This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 1789
Key Event Title
Reduction, 17beta-estradiol synthesis by the undifferentiated gonad
Short name
Biological Context
Level of Biological Organization |
---|
Cellular |
Cell term
Cell term |
---|
primordial germ cell |
Organ term
Organ term |
---|
gonad |
Key Event Components
Process | Object | Action |
---|---|---|
estrogen biosynthetic process | 17beta-estradiol | decreased |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
Aromatase inhibition leads to male-biased sex ratio via impacts on gonad differentiation | KeyEvent | Kelvin Santana Rodriguez (send email) | Under Development: Contributions and Comments Welcome | WPHA/WNT Endorsed |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
Vertebrates | Vertebrates | Moderate | NCBI |
Life Stages
Life stage | Evidence |
---|---|
Development | Moderate |
Sex Applicability
Term | Evidence |
---|---|
Unspecific | Low |
Key Event Description
Estrogens are essential for normal ovarian differentiation, growth and maintenance. When estrogens bind to estrogen receptors (ER), these then regulate the transcription of downstream estrogen-responsive genes necessary for proper gonad development (Guiguen et al. 2010; Gorelick et al. 2011). Among the different forms of estrogens, 17β-estradiol (E2) is considered the most fundamental in gonad differentiation in most vertebrates, as it is responsible for inducing and maintaining ovarian development (Bondesson et al. 2015; Li et al. 2019). Consequently, disruption of the E2 synthesis by the undifferentiated gonad has been linked to altered gonad differentiation and development in many vertebrates.
How It Is Measured or Detected
Estrogen concentrations can be measured via radioimmunoassay (e.g., US EPA 2002) or by analytical methods such as LC/MS/MS (e.g., Gravitte et al. 2021; Jalabert et al. 2021; Nouri et al. 2020). Measurement in the undifferentiated gonad would generally require extraction of tissue homogenates. This tissue mass can be very limited during primordial stages.
Domain of Applicability
Taxonomic applicability: Most of the key enzymes involved in the process of E2 biosynthesis are well conserved among vertebrates (Callard et al. 2001; Thornton et al. 2001; Eick et al. 2011; Coumailleau et al. 2015). Estrogens play a key role in embryonic development particularly during gonadogenesis for most vertebrates (Coumailleauet al., 2015; Callard et al., 2015). Therefore, it is possible that this key event is applicable to most vertebrate taxa. In contrast, this key event is not applicable to organisms that lack the necessary enzymes for estrogen synthesis such as invertebrates and plants (Jones et al. 2017).
Life stage applicability: Endogenous steroid biosynthesis generally begins shortly after birth or hatch.
Sex applicability: This key event applies to the undifferentiated gonad. Therefore, sex is non-specific.
References
Bondesson, M., Hao, R., Lin, C. Y., Williams, C., & Gustafsson, J. Å. (2015). Estrogen receptor signaling during vertebrate development. Biochimica et biophysica acta, 1849(2), 142–151.
Callard, G. V., Tarrant, A. M., Novillo, A., Yacci, P., Ciaccia, L., Vajda, S., Chuang, G. Y., Kozakov, D., Greytak, S. R., Sawyer, S., Hoover, C., & Cotter, K. A. (2011). Evolutionary origins of the estrogen signaling system: insights from amphioxus. The Journal of steroid biochemistry and molecular biology, 127(3-5), 176–188.
Cheshenko, K., Pakdel, F., Segner, H., Kah, O., & Eggen, R. I. (2008). Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. General and comparative endocrinology, 155(1), 31–62.
Coumailleau, P., Pellegrini, E., Adrio, F., Diotel, N., Cano-Nicolau, J., Nasri, A., Vaillant, C., & Kah, O. (2015). Aromatase, estrogen receptors and brain development in fish and amphibians. Biochimica et biophysica acta, 1849(2), 152–162.
Eick, G. N., & Thornton, J. W. (2011). Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Molecular and cellular endocrinology, 334(1-2), 31–38.
Gorelick, D. A., & Halpern, M. E. (2011). Visualization of estrogen receptor transcriptional activation in zebrafish. Endocrinology, 152(7), 2690–2703. https://doi.org/10.1210/en.2010-1257
Gravitte A, Archibald T, Cobble A, Kennard B, Brown S. Liquid chromatography-mass spectrometry applications for quantification of endogenous sex hormones. Biomed Chromatogr. 2021 Jan;35(1):e5036. doi: 10.1002/bmc.5036.
Guiguen, Y., Fostier, A., Piferrer, F., & Chang, C. F. (2010). Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. General and comparative endocrinology, 165(3), 352–366.
Jalabert C, Ma C, Soma KK. Profiling of systemic and brain steroids in male songbirds: Seasonal changes in neurosteroids. J Neuroendocrinol. 2021 Jan;33(1):e12922. doi: 10.1111/jne.12922.
Jones, B. L., Walker, C., Azizi, B., Tolbert, L., Williams, L. D., & Snell, T. W. (2017). Conservation of estrogen receptor function in invertebrate reproduction. BMC evolutionary biology, 17(1), 65.
Li, M., Sun, L., & Wang, D. (2019). Roles of estrogens in fish sexual plasticity and sex differentiation. General and comparative endocrinology, 277, 9–16. https://doi.org/10.1016/j.ygcen.2018.11.015
Nouri MZ, Kroll KJ, Webb M, Denslow ND. Quantification of steroid hormones in low volume plasma and tissue homogenates of fish using LC-MS/MS. Gen Comp Endocrinol. 2020 Sep 15;296:113543. doi: 10.1016/j.ygcen.2020.113543.
Ruksana, S., Pandit, N. P., & Nakamura, M. (2010). Efficacy of exemestane, a new generation of aromatase inhibitor, on sex differentiation in a gonochoristic fish. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 152(1), 69–74.
Schroeder, A. L., Ankley, G. T., Habib, T., Garcia-Reyero, N., Escalon, B. L., Jensen, K. M., Kahl, M. D., Durhan, E. J., Makynen, E. A., Cavallin, J. E., Martinovic-Weigelt, D., Perkins, E. J., & Villeneuve, D. L. (2017). Rapid effects of the aromatase inhibitor fadrozole on steroid production and gene expression in the ovary of female fathead minnows (Pimephales promelas). General and comparative endocrinology, 252, 79–87.
Thornton J. W. (2001). Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proceedings of the National Academy of Sciences of the United States of America, 98(10), 5671–5676.
US EPA. 2002. A Short-term test method for assessing the reproductive toxicity of endocrine-disrupting chemicals using the Fathead Minnow (Pimephales promelas). EPA/600/R-01/067. Appendix C.
Warner, D. A., Addis, E., Du, W. G., Wibbels, T., & Janzen, F. J. (2014). Exogenous application of estradiol to eggs unexpectedly induces male development in two turtle species with temperature-dependent sex determination. General and comparative endocrinology, 206, 16–23.
Yin, Y., Tang, H., Liu, Y., Chen, Y., Li, G., Liu, X., & Lin, H. (2017). Targeted Disruption of Aromatase Reveals Dual Functions of cyp19a1a During Sex Differentiation in Zebrafish. Endocrinology, 158(9), 3030–3041.