This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 1251
Key Event Title
Chronic, Mucus hypersecretion
Short name
Biological Context
Level of Biological Organization |
---|
Tissue |
Organ term
Organ term |
---|
lung |
Key Event Components
Process | Object | Action |
---|---|---|
mucus secretion | lung goblet cell | increased |
Key Event Overview
AOPs Including This Key Event
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
human | Homo sapiens | Moderate | NCBI |
Life Stages
Life stage | Evidence |
---|---|
Adult | Moderate |
Sex Applicability
Term | Evidence |
---|---|
Mixed | Moderate |
Key Event Description
Mucus hypersecretion is a physiological response to inhalation exposures to pollutants or infectious agents. As such, it is typically of short duration and does not pose a major problem to normal lung function. Under chronic stress/exposure conditions, airway remodeling and mucus hypersecretion will cease being a physiological stress response aimed at eliminating the potential hazard and regaining the balance of a healthy airway epithelium, and chronic mucus hypersecretion will ensue. This is the case in many respiratory diseases that feature a chronic inflammatory micoenvironment such as chronic obstructive pulmonary disease and asthma (Evans et al., 2009; Allinson et al., 2016). Recent estimates of chronic mucus hypersecretion in the global population range from 3.5 to 27% (Kim et al. 2011; Martinez et al. 2014; Montes De Oca et al. 2012).
How It Is Measured or Detected
To our knowledge, there is no report regarding the assessment of chronic mucus hypersecretion in vitro. This is most likely related to the fact that many in vitro studies are of short duration, employing acute exposures to mucus-inducing stimuli. However, mucus hypersecretion is a feature of animal models of asthma (Shim et al., 2001; Singer et al., 2004; Song et al., 2016) and occurs in mice and rats following inhalation of e.g. acrolein and cigarette smoke (Deshmukh et al., 2008; Yang et al., 2012; Chen et al., 2013; Vlahos and Bozinovski, 2015; Liu et al., 2017). There appears to be no consensus as to the "chronicity" of mucus hypersecretion, and no standardized measure exists.
Clinically, coughing and sputum production for >3 months in at least two consecutive years is defined as (chronic) mucus hypersecretion (Vestbo, 2002). More recently, questionnaires such as the St George’s Respiratory Questionnaire (Hardin and Rennard, 2015), the COPD Assessment Test (CAT) (Stott-Miller et al., 2020) and the American Thoracic Society Questionnaire (Cassidy et al., 2015) have been employed to evaluate cough and sputum production, and hence mucus hypersecretion. At times, sputum volumes are recorded as measure of mucus production. Current clinical practice, however, does not include a quantitative measure of mucus hypersecretion.
Domain of Applicability
Mucus hypersecretion was described in mice and rats following ovalbumin challenge (Shim et al., 2001; Singer et al., 2004; Song et al., 2016) or exposure to acrolein and cigarette smoke (Deshmukh et al., 2008; Yang et al., 2012; Chen et al., 2013; Vlahos and Bozinovski, 2015; Liu et al., 2017). Chronic mucus hypersecretion is also frequently found in long-term smokers, COPD patients with chronic bronchitis and asthma patients (Danahay and Jackson, 2005).
References
Abbey, D.E., Nishino, N., and McDonnell, W.F. (1998). Development of chronic productive cough as associated with long-term ambient inhalable particulate pollutants (PM10) in nonsmoking adults: the AHSMOG study. Appl. Occup. Environ. Hyg. 13, 444-452.
Allinson, J.P., Hardy, R., Donaldson, G.C., Shaheen, S.O., Kuh, D., and Wedzicha, J.A. (2016). The presence of chronic mucus hypersecretion across adult life in relation to chronic obstructive pulmonary disease development. Am. J. Resp. Crit. Care Med. 193, 662-672.
Cassidy, R.N., Roberts, M.E., and Colby, S.M. (2015). Validation of a Respiratory Symptom Questionnaire in Adolescent Smokers. Tob. Regul. Sci. 1, 121-128.
Chen, P., Deng, Z., Wang, T., Chen, L., Li, J., Feng, Y., et al. (2013). The potential interaction of MARCKS-related peptide and diltiazem on acrolin-induced airway mucus hypersecretion in rats. Intl. Immunopharmacol. 17, 625-632.
Danahay, H., and Jackson, A.D. (2005). Epithelial mucus-hypersecretion and respiratory disease. Inflamm. Allergy Drug Targets 4, 651-664.
de Oca, M.M., Halbert, R.J., Lopez, M.V., Perez-Padilla, R., Tálamo, C., Moreno, D., et al. (2012). The chronic bronchitis phenotype in subjects with and without COPD: the PLATINO study. Eur. Respir. J. 40(1), 28-36.
Deshmukh, H.S., Shaver, C., Case, L.M., Dietsch, M., Wesselkamper, S.C., Hardie, W.D., Korfhagen, T.R., Corradi, M., Nadel, J.A., and Borchers, M.T. (2008). Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production. Am. J. Resp. Cell Mol. Biol. 38, 446-454.
Martinez, C.H., Kim, V., Chen, Y., Kazerooni, E.A., Murray, S., Criner, G.J., et al. (2014). The clinical impact of non-obstructive chronic bronchitis in current and former smokers. Respir. Med. 108, 491-499.
Regalado, J., Pérez-Padilla, R., Sansores, R., Páramo Ramirez, J.I., Brauer, M., Paré, P., et al. (2006). The effect of biomass burning on respiratory symptoms and lung function in rural Mexican women. Am. J. Resp. Crit. Care Med. 174, 901-905.
Shim, J.J., Dabbagh, K., Ueki, I.F., Dao-Pick, T., Burgel, P.R., Takeyama, K., Tam, D.C.W., and Nadel, J.A. (2001). IL-13 induces mucin production by stimulating epidermal growth factor receptors and by activating neutrophils. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L134-140.
Song, L., Tang, H., Liu, D., Song, J., Wu, Y., Qu, S., and Li, Y. (2016). The chronic and short-term effects of gefinitib on airway remodeling and inflammation in a mouse model of asthma. Cell. Physiol. Biochem. 38, 194-206.
Stott-Miller, M., Müllerová, H., Miller, B., Tabberer, M., El Baou, C., Keeley, T., et al. (2020). Defining Chronic Mucus Hypersecretion Using the CAT in the SPIROMICS Cohort. Int. J. Chron. Obstruct. Pulmon. Dis. 15, 2467.
Sunyer, J., Jarvis, D., Gotschi, T., Garcia-Esteban, R., Jacquemin, B., Aguilera, I., et al. (2006). Chronic bronchitis and urban air pollution in an international study. Occup. Environ. Med. 63, 836-843.
Vestbo, J. (2002). Epidemiological studies in mucus hypersecretion. Novartis Found. Symp. 248, 3-12; discussion: 12-19, 277-282.
Wang, H., Yang, T., Wang, T., Hao, N., Shen, Y., Wu, Y., et al. (2018). Phloretin attenuates mucus hypersecretion and airway inflammation induced by cigarette smoke. Intl. Immunopharmacol. 55, 112-119.