This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 1902
Key Event Title
Repression of Gbx2 expression
Short name
Biological Context
Level of Biological Organization |
---|
Molecular |
Cell term
Organ term
Key Event Components
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
GSK3beta inactivation leads to increased mortality | KeyEvent | Vid Modic (send email) | Open for citation & comment |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
zebrafish | Danio rerio | High | NCBI |
Life Stages
Life stage | Evidence |
---|---|
Embryo | High |
Sex Applicability
Term | Evidence |
---|---|
Unspecific | High |
Key Event Description
During vertebrate brain development, the gastrulation brain homeobox 2 gene (gbx2) is expressed in the forebrain (Z. Wang et al., 2018). The genes encoding the Gbx-type homeodomain transcription factors have been identified in a variety of vertebrates, and are primarily implicated in the regulation of various aspects of vertebrate brain development (Nakayama et al., 2017). Gbx2 exhibits DNA-binding transcription factor activity, RNA polymerase II-specific. Involved in cerebellum development; iridophore differentiation; and telencephalon regionalization. Predicted to localize to nucleus. Is expressed in several structures, including midbrain hindbrain boundary neural keel; midbrain hindbrain boundary neural rod; midbrain neural rod; nervous system; and presumptive rhombomere 1. Orthologous to human GBX2 (gastrulation brain homeobox 2) (ZFIN Gene: Gbx2, n.d.). Gbx2 is one of the key downstream markers of FGF and WNT signaling (Wang et al., 2018), representative marker of anteroposterior (AP) axis patterning and midbrain specification (Kim et al., 2018).
How It Is Measured or Detected
Repression of expression can be measured with reverse transcription polymerase chain reaction (RT-PCR). This technique is primarily used to measure the amount of specific RNA which is achieved by monitoring the amplification reaction using fluorescence, a technique called real-time PCR or quantitative PCR (qPCR) (Wong & Medrano, 2005). Combined RT-PCR and qPCR are routinely used for analysis of gene expression. Measuring changes in Gbx2 expression are described in detail in (Rhinn et al., 2003; Nakayama et al., 2017; Wang et al., 2018).
Domain of Applicability
The gastrulation brain homebox (Gbx) group of transcription factor genes, composed of two genes, gbx1 and gbx2, in vertebrates, is also present in invertebrates (Chiang et al., 1995), and can be regarded as widely conserved among animals (Wang et al., 2018). Gbx2 functions in a variety of developmental processes after midbrain-hindbrain boundary (MHB) establishment. (Burroughs-Garcia et al., 2011) data demonstrate that the role of gbx2 in anterior hindbrain development is functionally conserved between zebrafish and mice. This gene was shown to be required for neural crest (NC) formation in mice (B. Li et al., 2009; Roeseler et al., 2012). In Xenopus gbx2 is the earliest factor for specifying neural crest (NC) cells, and that gbx2 is directly regulated by NC inducing signaling pathways, such as Wnt/β-catenin signaling (Li et al., 2009).
References
Chiang, C., Young, K. E., & Beachy, P. A. (1995). Control of Drosophila tracheal branching by the novel homeodomain gene unplugged, a regulatory target for genes of the bithorax complex. Development, 121(11), 3901–3912.
Li, B., Kuriyama, S., Moreno, M., & Mayor, R. (2009). The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction. Development, 136(19), 3267–3278. https://doi.org/10.1242/dev.036954
Luu, B., Ellisor, D., & Zervas, M. (2011). The Lineage Contribution and Role of Gbx2 in Spinal Cord Development. PLoS ONE, 6. https://doi.org/10.1371/journal.pone.0020940
Nakayama, Y., Inomata, C., Yuikawa, T., Tsuda, S., & Yamasu, K. (2017). Comprehensive analysis of target genes in zebrafish embryos reveals gbx2 involvement in neurogenesis. Developmental Biology, 430(1), 237–248. https://doi.org/10.1016/j.ydbio.2017.07.015
Rhinn, M. et al. (2003) ‘Cloning, expression and relationship of zebrafish gbx1 and gbx2 genes to Fgf signaling’, Mechanisms of Development, 120(8), pp. 919–936. doi: 10.1016/S0925-4773(03)00135-7.
Roeseler, D. A., Sachdev, S., Buckley, D. M., Joshi, T., & Wu, D. K. (2012). Elongation Factor 1 alpha1 and Genes Associated with Usher Syndromes Are Downstream Targets of GBX2. PLoS ONE, 7(11), 47366. https://doi.org/10.1371/journal.pone.0047366
Wang, Z., Nakayama, Y., Tsuda, S., & Yamasu, K. (2018). The role of gastrulation brain homeobox 2 (gbx2) in the development of the ventral telencephalon in zebrafish embryos. Differentiation, 99(December 2017), 28–40. https://doi.org/10.1016/j.diff.2017.12.005
ZFIN Gene: gbx2. (n.d.). Retrieved April 12, 2021, from https://zfin.org/ZDB-GENE-020509-2