API

Event: 1753

Key Event Title

?

Chronic reactive oxygen species

Short name

?

Chronic ROS

Biological Context

?

Level of Biological Organization
Molecular

Cell term

?


Organ term

?


Key Event Components

?

Process Object Action

Key Event Overview


AOPs Including This Key Event

?

AOP Name Role of event in AOP
Chronic ROS leading to human gastric cancer MolecularInitiatingEvent

Stressors

?


Taxonomic Applicability

?


Life Stages

?


Sex Applicability

?


Key Event Description

?


Site of action: The site of action for the molecular initiating event is DNA or proteins.

Reactive oxygen species (ROS) play an important role in tumorigenesis (Zhang et al., 2011).

ROS is generated through NADPH oxidases consists of p47phox and p67phox. Arsenic produces ROS (Zhang et al., 2011).

Chronic low-level increased ROS can alter the tumor microenvironment and promote cancer stem cell renewal, leading to therapeutic resistance (Gu et al., 2018).


How It Is Measured or Detected

?


・ROS in blood can be detected using superparamagnetic iron oxide nanoparticles (SPION)-based biosensor (Lee et al., 2020).

・ROS can be detected by fluorescent probes such as p-methoxy-phenol derivative (Ashoka et al., 2020).


Domain of Applicability

?


ROS is increased in human gastric cancer (Homo sapiens) (Gu et al., 2018).


Evidence for Perturbation by Stressor


Overview for Molecular Initiating Event

?



References

?


Ashoka, A. H., Ali, F., Tiwari, R., Kumari, R., Pramanik, S. K., & Das, A. (2020). Recent Advances in Fluorescent Probes for Detection of HOCl and HNO. ACS omega, 5(4), 1730-1742. doi:10.1021/acsomega.9b03420

Gu, H., Huang, T., Shen, Y., Liu, Y., Zhou, F., Jin, Y., . . . Wei, Y. (2018). Reactive Oxygen Species-Mediated Tumor Microenvironment Transformation: The Mechanism of Radioresistant Gastric Cancer. Oxidative medicine and cellular longevity, 2018, 5801209-5801209. doi:10.1155/2018/5801209

Lee, D. Y., Kang, S., Lee, Y., Kim, J. Y., Yoo, D., Jung, W., . . . Jon, S. (2020). PEGylated Bilirubin-coated Iron Oxide Nanoparticles as a Biosensor for Magnetic Relaxation Switching-based ROS Detection in Whole Blood. Theranostics, 10(5), 1997-2007. doi:10.7150/thno.39662

Zhang, Z., Wang, X., Cheng, S., Sun, L., Son, Y.-O., Yao, H., . . . Shi, X. (2011). Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/β-catenin pathway in human colorectal adenocarcinoma DLD1 cells. Toxicology and Applied Pharmacology, 256(2), 114-121. doi:https://doi.org/10.1016/j.taap.2011.07.016