This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Relationship: 2959
Title
Interaction with the lung cell membrane leads to Systemic acute phase response
Upstream event
Downstream event
Key Event Relationship Overview
AOPs Referencing Relationship
AOP Name | Adjacency | Weight of Evidence | Quantitative Understanding | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|---|---|
Substance interaction with lung resident cell membrane components leading to atherosclerosis | non-adjacent | High | Moderate | Ulla Vogel (send email) | Under development: Not open for comment. Do not cite | Under Development |
Taxonomic Applicability
Sex Applicability
Sex | Evidence |
---|---|
Male | High |
Female | High |
Life Stage Applicability
Term | Evidence |
---|---|
All life stages | High |
Key Event Relationship Description
This KER presents the association between the interaction of stressors with the lung resident cell membrane components (Key event 1495) and the induction of systematic acute phase response (Key event 1439). The evidence of the KER presented is based on animal studies (mice), controlled human studies and epidemiological studies.
Evidence Collection Strategy
Evidence Supporting this KER
Biological Plausibility
The biological plausibility is high. Pulmonary inflammation occurs when stressors interact with the airways (Moldoveanu et al., 2009) and acute phase response is induced during inflammatory conditions (Gabay & Kushner, 1999). It has been shown (see table below) that exposure to different stressors produces an increase of acute phase proteins in blood [i.e. C-reactive protein (CRP) and serum amyloid A (SAA)] in humans and mice.
Empirical Evidence
Any substance that is inhaled will interact with a component of the respiratory system, including cells. Any study that shows that inhalation exposure leads to systemic acute phase response is considered evidence for this KER, even if the specific interaction between the substance and the respiratory system has not been investigated.
The following link presents the evidence for this KER. Exposure through the respiratory system (inhalation or intratracheal instillation) of stressors was considered as interaction with lung resident cell membrane components (Key event 1495), while systemic acute phase response is measured as the concentration of acute phase protein in blood plasma or serum (Key event 1439): Empirical evidence KER6.
Uncertainties and Inconsistencies
In the case of nanomaterials, it has been shown that physicochemical characteristics as size, surface area, surface functionalization, shape, composition, among others, affect the magnitude and duration of acute phase response in mice (Bengtson et al., 2017; Gutierrez et al., 2023; Poulsen et al., 2017).
It has been observed that in most controlled human studies, an increase in C-reactive protein (CRP) and/or serum amyloid A (SAA) was observed after exposure to particulate matter (Baumann et al., 2018; Monse et al., 2018; Monse et al., 2021; Walker et al., 2022; Wyatt, Devlin, Rappold, Case, & Diaz-Sanchez, 2020). However, in other human studies the exposure did not induce acute phase response (Andersen, Saber, Clausen, et al., 2018; Andersen, Saber, Pedersen, et al., 2018), maybe due to a low level of exposure (Andersen et al., 2019).
The following link presents inconsistencies for this KER, where substance interaction with lung resident cell membrane components has occurred, while systemic acute phase response was not observed. Exposure through the respiratory system (inhalation or intratracheal instillation) of stressors was considered as interaction with lung resident cell membrane components, while systemic acute phase response is measured as the concentration of acute phase protein in blood plasma or serum: Uncertainties KER6.
Known modulating factors
Quantitative Understanding of the Linkage
Response-response Relationship
The interaction of insoluble nanomaterials with the lungs (Key event 1495) (measured in dosed surface area: dosed mass multiply by specific surface area) is correlated to serum amyloid A (SAA)3 and SAA1/2 plasma levels (Key event 1439) and the responses show a linear regression, in female C57BL/6J mice 1 day after intratracheal instillation (Gutierrez et al., 2023) (Figure 1 and Figure 2).
The Pearson’s correlation coefficient was 0.92 (p <0.001) between log-transformed dosed surface area (dosed mass multiply by specific surface area) and log-transformed SAA3 plasma levels (Figure 1). The linear regression formula obtained was Log SAA3 = 0.9459 *Log Dosed surface area – 2.854 (p=0.01). In the case SAA1/2, the correlation coefficient was 0.83 (p<0.05) between log-transformed dosed surface area and log-transformed SAA1/2 plasma levels was, and the linear regression formula was Log SAA1/2 = 0.6368 *Log Dosed surface area +0.09524 (p=0.01) (Figure 2) (Gutierrez et al., 2023).
Figure 1. Correlations between pulmonary dosed surface area and SAA3 protein in plasma, 1 day after exposure to nanomaterials. Reproduced from Gutierrez et al. (2023).
Figure 2. Correlations between pulmonary dosed surface area and SAA1/2 protein in plasma, 1 day after exposure to nanomaterials. Reproduced from Gutierrez et al. (2023).
Time-scale
In mice, increased serum amyloid A (SAA) protein levels are observed 1 and 3 days after most exposures, however increased SAA levels are not frequently observed 28 or 90 days after exposure (Bourdon et al., 2012; Hadrup et al., 2019; Poulsen et al., 2017; Poulsen, Saber, Mortensen, et al., 2015; Poulsen, Saber, Williams, et al., 2015).
In humans, increased SAA and C-reactive protein has been observed 22h and 2 days after exposure to zinc oxide, but not 3 days after exposure (Monse et al., 2021). After exposure to zinc oxide, copper oxide or a mix both, SAA levels were elevated 24h after exposure in humans, but not 6h after exposure (Baumann et al., 2018).
Known Feedforward/Feedback loops influencing this KER
Domain of Applicability
Systemic acute phase response is measured as elevation of acute phase proteins in humans (mainly C-reactive protein and serum amyloid A), and serum amyloid A in mice has been shown after exposure to several stressors (see Empirical evidence).
