This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 1060

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Alteration, lipid metabolism

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Alteration, lipid metabolism
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Cellular

Cell term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Cell term
eukaryotic cell

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
lipid metabolic process abnormal

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE.Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
PPARα activation and pancreatic acinar tumors KeyEvent Charles Wood (send email) Under Development: Contributions and Comments Welcome
ROS formation leads to cancer via PPAR pathway KeyEvent John Frisch (send email) Under development: Not open for comment. Do not cite

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
human Homo sapiens Not Specified NCBI
mouse Mus musculus Not Specified NCBI
rat Rattus norvegicus Not Specified NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
All life stages Not Specified

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Unspecific Not Specified

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

Lipids are important molecules for efficient energy storage, in addition to roles as signaling molecules and basic building blocks in organisms.  In addition to energy release, lipid metabolism affects the amount of stored fat.  Alteration of lipid metabolism reflects a disruption of normal function, as evidenced by changes in gene expression, enzyme levels, break-down products, or fat content.  Peroxisome proliferation-activated receptors pathways (and associated genes and proteins) are commonly monitored for downstream effects on lipid metabolism (Luquet et al. 2005; Den Broeder et al. 2015; Chamorro-Garcia et al. 2018; Venezia et al. 2021).

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

Changes in lipid metabolism can be detected by examining organism fat content, or by examination of organs (ex. stomach, liver, intestines) for break-down products (ex. proteins) or changes in gene expression.

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

Life Stage: All life stages. 

Sex: Applies to both males and females.

Taxonomic: Appears to be present broadly, with representative studies in mammals.

References

List of the literature that was cited for this KE description. More help

Chamorro-Garcia, R., Shoucri, B.M., Willner, S., Kach, H., Janesick, A., and Blumberg, B.  2018.  Effect of perinatal exposure to dibutyltin chloride on fat and glucose metabolism in mice, and molecular mechanisms, in vitro.  Environmental Health Perspectives 126: 057006.

Den Broeder, M.J., Kopylova, V.A., Kamminga, L.M. Legler, J.  2015.  Zebrafish as a model to study the role of peroxisome proliferating-activated receptors in adipogenesis and obesity.  PPAR Research 2015: 358029.

Luquet, S., Gaudel, C., Holst, D., Lopez-Soriano, J., Jehl-Pietri, C., Fredenrich, A., and Grimaldi, P.A.  2005.  Roles of PPAR delta in lipid absorption and metabolism: A new target for the treatment of type 2 diabetes.  Biochimica and Biophysica Acta 1740: 313-317.

Venezia, O., Islam, S., Cho, C., Timme-Laragy, A.R., and Sant, K.E.  2021.  Modulation of PPAR signaling disrupts pancreas development in the zebrafish, Danio rerio.  Toxicology and Applied Pharmacology 426: 115653.