Aop: 292

Title

Each AOP should be given a descriptive title that takes the form “MIE leading to AO”. For example, “Aromatase inhibition [MIE] leading to reproductive dysfunction [AO]” or “Thyroperoxidase inhibition [MIE] leading to decreased cognitive function [AO]”. In cases where the MIE is unknown or undefined, the earliest known KE in the chain (i.e., furthest upstream) should be used in lieu of the MIE and it should be made clear that the stated event is a KE and not the MIE. More help

Inhibition of tyrosinase leads to decreased population in fish

Short name
A short name should also be provided that succinctly summarises the information from the title. This name should not exceed 90 characters. More help
tyrosinase, fish

Graphical Representation

A graphical summary of the AOP listing all the KEs in sequence, including the MIE (if known) and AO, and the pair-wise relationships (links or KERs) between those KEs should be provided. This is easily achieved using the standard box and arrow AOP diagram (see this page for example). The graphical summary is prepared and uploaded by the user (templates are available) and is often included as part of the proposal when AOP development projects are submitted to the OECD AOP Development Workplan. The graphical representation or AOP diagram provides a useful and concise overview of the KEs that are included in the AOP, and the sequence in which they are linked together. This can aid both the process of development, as well as review and use of the AOP (for more information please see page 19 of the Users' Handbook).If you already have a graphical representation of your AOP in electronic format, simple save it in a standard image format (e.g. jpeg, png) then click ‘Choose File’ under the “Graphical Representation” heading, which is part of the Summary of the AOP section, to select the file that you have just edited. Files must be in jpeg, jpg, gif, png, or bmp format. Click ‘Upload’ to upload the file. You should see the AOP page with the image displayed under the “Graphical Representation” heading. To remove a graphical representation file, click 'Remove' and then click 'OK.'  Your graphic should no longer be displayed on the AOP page. If you do not have a graphical representation of your AOP in electronic format, a template is available to assist you.  Under “Summary of the AOP”, under the “Graphical Representation” heading click on the link “Click to download template for graphical representation.” A Powerpoint template file should download via the default download mechanism for your browser. Click to open this file; it contains a Powerpoint template for an AOP diagram and instructions for editing and saving the diagram. Be sure to save the diagram as jpeg, jpg, gif, png, or bmp format. Once the diagram is edited to its final state, upload the image file as described above. More help

Authors

List the name and affiliation information of the individual(s)/organisation(s) that created/developed the AOP. In the context of the OECD AOP Development Workplan, this would typically be the individuals and organisation that submitted an AOP development proposal to the EAGMST. Significant contributors to the AOP should also be listed. A corresponding author with contact information may be provided here. This author does not need an account on the AOP-KB and can be distinct from the point of contact below. The list of authors will be included in any snapshot made from an AOP. More help

Kichul Cho (kichul.cho@mabik.re.kr)

Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbruecken, Germany

Youngjun Kim (youngjunkim@kist-europe.de)

Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbruecken, Germany

Point of Contact

Indicate the point of contact for the AOP-KB entry itself. This person is responsible for managing the AOP entry in the AOP-KB and controls write access to the page by defining the contributors as described below. Clicking on the name will allow any wiki user to correspond with the point of contact via the email address associated with their user profile in the AOP-KB. This person can be the same as the corresponding author listed in the authors section but isn’t required to be. In cases where the individuals are different, the corresponding author would be the appropriate person to contact for scientific issues whereas the point of contact would be the appropriate person to contact about technical issues with the AOP-KB entry itself. Corresponding authors and the point of contact are encouraged to monitor comments on their AOPs and develop or coordinate responses as appropriate.  More help
Young Jun Kim   (email point of contact)

Contributors

List user names of all  authors contributing to or revising pages in the AOP-KB that are linked to the AOP description. This information is mainly used to control write access to the AOP page and is controlled by the Point of Contact.  More help
  • Young Jun Kim