References
Andersen, M. H. G., Frederiksen, M., Saber, A. T., Wils, R. S., Fonseca, A. S., Koponen, I. K., . . . Vogel, U. (2019). Health effects of exposure to diesel exhaust in diesel-powered trains. Part Fibre Toxicol, 16(1), 21. doi:10.1186/s12989-019-0306-4
Andersen, M. H. G., Saber, A. T., Clausen, P. A., Pedersen, J. E., Lohr, M., Kermanizadeh, A., . . . Vogel, U. (2018). Association between polycyclic aromatic hydrocarbon exposure and peripheral blood mononuclear cell DNA damage in human volunteers during fire extinction exercises. Mutagenesis, 33(1), 105-115. doi:10.1093/mutage/gex021
Andersen, M. H. G., Saber, A. T., Pedersen, J. E., Pedersen, P. B., Clausen, P. A., Lohr, M., . . . Moller, P. (2018). Assessment of polycyclic aromatic hydrocarbon exposure, lung function, systemic inflammation, and genotoxicity in peripheral blood mononuclear cells from firefighters before and after a work shift. Environ Mol Mutagen, 59(6), 539-548. doi:10.1002/em.22193
Baumann, R., Gube, M., Markert, A., Davatgarbenam, S., Kossack, V., Gerhards, B., . . . Brand, P. (2018). Systemic serum amyloid A as a biomarker for exposure to zinc and/or copper-containing metal fumes. J Expo Sci Environ Epidemiol, 28(1), 84-91. doi:10.1038/jes.2016.86
Bengtson, S., Knudsen, K. B., Kyjovska, Z. O., Berthing, T., Skaug, V., Levin, M., . . . Vogel, U. (2017). Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide. PLoS One, 12(6), e0178355. doi:10.1371/journal.pone.0178355
Bourdon, J. A., Halappanavar, S., Saber, A. T., Jacobsen, N. R., Williams, A., Wallin, H., . . . Yauk, C. L. (2012). Hepatic and pulmonary toxicogenomic profiles in mice intratracheally instilled with carbon black nanoparticles reveal pulmonary inflammation, acute phase response, and alterations in lipid homeostasis. Toxicol Sci, 127(2), 474-484. doi:10.1093/toxsci/kfs119
Gabay, C., & Kushner, I. (1999). Acute-phase proteins and other systemic responses to inflammation. N Engl J Med, 340(6), 448-454. doi:10.1056/NEJM199902113400607
Gutierrez, C. T., Loizides, C., Hafez, I., Brostrom, A., Wolff, H., Szarek, J., . . . Vogel, U. (2023). Acute phase response following pulmonary exposure to soluble and insoluble metal oxide nanomaterials in mice. Part Fibre Toxicol, 20(1), 4. doi:10.1186/s12989-023-00514-0
Hadrup, N., Knudsen, K. B., Berthing, T., Wolff, H., Bengtson, S., Kofoed, C., . . . Vogel, U. (2019). Pulmonary effects of nanofibrillated celluloses in mice suggest that carboxylation lowers the inflammatory and acute phase responses. Environ Toxicol Pharmacol, 66, 116-125. doi:10.1016/j.etap.2019.01.003
Moldoveanu, B., Otmishi, P., Jani, P., Walker, J., Sarmiento, X., Guardiola, J., . . . Yu, J. (2009). Inflammatory mechanisms in the lung. J Inflamm Res, 2, 1-11.
Monse, C., Hagemeyer, O., Raulf, M., Jettkant, B., van Kampen, V., Kendzia, B., . . . Merget, R. (2018). Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part Fibre Toxicol, 15(1), 8. doi:10.1186/s12989-018-0246-4
Monse, C., Raulf, M., Jettkant, B., van Kampen, V., Kendzia, B., Schurmeyer, L., . . . Bunger, J. (2021). Health effects after inhalation of micro- and nano-sized zinc oxide particles in human volunteers. Arch Toxicol, 95(1), 53-65. doi:10.1007/s00204-020-02923-y
Poulsen, S. S., Knudsen, K. B., Jackson, P., Weydahl, I. E., Saber, A. T., Wallin, H., & Vogel, U. (2017). Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice. PLoS One, 12(4), e0174167. doi:10.1371/journal.pone.0174167
Poulsen, S. S., Saber, A. T., Mortensen, A., Szarek, J., Wu, D., Williams, A., . . . Vogel, U. (2015). Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease. Toxicol Appl Pharmacol, 283(3), 210-222. doi:10.1016/j.taap.2015.01.011
Poulsen, S. S., Saber, A. T., Williams, A., Andersen, O., Kobler, C., Atluri, R., . . . Vogel, U. (2015). MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol, 284(1), 16-32. doi:10.1016/j.taap.2014.12.011
Walker, E. S., Fedak, K. M., Good, N., Balmes, J., Brook, R. D., Clark, M. L., . . . Peel, J. L. (2022). Acute differences in blood lipids and inflammatory biomarkers following controlled exposures to cookstove air pollution in the STOVES study. Int J Environ Health Res, 32(3), 565-578. doi:10.1080/09603123.2020.1785402
Wyatt, L. H., Devlin, R. B., Rappold, A. G., Case, M. W., & Diaz-Sanchez, D. (2020). Low levels of fine particulate matter increase vascular damage and reduce pulmonary function in young healthy adults. Part Fibre Toxicol, 17(1), 58. doi:10.1186/s12989-020-00389-5