This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 1710

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Binding to estrogen receptor (ER)-α in immune cells

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Binding to estrogen receptor (ER)-α
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Molecular

Cell term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Organ term
immune system

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE.Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
Binding to ER-α leading to exacerbation of SLE MolecularInitiatingEvent Yasuharu Otsubo (send email) Under development: Not open for comment. Do not cite Under Development

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
Homo sapiens Homo sapiens High NCBI
Mus musculus Mus musculus High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
All life stages High

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Mixed

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

ERα is expressed in all vertebrates (Eick GN. 2011).  ERα was discovered in the late 1960s and was cloned and characterized in 1985 (Melissa C. 2011).  ERα is expressed in a variety of immunocompetent cells, including thymocytes, CD4+ (Th1, Th2, Th17, and Tregs) and CD8+ cells and macrophages (Melissa C. 2011, Salem ML. 2004, Robinson DP. 2014).  One study examined ERα expression in resting and activated PBMC subsets and found that ERα was expressed at higher levels in thymocytes, CD4+ T cells than B cells (Melissa C. 2011).  ERα is a nuclear hormone transcription factor that classically binds with ligand (stressors), further stabilizing dimers that subsequently bind estrogen response elements (ERE) or non-ERE to transactivate or suppress specific target genes (Parker MG. 1993, Goldstein RA. 1993, Sasson S. 1991, Brandt ME. 1997, Carolyn MK. 2001).

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

The binding affinities of E2 and BPA for ERα can be confirmed by radio receptor assay, and its dimer dissociation is measured using size exclusion chromatography (Brandt ME. 1997, Takayanagi S. 2006, OECD TG440 [in vivo] and TG455 [in vitro]).  While the binding affinities of PPT for ERα was determined by competitive radiometric binding assays by chemiluminescence (Kraichely DM. 2000, Carlson KE. 1997).

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

Since ERα expresses in the cells of a vast variety of (vertebrate) species (Maria B. 2015) and there is common functionality in the immune systems of at least humans and mice, this AOP might be applicable to many mammal species, including humans and rodents.  The estrogen receptors are composed of several domains important for hormone binding, DNA binding, dimer formation, and activation of transcription (Green S. 1986, Kumar V. 1986, Warnmark A. 2003).  Interspecies sequence identities for the entire ERα are 88.5% (human-mouse), 87.5% (human-rat), and 97.5% (mouse-rat). For the ligand binding domain (ERα-LBD) alone, the interspecies sequence identities are 95.5% (human-mouse), 95.1% (human-rat), and 99.2% (mouse-rat) (White R. 1987).

ERα is widely expressed in most tissue types including most immune cells in males and females (Couse JF. 1997, Chelsea C. 2017). The ERs’ expression patterns and functions vary in a receptor subtype, cell- and tissue-specific manner.  In the adult human, large-scale sequencing approaches show that ERα mRNA is detected in numerous human tissues, with the highest levels in the uterus, liver, ovary, muscle, mammary gland, pituitary gland, adrenal gland, spleen and heart, and at lower levels in the prostate, testis, adipose tissue, thyroid gland, lymph nodes and spleen (Fagerberg L. 2014, Sayers EW. 2012) (www.ncbi.nlm.nih.gov/UniGene).

Estrogen level is higher in women than men.  Ordinary estrogen levels in women are 20-30 pg/mL during diestrus, 100-200 pg/mL during estrus, and 5000-10000 pg/mL during pregnancy (Offner H. 2000).  Therefore, the influence of ligand binding to ERα in immune cells is expressed more strong in women than men, especially high estrogen level period.

