This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 1443
Key Event Title
Atherosclerosis
Short name
Biological Context
Level of Biological Organization |
---|
Individual |
Key Event Components
Process | Object | Action |
---|---|---|
Atherosclerosis | increased |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
Interaction with lung cells leading to atherosclerosis | AdverseOutcome | Ulla Vogel (send email) | Under development: Not open for comment. Do not cite | Under Development |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
human | Homo sapiens | High | NCBI |
Life Stages
Life stage | Evidence |
---|---|
All life stages | High |
Sex Applicability
Term | Evidence |
---|---|
Male | High |
Female | High |
Key Event Description
Atherosclerosis is defined as the thickening of the arterial wall towards the lumen. The thickening, called atherosclerotic plaques, is composed of macrophages, smooth muscle cells, lymphocytes, lipids (including cholesterol), and connective tissue. This thickening reduces the space in the blood vessels which is available for the blood flow (Widmaier, Raff, Strang, & Vander, 2016).
Atherosclerosis is initiated with an endothelial injury that allows the translocation of low density lipoprotein (LDL) molecules to the intima layer of the artery, where they become oxidized (oxLDL). The endothelial cells release chemokines and adhesion molecules that recruits blood monocytes to the injury site, where monocytes cross to the sub-endothelial space. Monocytes then differentiate into macrophages and take up oxLDL, thus becoming laden with lipoproteins (“foam cells”). The lipid accumulation and foam cell formation continues over time, and the migration of smooth muscle cells from the media layer to the intima space helps establishing an atherosclerotic plaque with the release extracellular matrix molecules (Libby et al., 2019).
How It Is Measured or Detected
Current in vitro models have been used to evaluate different parts of the atherosclerosis development, for example: expression of adhesion molecules, adhesion of monocytes to endothelial cells, monocytes migration and foam cell formation (Chen et al., 2021).
In animal models, the induction and/or progression of atherosclerosis after exposure to a stressor can be studied. Examples of these are the ApoE-/- and LdLr-/- mouse models and Watanabe rabbit model, where the development of atherosclerotic can be assessed (Gistera, Ketelhuth, Malin, & Hansson, 2022).
In humans, atheroscleorosis is diagnosed by clinicians. Techniques that allow direct visualization of atherosclerotic plaques include ultrasonography, computed tomography angiography, magnetic resonance imaging, and optical coherence tomography (Libby et al., 2019). These techniques can measure the intima thickness of arteries, along with detection of calcified components (Poyrazoglu, Vurdem, Arslan, & Uytun, 2016; van der Meer et al., 2004). Techniques that allow the evaluation of atherosclerosis without direct visualization of plaques include angiography, aortic pulse wave velocity and the ankle-arm systolic blood pressure index (Libby et al., 2019; Rodondi et al., 2010; van der Meer et al., 2004). Finally, nonspecific, inflammatory markers are also used to evaluate atherosclerosis. These include blood levels of interleukin 6 (IL-6), C-reactive protein and tumor necrosis factor α (TNF-α) (Rodondi et al., 2010).
Domain of Applicability
- Taxonomic applicability: Human.
- Life stages applicability: All life stages. Although atherosclerosis is mostly observed in adult humans, this condition begins early in life, and progresses through adulthood (McGill, McMahan, & Gidding, 2008; McMahan et al., 2005). Children with chronic inflammation diseases have shown to develop atherosclerosis in early childhood. (Tyrrell et al., 2010; Yamamura et al., 2014)
- Sex applicability: Unspecific, atherosclerosis is manifested in males and females (Libby, 2021).
Regulatory Significance of the Adverse Outcome
Atherosclerosis is the principal cause of cardiovascular diseases including myocardial infarction, stroke and angina pectoris (Frostegard, 2013; Jebari-Benslaiman et al., 2022; Libby et al., 2019). In turn, cardiovascular diseases are the principal cause of deaths worldwide and measures have been made by many countries to control risk factors and prevent this disease (Vaduganathan, Mensah, Turco, Fuster, & Roth, 2022). It is pertinent to remark that ambient (outdoor) and indoor particulate matter are risk factors for cardiovascular and the World Health Organization (WHO) has estimated that 6.7 million annual premature deaths are associated with these risk factors (Vaduganathan et al., 2022; WHO, 2023).