Status

The status section is used to provide AOP-KB users with information concerning how actively the AOP page is being developed, what type of use or input the authors feel comfortable with given the current level of development, and whether it is part of the OECD AOP Development Workplan and has been reviewed and/or endorsed. “Author Status” is an author defined field that is designated by selecting one of several options from a drop-down menu (Table 3). The “Author Status” field should be changed by the point of contact, as appropriate, as AOP development proceeds. See page 22 of the User Handbook for definitions of selection options. More help
Author status OECD status OECD project SAAOP status
Open for citation & comment Under Development 1.78 Included in OECD Work Plan
This AOP was last modified on August 10, 2021 04:34
The date the AOP was last modified is automatically tracked by the AOP-KB. The date modified field can be used to evaluate how actively the page is under development and how recently the version within the AOP-Wiki has been updated compared to any snapshots that were generated. More help

Revision dates for related pages

Page Revision Date/Time
Inhibition of tyrosinase May 03, 2019 08:28
Reduction of L-Dopaquinone May 03, 2019 08:29
Reduction in melanin level May 03, 2019 08:30
Reduction of melanosome level May 03, 2019 08:31
Reduction fo Pigmentation pattern May 03, 2019 08:31
Decrease, Population trajectory September 03, 2021 11:24
tyrosinase leads to Reduction of L-Dopaquinone May 03, 2019 08:33
Reduction of L-Dopaquinone leads to Reduction in melanin level May 03, 2019 08:33
Reduction in melanin level leads to Reduction of melanosome level May 03, 2019 08:35
Reduction of melanosome level leads to Reduction fo Pigmentation pattern May 03, 2019 08:35
Reduction fo Pigmentation pattern leads to Decrease, Population trajectory May 03, 2019 08:36
1-phenyl 2-thiourea May 03, 2019 08:37

Abstract

In the abstract section, authors should provide a concise and informative summation of the AOP under development that can stand-alone from the AOP page. Abstracts should typically be 200-400 words in length (similar to an abstract for a journal article). Suggested content for the abstract includes the following: The background/purpose for initiation of the AOP’s development (if there was a specific intent) A brief description of the MIE, AO, and/or major KEs that define the pathway A short summation of the overall WoE supporting the AOP and identification of major knowledge gaps (if any) If a brief statement about how the AOP may be applied (optional). The aim is to capture the highlights of the AOP and its potential scientific and regulatory relevance More help

This AOP is designed to estimate changes in population trajectory of fishes resulting from the inhibition of the enzyme tyrosinase (TYR), which is rate-limiting in the control of melanogenesis. Since tyrosinase inhibition leads to the decrease of DOPAquinone synthesis,  tyrosinase inhibition by unknown or known chemicals will lead to L DOPA quinone inhibition and decrease of eu - and pheo -melanogenesis. Subsequently, these KEs possibly lead to the decline of teleost population. Hence this AOP could support the use of an in vitro high throughput screening assay for tyrosinase inhibition to identify chemicals that may reduce pigmentation in fish leaving them vulnerable to predation and unable to perform important social behaviors important to their survival and reproduction. Decreased population trajectory resulting from reduced pigmentation patterns in the fish body is a potential endpoint for eco-toxicity. The proposed endpoint will provide useful high throughput risk assessment screening tools for potential chemicals. Consequently, this AOP can be applied to the prediction of eco-toxicity caused by the inhibition of TYR. 

Background (optional)

This optional subsection should be used to provide background information for AOP reviewers and users that is considered helpful in understanding the biology underlying the AOP and the motivation for its development. The background should NOT provide an overview of the AOP, its KEs or KERs, which are captured in more detail below. Examples of potential uses of the optional background section are listed on pages 24-25 of the User Handbook. More help

The present AOP shows a tyrosinase (TYR) inhibition-mediated adverse outcome (AO) in fishes.  TYR is the rate-limiting enzyme controlling the induction of melanogenesis in diverse colored patterns in aquatic organisms. The significant reactions of TYR can be considered that the tyrosinase inhibitor-induced depigmentation reduces the trajectory of fishes. 

