. Ogden (2016). "Smoothened Regulation: A Tale of Two Signals." Trends Pharmacol Sci 37(1): 62-72.
Brugmann, S. A., D. R. Cordero and J. A. Helms (2010). "Craniofacial ciliopathies: A new classification for craniofacial disorders." Am J Med Genet A 152A(12): 2995-3006.
Byrne, E. F. X., G. Luchetti, R. Rohatgi and C. Siebold (2018). "Multiple ligand binding sites regulate the Hedgehog signal transducer Smoothened in vertebrates." Current Opinion in Cell Biology 51: 81-88.
Byrne, E. F. X., R. Sircar, P. S. Miller, G. Hedger, G. Luchetti, S. Nachtergaele, M. D. Tully, L. Mydock-McGrane, D. F. Covey, R. P. Rambo, M. S. P. Sansom, S. Newstead, R. Rohatgi and C. Siebold (2016). "Structural basis of Smoothened regulation by its extracellular domains." Nature 535(7613): 517-522.
Chen, J. K., J. Taipale, M. K. Cooper and P. A. Beachy (2002). "Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened." Genes Dev 16(21): 2743-2748.
Chen, J. K., J. Taipale, K. E. Young, T. Maiti and P. A. Beachy (2002). "Small molecule modulation of Smoothened activity." Proc Natl Acad Sci U S A 99(22): 14071-14076.
Chen, Y. and G. Struhl (1998). "In vivo evidence that Patched and Smoothened constitute distinct binding and transducing components of a Hedgehog receptor complex." Development 125(24): 4943-4948.
Corbit, K. C., P. Aanstad, V. Singla, A. R. Norman, D. Y. R. Stainier and J. F. Reiter (2005). "Vertebrate Smoothened functions at the primary cilium." Nature 437(7061): 1018-1021.
Corcoran, R. B. and M. P. Scott (2006). "Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells." Proc Natl Acad Sci U S A 103(22): 8408-8413.
Denef, N., D. Neubüser, L. Perez and S. M. Cohen (2000). "Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened." Cell 102(4): 521-531.
Dwyer, J. R., N. Sever, M. Carlson, S. F. Nelson, P. A. Beachy and F. Parhami (2007). "Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells." J Biol Chem 282(12): 8959-8968.
Goetz, S. C., P. J. Ocbina and K. V. Anderson (2009). "The primary cilium as a Hedgehog signal transduction machine." Methods Cell Biol 94: 199-222.
Heyne, G. W., C. G. Melberg, P. Doroodchi, K. F. Parins, H. W. Kietzman, J. L. Everson, L. J. Ansen-Wilson and R. J. Lipinski (2015). "Definition of critical periods for Hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate." PLoS One 10(3): e0120517.
Huang, P., D. Nedelcu, M. Watanabe, C. Jao, Y. Kim, J. Liu and A. Salic (2016). "Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling." Cell 166(5): 1176-1187.e1114.
Huang, P., S. Zheng, B. M. Wierbowski, Y. Kim, D. Nedelcu, L. Aravena, J. Liu, A. C. Kruse and A. Salic (2018). "Structural Basis of Smoothened Activation in Hedgehog Signaling." Cell 174(2): 312-324.e316.
Huangfu, D. and K. V. Anderson (2005). "Cilia and Hedgehog responsiveness in the mouse." Proc Natl Acad Sci U S A 102(32): 11325-11330.
Incardona, J. P., W. Gaffield, R. P. Kapur and H. Roelink (1998). "The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction." Development 125(18): 3553-3562.
Kim, J., E. Y. Hsia, A. Brigui, A. Plessis, P. A. Beachy and X. Zheng (2015). "The role of ciliary trafficking in Hedgehog receptor signaling." Sci Signal 8(379): ra55.
Kobilka, B. K. (2007). "G protein coupled receptor structure and activation." Biochimica et Biophysica Acta (BBA) - Biomembranes 1768(4): 794-807.
Maurya, D. K., S. Bohm and M. Alenius (2017). "Hedgehog signaling regulates ciliary localization of mouse odorant receptors." Proc Natl Acad Sci U S A 114(44): E9386-e9394.
Milenkovic, L., M. P. Scott and R. Rohatgi (2009). "Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium." J Cell Biol 187(3): 365-374.
