This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 1506
Key Event Title
Testicular atrophy
Short name
Biological Context
Level of Biological Organization |
---|
Organ |
Organ term
Organ term |
---|
testis |
Key Event Components
Process | Object | Action |
---|---|---|
Testicular atrophy | Testis | increased |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
Histone deacetylase inhibition leading to testicular atrophy | AdverseOutcome | Shihori Tanabe (send email) | Open for citation & comment | WPHA/WNT Endorsed |
Taxonomic Applicability
Life Stages
Life stage | Evidence |
---|---|
Adult, reproductively mature | Moderate |
Sex Applicability
Term | Evidence |
---|---|
Male | High |
Key Event Description
It is hypothesized that the testicular effects of 1,6-dimethoxyhexane (DMH) are caused by its metabolism to methoxyacetic acid (MAA) [Wade et al., 2006; Poon et al., 2004]. MAA produces testicular and thymic atrophy such as the decrease in size [Miller et al., 1982; Moss et al., 1985]. The spermatogenic stages in which the toxicity of MAA is induced are on the patchytene spermatocytes immediately before and during meiotic division, which are Stages XII-XIV of the cycle in the rat and the early pachytene spermatocytes at stages I-IV of the cycle. Dead germ cells can be seen as soon as 12 hours after the treatment of MAA [Casarett & Doull’s, 7th edition].
How It Is Measured or Detected
- Testicular atrophy can be assessed by testicular volume measurement using an orchidometer, rulers, calipers, and ultrasonography or by testis weighing and histopathologic examination.
- The testis weight is measured to detect testicular atrophy [Foster et al., 1983].
- The urinary zinc excretion and testicular zinc content are examined since zinc concentration has been shown to play an important role in the production of testicular injury [Foster et al., 1983].
- The testicular tissue structure is observed whether there are normal germinal epithelial cells and Leydig cells [Mercantepe et al., 2018]. The testis is fixed for observations by light microscopy or transmission electron microscopy [McDowell and Trump, 1976; Mercantepe et al., 2018].
- Changes in sperm are measured by computer-assisted sperm analysis [Foote et al., 1995].
- For the assessment of sperm morphology, eosin-stained sperm collected from the cauda epididymis is observed. At least 200 sperm on each slide were examined for the proportion of sperm with abnormal head (overhooked, blunt hook, banana-shaped, amorphous, or extremely oversized) or tail (twisted, bent, corkscrew, double/multiple) [Wade et al., 2006].
- For the measurement of the total number of condensed spermatids per testis, a weighed portion of the parenchyma from the left testis was homogenized [Wade et al., 2006]. Sperm or homogenization-resistant spermatid nuclei densities were calculated from the average number of nuclei and were expressed as total or as per gram of epididymis or testis weight [Wade et al., 2006].
- For the determination of total LDH and LDH-X in the supernatant of the homogenized testis fragment, enzyme activity was measured by monitoring the extinction of NAD absorbance [Wade et al., 2006].
Domain of Applicability
- The decrease in testis weight associated with testicular cell damage was induced by ethylene glycol monomethyl ether (EGME) or MAA treatment in rats (Rattus norvegicus) [Foster et al., 1983].
- The number of spermatocytes, principally pachytene cells, is decreased by EGME treatment in CD-1 mice (Mus musculus) and CD rats (Rattus norvegicus) [Anderson et al., 1987].
- The testicular lesions induced by 2-methoxyethanol (or EGME) were observed in rats (Rattus norvegicus) and guinea pigs (Cavia porcellus), which are different in onset, characteristics, and severity [Ku et al., 1984].
- Spermatogenesis was disrupted by EGME treatment in rabbits (Oryctolagus cuniculus) [Foote et al., 1995].
- Testicular toxicity such as spermatocyte death in seminiferous tubule stages I-IV and stages XII-XIV was induced by dimethoxyhexane (DMH) treatment in Sprague-Dawley rats (Rattus norvegicus) [Wade et al., 2006].
Regulatory Significance of the Adverse Outcome
The testicular atrophy assessment is important for assessing the side effects of the medicines such as anti-cancer drugs, as well as the hazard and risk of chemicals. The testicular atrophy including a decrease in testis weight and sperm count, fertility, decrease in morphology and function of the sperm, can become one of the main endpoints as the adverse effects of the therapeutics. The unexpected effects of the therapeutics may be predicted with this Adverse Outcome (AO). In terms of chemical risk assessment, the AO may be related to the health effects caused by the usage of pesticides or biocides.
References
Anderson, D. et al. (1987), "Effect of ethylene glycol monomethyl ether on spermatogenesis, dominant lethality, and F1 abnormalities in the rat and the mouse after treatment of F0 males", Teratog Carcinog Mutagen 7:141-158
Casarett & Doull’s Toxicology, the Basic Science of Poisons, 7th Edition, Edited by Curtis D. Klaassen, Chapter 20 Toxic responses of the reproductive system
Foote, R.H. et al. (1995), "Ethylene glycol monomethyl ether effects on health and reproduction in male rabbits", Reprod Toxicol 9:527-539
Foster, P.M. et al. (1983), "Testicular toxicity of ethylene glycol monomethyl and monoethyl ethers in the rats", Toxicol Appl Pharmacol 69:385-399
Ku, W.W. et al. (1994), "Comparison of the testicular effects of 2-methoxyethanol (ME) in rats and guinea pigs", Exp Mol Pathol 61:119-133
McDowell, E.M. and Trump, B.F. (1976), "Histologic fixatives suitable for diagnostic light and electron microscopy", Arch Pathol Lab Med 100:405-414
Mercantepe, T. et al. (2018), "Protective effects of amifostine, curcumin and caffeic acid phenethyl ester against cisplatin-induced testis tissue damage in rats", Exp Ther Med 15:3404-3412
Miller, R. et al. (1982), "Toxicity of methoxyacetic acid in rats", Fundam Appl Toxicol 2:158-160
Moss, E.J. et al. (1985), "The role of metabolism in 2-methoxyethanol-induced testicular toxicity", Toxicol Appl Pharmacol 79:480-489
Poon, R. et al. (2004), "Short-term oral toxicity of pentyl ether, 1,4-diethoxybutane, and 1,6-dimethoxyhexane in male rats", Toxicol Sci 77:142-150
Wade, M.G. et al. (2006), "Testicular toxicity of candidate fuel additive 1,6-dimethoxyhexane: comparison with several similar aliphatic ethers", Toxicol Sci 89:304-313