Acknowledgements: This research was supported by the National Research Council of Science & Technology(NST) grant by the Korea government (MSIP) (No. CAP-17-01-KIST Europe)

 

Summary of the AOP

This section is for information that describes the overall AOP. The information described in section 1 is entered on the upper portion of an AOP page within the AOP-Wiki. This is where some background information may be provided, the structure of the AOP is described, and the KEs and KERs are listed. More help

Events:

Molecular Initiating Events (MIE)
An MIE is a specialised KE that represents the beginning (point of interaction between a stressor and the biological system) of an AOP. More help
Key Events (KE)
This table summarises all of the KEs of the AOP. This table is populated in the AOP-Wiki as KEs are added to the AOP. Each table entry acts as a link to the individual KE description page.  More help
Adverse Outcomes (AO)
An AO is a specialised KE that represents the end (an adverse outcome of regulatory significance) of an AOP.  More help
Sequence Type Event ID Title Short name
MIE 1627 Inhibition of tyrosinase tyrosinase
KE 1628 Reduction of L-Dopaquinone Reduction of L-Dopaquinone
KE 1629 Reduction in melanin level Reduction in melanin level
KE 1630 Reduction of melanosome level Reduction of melanosome level
KE 1631 Reduction fo Pigmentation pattern Reduction fo Pigmentation pattern
AO 360 Decrease, Population trajectory Decrease, Population trajectory

Relationships Between Two Key Events (Including MIEs and AOs)

This table summarises all of the KERs of the AOP and is populated in the AOP-Wiki as KERs are added to the AOP. Each table entry acts as a link to the individual KER description page.To add a key event relationship click on either Add relationship: events adjacent in sequence or Add relationship: events non-adjacent in sequence.For example, if the intended sequence of KEs for the AOP is [KE1 > KE2 > KE3 > KE4]; relationships between KE1 and KE2; KE2 and KE3; and KE3 and KE4 would be defined using the add relationship: events adjacent in sequence button.  Relationships between KE1 and KE3; KE2 and KE4; or KE1 and KE4, for example, should be created using the add relationship: events non-adjacent button. This helps to both organize the table with regard to which KERs define the main sequence of KEs and those that provide additional supporting evidence and aids computational analysis of AOP networks, where non-adjacent KERs can result in artifacts (see Villeneuve et al. 2018; DOI: 10.1002/etc.4124).After clicking either option, the user will be brought to a new page entitled ‘Add Relationship to AOP.’ To create a new relationship, select an upstream event and a downstream event from the drop down menus. The KER will automatically be designated as either adjacent or non-adjacent depending on the button selected. The fields “Evidence” and “Quantitative understanding” can be selected from the drop-down options at the time of creation of the relationship, or can be added later. See the Users Handbook, page 52 (Assess Evidence Supporting All KERs for guiding questions, etc.).  Click ‘Create [adjacent/non-adjacent] relationship.’  The new relationship should be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. To edit a key event relationship, click ‘Edit’ next to the name of the relationship you wish to edit. The user will be directed to an Editing Relationship page where they can edit the Evidence, and Quantitative Understanding fields using the drop down menus. Once finished editing, click ‘Update [adjacent/non-adjacent] relationship’ to update these fields and return to the AOP page.To remove a key event relationship to an AOP page, under Summary of the AOP, next to “Relationships Between Two Key Events (Including MIEs and AOs)” click ‘Remove’ The relationship should no longer be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. More help

Network View

The AOP-Wiki automatically generates a network view of the AOP. This network graphic is based on the information provided in the MIE, KEs, AO, KERs and WoE summary tables. The width of the edges representing the KERs is determined by its WoE confidence level, with thicker lines representing higher degrees of confidence. This network view also shows which KEs are shared with other AOPs. More help

Stressors

The stressor field is a structured data field that can be used to annotate an AOP with standardised terms identifying stressors known to trigger the MIE/AOP. Most often these are chemical names selected from established chemical ontologies. However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. Although AOPs themselves are not chemical or stressor-specific, linking to stressor terms known to be relevant to different AOPs can aid users in searching for AOPs that may be relevant to a given stressor. More help
Name Evidence Term
1-phenyl 2-thiourea High

Life Stage Applicability

Identify the life stage for which the KE is known to be applicable. More help
Life stage Evidence
Not Otherwise Specified

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected. In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
fish fish High NCBI