Milenkovic, L., L. E. Weiss, J. Yoon, T. L. Roth, Y. S. Su, S. J. Sahl, M. P. Scott and W. E. Moerner (2015). "Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1." Proc Natl Acad Sci U S A 112(27): 8320-8325.
Millington, G., K. H. Elliott, Y. T. Chang, C. F. Chang, A. Dlugosz and S. A. Brugmann (2017). "Cilia-dependent GLI processing in neural crest cells is required for tongue development." Dev Biol 424(2): 124-137.
Mukhopadhyay, S. and R. Rohatgi (2014). "G-protein-coupled receptors, Hedgehog signaling and primary cilia." Semin Cell Dev Biol 33: 63-72.
Myers, B. R., L. Neahring, Y. Zhang, K. J. Roberts and P. A. Beachy (2017). "Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium." Proc Natl Acad Sci U S A 114(52): E11141-E11150.
Myers, Benjamin R., N. Sever, Yong C. Chong, J. Kim, Jitendra D. Belani, S. Rychnovsky, J. F. Bazan and Philip A. Beachy (2013). "Hedgehog Pathway Modulation by Multiple Lipid Binding Sites on the Smoothened Effector of Signal Response." Developmental Cell 26(4): 346-357.
Nachtergaele, S., L. K. Mydock, K. Krishnan, J. Rammohan, P. H. Schlesinger, D. F. Covey and R. Rohatgi (2012). "Oxysterols are allosteric activators of the oncoprotein Smoothened." Nat Chem Biol 8(2): 211-220.
Nachtergaele, S., L. K. Mydock, K. Krishnan, J. Rammohan, P. H. Schlesinger, D. F. Covey and R. Rohatgi (2012). "Oxysterols are allosteric activators of the oncoprotein Smoothened." Nature Chemical Biology 8(2): 211-220.
Qi, X., H. Liu, B. Thompson, J. McDonald, C. Zhang and X. Li (2019). "Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric Gi." Nature 571(7764): 279-283.
Rana, R., C. E. Carroll, H.-J. Lee, J. Bao, S. Marada, C. R. R. Grace, C. D. Guibao, S. K. Ogden and J. J. Zheng (2013). "Structural insights into the role of the Smoothened cysteine-rich domain in Hedgehog signalling." Nature Communications 4(1): 2965.
Rohatgi, R., L. Milenkovic, R. B. Corcoran and M. P. Scott (2009). "Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process." Proc Natl Acad Sci U S A 106(9): 3196-3201.
Rohatgi, R., L. Milenkovic and M. P. Scott (2007). "Patched1 regulates hedgehog signaling at the primary cilium." Science 317(5836): 372-376.
Rohatgi, R. and M. P. Scott (2007). "Patching the gaps in Hedgehog signalling." Nat Cell Biol 9(9): 1005-1009.
Rohatgi, R. and W. J. Snell (2010). "The ciliary membrane." Curr Opin Cell Biol 22(4): 541-546.
Taipale, J., J. K. Chen, M. K. Cooper, B. Wang, R. K. Mann, L. Milenkovic, M. P. Scott and P. A. Beachy (2000). "Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine." Nature 406(6799): 1005-1009.
Taipale, J., M. K. Cooper, T. Maiti and P. A. Beachy (2002). "Patched acts catalytically to suppress the activity of Smoothened." Nature 418(6900): 892-896.
Von Ohlen, T. and J. E. Hooper (1997). "Hedgehog signaling regulates transcription through Gli/Ci binding sites in the wingless enhancer." Mech Dev 68(1-2): 149-156.
Wang, C., H. Wu, V. Katritch, G. W. Han, X. P. Huang, W. Liu, F. Y. Siu, B. L. Roth, V. Cherezov and R. C. Stevens (2013). "Structure of the human smoothened receptor bound to an antitumour agent." Nature 497(7449): 338-343.
Wang, Y., A. C. Arvanites, L. Davidow, J. Blanchard, K. Lam, J. W. Yoo, S. Coy, L. L. Rubin and A. P. McMahon (2012). "Selective identification of hedgehog pathway antagonists by direct analysis of smoothened ciliary translocation." ACS Chem Biol 7(6): 1040-1048.