This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 1890

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Decrease (loss of) fetal male germ cells

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Germ cell loss, male
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Cellular

Cell term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE.Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
Ectopic ATRA in fetal testis leads to reduced sperm count KeyEvent Terje Svingen (send email) Under development: Not open for comment. Do not cite

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
human, mouse, rat human, mouse, rat Moderate NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
Fetal High

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Male High

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

Male germ cell apoptosis in the fetal testis

In the fetal testis, apoptosis of XY germ cells (pro-spermatogonia) takes place early during gonad differentiation (Coucouvanis et al, 1993; Nguyen et al, 2020; Rucker 3rd et al, 2000; Wang et al, 1998) and is required to adjust overall germ cell numbers to Sertoli cells within the testis cords (Aitken et al, 2011). Later in development, spermatogonia that have been damaged by, for instance by chemical exposures, are also eliminated by apoptosis (Aitken et al, 2011; Wang et al, 2007). Hence, the process of germ cell apoptosis in integral to reproductive development and a failure to eliminate damaged and excess spermatogonia can result in sterility (Knudson et al, 1995; Rodriguez et al, 1997).  Nonetheless, it stands to reason that abnormally high levels of apoptosis during fetal life will result in a smaller spermatogonial stem cell pool, and that this will likely result in diminished reproductive potential (Aitken et al, 2011).

Fetal germ cell loss as Key Event

Although it is normal that a large number of pro-spermatogonia are eliminated by apoptosis during development, excessive loss during the prenatal period would be expected to have a direct consequence for fertility later in life. If all or the majority of pro-spermatogoia are lost, the spermatogonial stem cell pool will be either depleted and/or be of lower quality, and therefore the efficiency of spermatogenesis in the adult testis will be compromised. Hence, loss of germ cells during fetal life, in excess of what is normally ‘programmed’, would be expected to negatively impact adult fertility. It is relevant that spermatogenesis is relatively robust in rodents, compared with humans; in the latter, the number of sperm per ejaculate is only 2 – 4 fold higher than the number at which fertility is significantly reduced (Rahban & Nef, 2020; Working, 1988).

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

Apoptosis is most routinely detected by DNA ladder assay, TUNEL assay or Comet assay (Majtnerová & Roušar, 2018).

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which detects apoptotic DNA fragmentations (Gorczyca et al, 1992) is available commercially from numerous companies using various staining technologies.

DNA laddering can be used to measure apoptosis at later stages only and is used to detect apoptosis of many cells, as it involves separation of DNA by agarose gel electrophoresis (Gong et al, 1994)

Comet assay, or single cell gel electrophoresis assay, can detect DNA damage at single-cell resolution (Singh et al, 1988). The alkaline Comet Assay is part of OECD Test Guideline 489 (OECD, 2016).

Direct measurements of total germ cell number in animal models can be performed with using various probes and antibodies to germ cell markers that are commercially available and reporter assays using germ cell specific promoter elements driving expression of reporter proteins. These reporter assays can detect the presence of germ cells in a quantitative manner. Examples include reporter mouse line OG2 (Szabó et al, 2002).

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

Fetal male germ cells must enter cell cycle quiescence during fetal life (McLaren, 2001). This process is conserved between mice, rats and humans (Francavilla et al, 1990)

References

List of the literature that was cited for this KE description. More help

Aitken RJ, Findlay JK, Hutt KJ, Kerr JB (2011) Apoptosis in the germ line. Reproduction 141: 139-150

Coucouvanis EC, Sherwood SW, Carswell-Crumpton C, Spack EG, Jones PP (1993) Evidence that the mechanism of prenatal germ cell death in the mouse is apoptosis. Exp Cell Res 209: 238-247

Cupp AS, Dufour JM, Kim G, Skinner MK, Kim KH (1999) Action of retinoids on embryonic and early postnatal testis development. Endocrinology 140: 2343-2352