Sex Applicability

The authors must select from one of the following: Male, female, mixed, asexual, third gender, hermaphrodite, or unspecific. More help
Sex Evidence
Mixed Moderate

Overall Assessment of the AOP

This section addresses the relevant biological domain of applicability (i.e., in terms of taxa, sex, life stage, etc.) and WoE for the overall AOP as a basis to consider appropriate regulatory application (e.g., priority setting, testing strategies or risk assessment). The goal of the overall assessment is to provide a high level synthesis and overview of the relative confidence in the AOP and where the significant gaps or weaknesses are (if they exist). Users or readers can drill down into the finer details captured in the KE and KER descriptions, and/or associated summary tables, as appropriate to their needs.Assessment of the AOP is organised into a number of steps. Guidance on pages 59-62 of the User Handbook is available to facilitate assignment of categories of high, moderate, or low confidence for each consideration. While it is not necessary to repeat lengthy text that appears elsewhere in the AOP description (or related KE and KER descriptions), a brief explanation or rationale for the selection of high, moderate, or low confidence should be made. More help

To do

Building the AOP frame

Development of KEs

Production of experimental data

Overall assessment of the AOP

Biological domain of applicability

Essentiality of all KEs

Evidence supporting all KERs

Quantitative WoE considerations

Quantitative understanding for each KER

Domain of Applicability

The relevant biological domain(s) of applicability in terms of sex, life-stage, taxa, and other aspects of biological context are defined in this section. Biological domain of applicability is informed by the “Description” and “Biological Domain of Applicability” sections of each KE and KER description (see sections 2G and 3E for details). In essence the taxa/life-stage/sex applicability is defined based on the groups of organisms for which the measurements represented by the KEs can feasibly be measured and the functional and regulatory relationships represented by the KERs are operative.The relevant biological domain of applicability of the AOP as a whole will nearly always be defined based on the most narrowly restricted of its KEs and KERs. For example, if most of the KEs apply to either sex, but one is relevant to females only, the biological domain of applicability of the AOP as a whole would be limited to females. While much of the detail defining the domain of applicability may be found in the individual KE and KER descriptions, the rationale for defining the relevant biological domain of applicability of the overall AOP should be briefly summarised on the AOP page. More help

Essentiality of the Key Events

An important aspect of assessing an AOP is evaluating the essentiality of its KEs. The essentiality of KEs can only be assessed relative to the impact of manipulation of a given KE (e.g., experimentally blocking or exacerbating the event) on the downstream sequence of KEs defined for the AOP. Consequently evidence supporting essentiality is assembled on the AOP page, rather than on the independent KE pages that are meant to stand-alone as modular units without reference to other KEs in the sequence.The nature of experimental evidence that is relevant to assessing essentiality relates to the impact on downstream KEs and the AO if upstream KEs are prevented or modified. This includes: Direct evidence: directly measured experimental support that blocking or preventing a KE prevents or impacts downstream KEs in the pathway in the expected fashion. Indirect evidence: evidence that modulation or attenuation in the magnitude of impact on a specific KE (increased effect or decreased effect) is associated with corresponding changes (increases or decreases) in the magnitude or frequency of one or more downstream KEs.When assembling the support for essentiality of the KEs, authors should organise relevant data in a tabular format. The objective is to summarise briefly the nature and numbers of investigations in which the essentiality of KEs has been experimentally explored either directly or indirectly. See pages 50-51 in the User Handbook for further definitions and clarifications.  More help

Inhibition of TYR (KER 1627) can be caused by chemical inhibitors such as 1-phenyl 2-thiourea (PTU), sesamol, arbutin, Kojic acid, bis(4-hydroxybenzyl) and etc. (J. Karlsson et al., 2001; W. C. Chen et al., 2015; Baek and Lee, 2015; S. H. Cha et al., 2011). 

TYR inhibition as Key event 1891, the MIE for the present AOP, results in reduction of L-Dopaquinone level in the melanocyte via inhibition of L-DOPA oxidation moreover, it results in attenuation of eumelanin and pheomelanin biosynthesis (T. S. Chang, 2012; J. Choi and J. G. Jee, 2015; S. Y. Lee, 2016; A. J. Winder and H. Harris, 1991; W. C. Chen et al., 2015).