References

List of the literature that was cited for this KE description. More help
  1. Eick GN, Thornton JW. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Molecular and cellular endocrinology. 2011; 334: 31-38.
  2. Melissa, C. and Gary, G (2011). Estrogen Receptors in Immunity and Autoimmunity. Clinical Reviews in Allergy & Immunology 40:66-73.
  3. Salem ML. (2004). Estrogen, a double-edged sword: modulation of Th1- and Th2-mediated inflammations by differential regulation of Th1/Th2 cytokine production. Current Drug Targets - Inflammation & Allergy 3(1): 97-104.
  4. Robinson DP, Hall, O. J., Nilles, T. L., Bream, J.H. and Klein, S.L. (2014). 17β-estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs. Journal of Virology 88 (9): 4711-4720.
  5. Parker MG, Arbuckle N, Dauvois S, Danielian P, White R. Structure and function of the estrogen receptor. Ann N Y Acad Sci. 1993. 684:119-26.
  6. Goldstein RA, Katzenellenbogen JA, Wolynes PG, et al. Three-dimensional model for the hormone binding domains of steroid receptors. Proc Natl Acad Sci. 1993;90 (21):9949-53.
  7. Sasson S. Equilibrium binding analysis of estrogen agonists and antagonists: relation to the activation of the estrogen receptor. Pathol Biol (Paris). 1991;39(1):59-69.
  8. Brandt ME, Vickery LE. Cooperativity and dimerization of recombinant human estrogen receptor hormone-binding domain. J Biol Chem. 1997;272(8):4843-9.
  9. Carolyn MK. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001 Jul 15; 29(14): 2905-2919.
  10. Takayanagi, S. Tokunaga, T., et al. (2006).  Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicology Letters, 167 (2):95-105.
  11. OECD Guideline for the Testing of Chemicals [Test No. 440: Uterotrophic Bioassay in Rodents]
  12. OECD Guideline for the Testing of Chemicals [Test No. 455: Performance-Based Test Guideline for Stably Transfected Transactivation In Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists]
  13. Kraichely, DM. Sun, J. Katzenellenbogen, JA. Katzenellenbogen, BS. (2000). Conformational changes and coactivator recruitment by novel ligands for estrogen receptor-α and estrogen receptor-β: correlations with biological character and distinct differences among SRC coactivator family members. Endocrinology, 141 (10):3534–3545.
  14. Carlson, KE. Choli, I. Gee, A. Katzenellenbogen, BS. Katzenellenbogen, JA. (1997) Altered Ligand Binding Properties and Enhanced Stability of a Constitutively Active Estrogen Receptor:  Evidence That an Open Pocket Conformation Is Required for Ligand Interaction. Biochemistry, 36:14897-14905.
  15. Maria, B., Ruixin, H., Chin-Yo, L., Cecilia, W., Jan-Ake, G. (2015). Estrogen receptor signaling during vertebrate development. Biochim Biophys Acta 1849: 142-151.
  16. Green S, Walter P, Chambon P, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature. 1986; 320:134-139.
  17. Kumar V, Green S, Chambon P, et al. Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. The EMBO journal. 1986; 5: 2231-2236.
  18. Warnmark A, Treuter E, Gustafsson JA, et al. Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Molecular endocrinology (Baltimore, Md). 2003; 17:1901-1909.
  19. White, R., Lees, JA., Needham, M., Ham, J. and Parker, M. (1987). Structural Organization and Expression of the Mouse Estrogen Receptor. Molecular Endocrinology 1 (10): 735-744.
  20. Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. (1997) Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalphaknockout mouse. Endocrinology 138(11):4613-4621.
  21. Fagerberg L, Hallstrom BM, Edlund K, et al. Analysis of the human tissue- specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & cellular proteomics. 2014; 13:397-406.
  22. Sayers EW, Barrett T, Federhen S, et al. Database resources of the National Center for Biotechnology Information. Nucleic acids research. 2012; 40: D13-25.
  23. Offner H, Adlard K, Zamora A, Vandenbark AA. Estrogen potentiates treatment with T-cell receptor protein of female mice with experimental encephalomyelitis. J Clin Invest. 2000;105(10):1465-72.
  24. Monroe DG, Secreto FJ, Subramaniam M, Getz BJ, Khosla S, Spelsberg TC. Estrogen receptor alpha and beta heterodimers exert unique effects on estrogen- and tamoxifen-dependent gene expression in human U2OS osteosarcoma cells. Molecular endocrinology (Baltimore, Md). 2005; 19:1555–1568.
  25. Papoutsi Z, Zhao C, Putnik M, Gustafsson JA, Dahlman-Wright K. Binding of estrogen receptor alpha/beta heterodimers to chromatin in MCF-7 cells. J Mol Endocrinol. 2009; 43:65-72.
  26. Okasha SA, Ryu S, Do Y, McKallip RJ, Nagarkatti M, Nagarkatti PS. Evidence for estradiol-induced apoptosis and dysregulated T cell maturation in the thymus. Toxicology. 2001, 163 (1):49-62.
  27. Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y.  Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor γ (ERRγ) with high constitutive activity. Toxicology Letters, 2006, 167 (2):95-105.
  28. Krishnan, AV., Stathis, P., Permuth, S. F., Tokes, L. and Feldman, D. (1993). Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132; 2279-2286.
  29. Li, J., McMurray, RW. (2006). Effects of estrogen receptor subtype-selective agonists on immune functions in ovariectomized mice. International Immunopharmacology, 6 (9):1413-1423.