Francavilla S, Cordeschi G, Properzi G, Concordia N, Cappa F, Pozzi V (1990) Ultrastructure of fetal human gonad before sexual differentiation and during early testicular and ovarian development. J Submicrosc Cytol Pathol 22: 389-400

Gong J, Traganos F, Darzynkiewicz Z (1994) A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem 218: 314-319

Gorczyca W, Bruno S, Darzynkiewicz R, Gong J, Darzynkiewicz Z (1992) DNA strand breaks occurring during apoptosis - their early insitu detection by the terminal deoxynucleotidyl transferase and nick translation assays and prevention by serine protease inhibitors. Int J Oncol 1: 639-648

Jørgensen A, Nielsen JE, Perlman S, Lundvall L, Mitchell RT, Juul A, Rajpert-De Meyts E (2015) Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development. Hum Reprod 30: 2351-2363

Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96-99

Livera G, Rouiller-Fabre V, Durand P, Habert R (2000) Multiple effects of retinoids on the development of Sertoli, germ, and Leydig cells of fetal and neonatal rat testis in culture. Biol Reprod 62: 1303-1314

MacLean G, Li H, Metzger D, Chambon P, Petkovich M (2007) Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology 148: 4560-4567

Majtnerová P, Roušar T (2018) An overview of apoptosis assays detecting DNA fragmentation. Mol Biol Rep 45: 1469-1478

Marinos E, Kulukussa M, Zotos A, Kittas C (1995) Retinoic acid affects basement membrane formation of the seminiferous cords in 14-day male rat gonads in vitro. Differentiation 59: 87-94

McLaren A (2001) Mammalian germ cells: birth, sex, and immortality. Cell Struct Funct 26: 119-122

Nguyen DH, Soygur B, Peng SP, Malki S, Hu G, Laird DJ (2020) Apoptosis in the fetal testis eliminates developmentally defective germ cell clones. Nat Cell Biol 22: 1423-1435

OECD. (2016) Test No. 489: In Vivo Mammalian Alkaline Comet Assay. OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing, Paris.

Rahban R, Nef S (2020) Regional difference in semen quality of young men: a review on the implication of environmental and lifestyle factors during fetal life and adulthood. Basic Clin Androl 30: 16

Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P (1997) An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J 16: 2262-2270

Rucker 3rd EB, Dierisseau P, Wagner KU, Garrett L, Wynshaw-Boris A, Flaws JA, Hennighausen L (2000) Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol Endocrinol 14: 1038-1052

Ryu JY, Whang J, Park H, Im JY, Kim J, Ahn MY, Lee J, Kim HS, Lee BM, Yoo SD, Kwack SJ, Oh JH, Park KL, Han SY, Kim SH (2007) Di(2-ethylhexyl) phthalate induces apoptosis through peroxisome proliferators-activated receptor-gamma and ERK 1/2 activation in testis of Sprague-Dawley rats. J Toxicol Environ Health A 70: 1296-1303

Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191

Szabó PE, Hübner K, Schöler H, Mann JR (2002) Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech Dev 115: 157-160

Trautmann E, Guerquin MJ, Duquenne C, Lahaye JB, Habert R, Livera G (2008) Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell Cycle 7: 656-664

Wang C, Cui YG, Wang XH, Jia Y, Hikim AS, Lue YH, Tong JS, Qian LX, Sha JH, Zhou ZM, Hull L, Leung A, Swerdloff RS (2007) transient scrotal hyperthermia and levonorgestrel enhance testosterone-induced spermatogenesis suppression in men through increased germ cell apoptosis. J Clin Endocrinol Metab 92: 3292-3304

Wang RA, Nakane PK, Koji T (1998) Autonomous cell death of mouse male germ cells during fetal and postnatal period. Biol Reprod 58: 1250-1256

Working PK (1988) Male reproductive toxicology: comparison of the human to animal models. Environ Health Perspect 77: 37-44