This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 1007

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Reduced, Anterior swim bladder inflation

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Reduced, Anterior swim bladder inflation
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Organ

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Organ term
swim bladder

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
swim bladder inflation anterior chamber swim bladder decreased

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE.Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
DIO2i anterior swim bladder KeyEvent Dries Knapen (send email) Under Development: Contributions and Comments Welcome WPHA/WNT Endorsed
DIO1i anterior swim bladder KeyEvent Dries Knapen (send email) Under Development: Contributions and Comments Welcome WPHA/WNT Endorsed
TPOi anterior swim bladder KeyEvent Dries Knapen (send email) Under Development: Contributions and Comments Welcome WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
zebrafish Danio rerio High NCBI
fathead minnow Pimephales promelas High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
Larvae High

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Unspecific Moderate

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

The swim bladder of bony fish is evolutionary homologous to the lung (Zheng et al., 2011). The teleost swim bladder is a gas-filled structure that consists of two chambers, the posterior and anterior chamber. In zebrafish, the posterior chamber inflates around 96 h post fertilization (hpf) which is 2 days post hatch, and the anterior chamber inflates around 21 dpf. In fathead minnow, the posterior and anterior chamber inflate around 6 and 14 dpf respectively. Inflation of the anterior swim bladder chamber is part of the larval-to-juvenile transition in fish, together with the development of adult fins and fin rays, ossification of the axial skeleton, formation of an adult pigmentation pattern, scale formation, maturation and remodeling of organs including the lateral line, nervous system, gut and kidneys (McMenamin and Parichy, 2013).

The anterior chamber is formed by evagination from the cranial end of the posterior chamber (Robertson et al., 2007). Dumbarton et al. (2010) showed that the anterior chamber of zebrafish has particularly closely packed and highly organized bundles of muscle fibres, suggesting that contraction of these muscles would reduce swim bladder volume. While it had previously been suggested that the posterior chamber had a more important role as a hydrostatic organ, this implies high importance of the anterior chamber for buoyancy. The anterior chamber has an additional role in hearing (Bang et al., 2002). Weberian ossicles (the Weberian apparatus) connect the anterior chamber to the inner ear resulting in an amplification of sound waves. Reduced inflation of the anterior chamber may manifest itself as either a complete failure to inflate the chamber or reduced size of the chamber. Reduced size is often associated with a deviating morphology.

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

In several fish species, inflation of the anterior chamber can be observed using a stereomicroscope because the larvae are still transparent during the larval stage. This is for example true for zebrafish and fathead minnow. Anterior chamber size can then be measured based on photographs with a calibrator.

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

Taxonomic: Teleost fish can be divided in two groups according to swim bladder morphology: physoclistous (e.g., yellow perch, sea bass, striped bass, medaka) and physostomous (e.g., zebrafish and fathead minnow). Physostomous fish retain a duct between the digestive tract and the swim bladder during adulthood allowing them to gulp air at the surface to fill the swim bladder. In contrast, in physoclistous fish, once initial inflation by gulping atmospheric air at the water surface has occurred, the swim bladder is closed off from the digestive tract and swim bladder volume is regulated by gas secretion into the swim bladder (Woolley and Qin, 2010). The evidence for impaired inflation of the anterior chamber of the swim bladder currently comes from work on zebrafish and fathead minnow (Stinckens et al., 2016; Nelson et al., 2016; Cavallin et al., 2017; Godfrey et al., 2017; Stinckens et al., 2020). While zebrafish and fathead minnows are physostomous fish with a two-chambered swim bladder, the Japanese rice fish or medaka (Oryzias latipes) is a physoclistous fish with a single chambered swim bladder that inflates during early development. The key event 'reduced anterior chamber inflation' is not applicable to such fish species. Therefore, the current key event is plausibly applicable to physostomous fish in general.

Life stage: The anterior chamber inflates during a specific developmental time frame. In zebrafish, the anterior chamber inflates around 21 days post fertilization (dpf) which is during the larval stage. In the fathead minnow, the anterior chamber inflates around 14 dpf, also during the larval stage. Therefore this KE is only applicable to the larval life stage.