There are perhaps a non-adjacent relationship linking event 1629 to event 1631 that the lowered level of melanin biosynthesis by TYR inhibition simultaneously leads to depigmentation in skin tissue and diminished pigmentation pattern in the fish body (L. E. Jao et al., 2013; S. Y. Wu et al., 2015; S. H. Baek and S. H. Lee, 2015; W. C. Chen et al., 2015; D. C. Kim et al., 2017).

Evidence Assessment

The biological plausibility, empirical support, and quantitative understanding from each KER in an AOP are assessed together.  Biological plausibility of each of the KERs in the AOP is the most influential consideration in assessing WoE or degree of confidence in an overall hypothesised AOP for potential regulatory application (Meek et al., 2014; 2014a). Empirical support entails consideration of experimental data in terms of the associations between KEs – namely dose-response concordance and temporal relationships between and across multiple KEs. It is examined most often in studies of dose-response/incidence and temporal relationships for stressors that impact the pathway. While less influential than biological plausibility of the KERs and essentiality of the KEs, empirical support can increase confidence in the relationships included in an AOP. For clarification on how to rate the given empirical support for a KER, as well as examples, see pages 53- 55 of the User Handbook.  More help

First, TYR can convert L-tyrosine directly to L-3,4-dihydroxyphenylalanine (L-DOPA) which is a precursor of (2S)-2-Amino-3-(3,4-dioxocyclohexa-1,5-dien-1-yl)propanoic acid (L-Dopaquinone) synthesis; Second, TYR catalyzes the oxidation of L-DOPA to the L-Dopaquinone which is the reactive intermediate for the eumelanin and pheomelanin synthesis. Pigment patterns in common fishes usually play a significant role to communicate within species, intersexual interactions, escape potential in the eyes of predators and finding shoal mate (Price et al., 2008; C. L. Peichel et al., 2004; R. E. Engeszer et al., 2004)

Quantitative Understanding

Some proof of concept examples to address the WoE considerations for AOPs quantitatively have recently been developed, based on the rank ordering of the relevant Bradford Hill considerations (i.e., biological plausibility, essentiality and empirical support) (Becker et al., 2017; Becker et al, 2015; Collier et al., 2016). Suggested quantitation of the various elements is expert derived, without collective consideration currently of appropriate reporting templates or formal expert engagement. Though not essential, developers may wish to assign comparative quantitative values to the extent of the supporting data based on the three critical Bradford Hill considerations for AOPs, as a basis to contribute to collective experience.Specific attention is also given to how precisely and accurately one can potentially predict an impact on KEdownstream based on some measurement of KEupstream. This is captured in the form of quantitative understanding calls for each KER. See pages 55-56 of the User Handbook for a review of quantitative understanding for KER's. More help

It will be come soon,

Considerations for Potential Applications of the AOP (optional)

At their discretion, the developer may include in this section discussion of the potential applications of an AOP to support regulatory decision-making. This may include, for example, possible utility for test guideline development or refinement, development of integrated testing and assessment approaches, development of (Q)SARs / or chemical profilers to facilitate the grouping of chemicals for subsequent read-across, screening level hazard assessments or even risk assessment. While it is challenging to foresee all potential regulatory application of AOPs and any application will ultimately lie within the purview of regulatory agencies, potential applications may be apparent as the AOP is being developed, particularly if it was initiated with a particular application in mind. This optional section is intended to provide the developer with an opportunity to suggest potential regulatory applications and describe his or her rationale.To edit the “Considerations for Potential Applications of the AOP” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Considerations for Potential Applications of the AOP” section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page or 'Update and continue' to continue editing AOP text sections.  The new text should appear under the “Considerations for Potential Applications of the AOP” section on the AOP page. More help

In fish as behavioral ecology, color patterns are often multi-component signals, composed of pigment-based and physiological regulation that can be used to communicate in both inter- and intrasexual interactions in population. This endpoint is essential and useful for screening of pigmentation effects on the photosensitive context for skin toxicity screening and relevant to teratogenic effects.