References
Chen, J., Zhang, X., Millican, R., Lynd, T., Gangasani, M., Malhotra, S., . . . Jun, H. W. (2021). Recent Progress in in vitro Models for Atherosclerosis Studies. Front Cardiovasc Med, 8, 790529. doi:10.3389/fcvm.2021.790529
Frostegard, J. (2013). Immunity, atherosclerosis and cardiovascular disease. BMC Med, 11, 117. doi:10.1186/1741-7015-11-117
Gistera, A., Ketelhuth, D. F. J., Malin, S. G., & Hansson, G. K. (2022). Animal Models of Atherosclerosis-Supportive Notes and Tricks of the Trade. Circ Res, 130(12), 1869-1887. doi:10.1161/CIRCRESAHA.122.320263
Jebari-Benslaiman, S., Galicia-Garcia, U., Larrea-Sebal, A., Olaetxea, J. R., Alloza, I., Vandenbroeck, K., . . . Martin, C. (2022). Pathophysiology of Atherosclerosis. Int J Mol Sci, 23(6). doi:10.3390/ijms23063346
Libby, P. (2021). The changing landscape of atherosclerosis. Nature, 592(7855), 524-533. doi:10.1038/s41586-021-03392-8
Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., . . . Lewis, E. F. (2019). Atherosclerosis. Nat Rev Dis Primers, 5(1), 56. doi:10.1038/s41572-019-0106-z
McGill, H. C., Jr., McMahan, C. A., & Gidding, S. S. (2008). Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation, 117(9), 1216-1227. doi:10.1161/CIRCULATIONAHA.107.717033
McMahan, C. A., Gidding, S. S., Fayad, Z. A., Zieske, A. W., Malcom, G. T., Tracy, R. E., . . . McGill, H. C., Jr. (2005). Risk scores predict atherosclerotic lesions in young people. Arch Intern Med, 165(8), 883-890. doi:10.1001/archinte.165.8.883
Poyrazoglu, H. G., Vurdem, U. E., Arslan, A., & Uytun, S. (2016). Evaluation of carotid intima-media thickness in children with migraine: a marker of subclinical atherosclerosis. Neurol Sci, 37(10), 1663-1669. doi:10.1007/s10072-016-2648-0
Rodondi, N., Marques-Vidal, P., Butler, J., Sutton-Tyrrell, K., Cornuz, J., Satterfield, S., . . . Body Composition, S. (2010). Markers of atherosclerosis and inflammation for prediction of coronary heart disease in older adults. Am J Epidemiol, 171(5), 540-549. doi:10.1093/aje/kwp428
Tyrrell, P. N., Beyene, J., Feldman, B. M., McCrindle, B. W., Silverman, E. D., & Bradley, T. J. (2010). Rheumatic disease and carotid intima-media thickness: a systematic review and meta-analysis. Arterioscler Thromb Vasc Biol, 30(5), 1014-1026. doi:10.1161/ATVBAHA.109.198424
Vaduganathan, M., Mensah, G. A., Turco, J. V., Fuster, V., & Roth, G. A. (2022). The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J Am Coll Cardiol, 80(25), 2361-2371. doi:10.1016/j.jacc.2022.11.005
van der Meer, I. M., Bots, M. L., Hofman, A., del Sol, A. I., van der Kuip, D. A., & Witteman, J. C. (2004). Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation, 109(9), 1089-1094. doi:10.1161/01.CIR.0000120708.59903.1B
WHO. (2023). Ambient air pollution. Retrieved from https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
Widmaier, E. P., Raff, H., Strang, K. T., & Vander, A. J. (2016). Vander's human physiology : the mechanisms of body function (Fourteenth edition. ed.). New York, NY: McGraw-Hill.
Yamamura, K., Takada, H., Uike, K., Nakashima, Y., Hirata, Y., Nagata, H., . . . Hara, T. (2014). Early progression of atherosclerosis in children with chronic infantile neurological cutaneous and articular syndrome. Rheumatology (Oxford), 53(10), 1783-1787. doi:10.1093/rheumatology/keu180