Sex: This KE/KER plausibly applicable to both sexes. Sex differences are not often investigated in tests using early life stages of fish. For zebrafish and fathead minnow, it is currently unclear whether sex-related differences are important in determining the magnitude of the changes in this KE/KER. Different fish species have different sex determination and differentiation strategies. Zebrafish do not have identifiable heteromorphic sex chromosomes and sex is determined by multiple genes and influenced by the environment (Nagabhushana and Mishra, 2016). Zebrafish are undifferentiated gonochorists since both sexes initially develop an immature ovary (Maack and Segner, 2003). Immature ovary development progresses until approximately the onset of the third week. Later, in female fish immature ovaries continue to develop further, while male fish undergo transformation of ovaries into testes. Final transformation into testes varies among male individuals, however finishes usually around 6 weeks post fertilization. Since the anterior chamber inflates around 21 days post fertilization in zebrafish, sex differences are expected to play a minor role. Fathead minnow gonad differentiation also occurs during larval development. Fathead minnows utilize a XY sex determination strategy and markers can be used to genotype sex in life stages where the sex is not yet clearly defined morphologically (Olmstead et al., 2011). Ovarian differentiation starts at 10 dph followed by rapid development (Van Aerle et al., 2004). At 25 dph germ cells of all stages up to the primary oocytes stage were present and at 120 dph, vitellogenic oocytes were present. The germ cells (spermatogonia) of the developing testes only entered meiosis around 90–120 dph. Mature testes with spermatozoa are present around 150 dph. Since the anterior chamber inflates around 14 days post fertilization (9 dph) in fathead minnows, sex differences are expected to play a minor role in the current AOP.

References

List of the literature that was cited for this KE description. More help

Bang, P.I., Yelick, P.C., Malicko, J.J., Sewell, W.F. 2002. High-throughput behavioral screening method for detecting auditory response defects in zebrafish. Journal of Neuroscience Methods. 118, 177-187.

Cavallin, J.E., Ankley, G.T., Blackwell, B.R., Blanksma, C.A., Fay, K.A., Jensen, K.M., Kahl, M.D., Knapen, D., Kosian, P.A., Poole, S.T., Randolph, E.C., Schroeder, A.L., Vergauwen, L., Villeneuve, D.L., 2017. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environmental Toxicology and Chemistry 36, 2942-2952.

Dumbarton, T.C., Stoyek, M., Croll, R.P., Smith, F.M., 2010. Adrenergic control of swimbladder deflation in the zebrafish (Danio rerio). J. Exp. Biol. 213,2536–2546, http://dx.doi.org/10.1242/jeb.039792.

Godfrey, A., Hooser, B., Abdelmoneim, A., Horzmann, K.A., Freemanc, J.L., Sepulveda, M.S., 2017. Thyroid disrupting effects of halogenated and next generation chemicals on the swim bladder development of zebrafish. Aquatic Toxicology 193, 228-235.

McMenamin, S.K., Parichy, D.M., 2013. Metamorphosis in Teleosts. Animal Metamorphosis 103, 127-165.

Nagabhushana A, Mishra RK. 2016. Finding clues to the riddle of sex determination in zebrafish. Journal of Biosciences. 41(1):145-155.

Nelson KR, Schroeder AL, Ankley GT, Blackwell BR, Blanksma C, Degitz SJ, Flynn KM, Jensen KM, Johnson RD, Kahl MD, Knapen D, Kosian PA, Milsk RY, Randolph EC, Saari T, Stinckens E, Vergauwen L, Villeneuve DL. 2016. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole – Part I: fathead minnow. Aquatic Toxicology 173: 192-203.

Olmstead AW, Villeneuve DL, Ankley GT, Cavallin JE, Lindberg-Livingston A, Wehmas LC, Degitz SJ. 2011. A method for the determination of genetic sex in the fathead minnow, pimephales promelas, to support testing of endocrine-active chemicals. Environmental Science & Technology. 45(7):3090-3095.

Roberston, G.N., McGee, C.A.S., Dumbarton, T.C., Croll, R.P., Smith, F.M., 2007. Development of the swim bladder and its innervation in the zebrafish, Danio rerio. J. Morphol. 268, 967–985, http://dx.doi.org/10.1002/jmor.

Stinckens, E., Vergauwen, L., Blackwell, B.R., Anldey, G.T., Villeneuve, D.L., Knapen, D., 2020. Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish. Environmental Science & Technology 54, 6213-6223.

Stinckens, E., Vergauwen, L., Schroeder, A., Maho, W., Blackwell, B., Witters, H., Blust, R., Ankley, G., Covaci, A., Villeneuve, D., Knapen, D., 2016. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II: Zebrafish. Aquatic Toxicology 173, 204-217.

van Aerle R, Runnalls TJ, Tyler CR. 2004. Ontogeny of gonadal sex development relative to growth in fathead minnow. Journal of Fish Biology. 64(2):355-369.

Woolley, L.D., Qin, J.G., 2010. Swimbladder inflation and its implication to the culture of marine finfish larvae. Reviews in Aquaculture 2, 181-190.

Zheng, W., Wang, Z., Collins, J.E., Andrews, R.M., Stemple, D., Gong, Z. 2011. Comparative transcriptome analyses indicate molecular homology of zebrafish swim bladder and mammalian lung. PLoS One 6, http://dx.doi.org/10.1371/