References

List the bibliographic references to original papers, books or other documents used to support the AOP. More help

References

Karlsson, J., et al. (2001). Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Marine Biotechnology, 3(6), 522-527.

Chen, W. C., et al. (2015). Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Scientific reports, 5, 7995.

Baek, S. H., & Lee, S. H. (2015). Sesamol decreases melanin biosynthesis in melanocyte cells and zebrafish: Possible involvement of MITF via the intracellular cAMP and p38/JNK signalling pathways. Experimental dermatology, 24(10), 761-766.

Cha, S. H., et al. (2011). Screening of marine algae for potential tyrosinase inhibitor: those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. The Journal of dermatology, 38(4), 354-363.

Chang, T. S. (2012). Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials, 5(9), 1661-1685.

Choi, J., & Jee, J. G. (2015). Repositioning of thiourea-containing drugs as tyrosinase inhibitors. International journal of molecular sciences, 16(12), 28534-28548.

Lee, S. Y., Baek, N., & Nam, T. G. (2016). Natural, semisynthetic and synthetic tyrosinase inhibitors. Journal of enzyme inhibition and medicinal chemistry, 31(1), 1-13.

Winder, A. J., & Harris, H. (1991). New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. European journal of biochemistry, 198(2), 317-326.

Chen, W. C., et al. (2015). Discovery highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Scientific reports, 5, 7995.

Jao, L. E., et al. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences, 110(34), 13904-13909.

Wu, S. Y., et al. (2015). 4-(Phenylsulfanyl) butan-2-one suppresses melanin synthesis and melanosome maturation in vitro and in vivo. International journal of molecular sciences, 16(9), 20240-20257.

Baek, S. H., & Lee, S. H. (2015). Sesamol decreases melanin biosynthesis in melanocyte cells and zebrafish: Possible involvement of MITF via the intracellular cAMP and p38/JNK signalling pathways. Experimental dermatology, 24(10), 761-766.

Chen, W. C., et al. (2015). Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Scientific reports, 5, 7995.

Kim, D. C., et al. (2017). p-coumaric acid potently down-regulates zebrafish embryo pigmentation: Comparison of in vivo assay and computational molecular modeling with phenylthiourea. Biomedical Science Letters, 23(1), 8-16.

Price, A. C., et al. (2008). Pigments, patterns, and fish behavior. Zebrafish, 5(4), 297-307.

Peichel, C. L. (2004). Social behavior: how do fish find their shoal mate?. Current Biology, 14(13), R503-R504.

Engeszer, R. E., et al. (2004). Learned social preference in zebrafish. Current Biology, 14(10), 881-884.

Slavík, O., et al. (2016). How does agonistic behaviour differ in albino and pigmented fish?. PeerJ, 4, e1937.

Ren, J. Q., et al. (2002). Behavioral visual responses of wild-type and hypopigmented zebrafish. Vision research, 42(3), 293-299.

Slavík, O., et al. (2015). Ostracism of an albino individual by a group of pigmented catfish. Plos one, 10(5), e0128279.

Onyia, U. L., et al. (2016). Growth and survival of normal coloured and albino clarias gariepinus and their reciprocal hybrids. Nigerian Journal of Fisheries and Aquaculture, 4(1), 22-27.

Bondari, K. (1984). Comparative performance of albino and normally pigmented channel catfish in tanks, cages, and ponds. Aquaculture, 37(4), 293-301.

Pérez-Carpinell, J. O. A. Q. U. I. N., et al. (1992). Vision defects in albinism. Optometry and vision science: official publication of the American Academy of Optometry, 69(8), 623-628.

Cho, K., Ryu, C. S., Jeong, S., & Kim, Y. (2020). Potential adverse effect of tyrosinase inhibitors on teleosts: A review. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 228, 108655.

Maki JA, Cavallin JE, Lott KG, Saari TW, Ankley GT, Villeneuve DL. A method for CRISPR/Cas9 mutation of genes in fathead minnow (Pimephales promelas). Aquat Toxicol. 2020;222:105464. doi:10.1016/j.aquatox.2020.105464