To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KE:2098
Event: 2098
Key Event Title
Increase, Neural Remodeling
Short name
Biological Context
Level of Biological Organization |
---|
Tissue |
Organ term
Key Event Components
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
Deposition of Energy Leading to Learning and Memory Impairment | KeyEvent | Vinita Chauhan (send email) | Under development: Not open for comment. Do not cite |
Taxonomic Applicability
Life Stages
Life stage | Evidence |
---|---|
Juvenile | Low |
Adult | Moderate |
Sex Applicability
Term | Evidence |
---|---|
Male | Moderate |
Female | Low |
Unspecific | Low |
Key Event Description
(Adapted from KE: 618)
Neural remodeling describes abnormal changes in structure and function of the central nervous system (CNS), which occur in the presence of a neuronal input (Chakraborti et al., 2012). However, these connections can also be altered by stressors and stimuli. The neuron is comprised of the cell body, dendrites, axon, and axon terminals (Lodish et al., 2000). Dendritic spines exist in many shapes and sizes, categorized as thin, mushroom, or stubby types (Harris & Stevens, 1989). The presence of immature dendritic spine morphologies and changes in dendritic spine density and structure, including decreases in dendritic branch points, length, and area, are correlated with changes in excitatory synaptic transmission strength (Jandial et al., 2018; Auffret et al., 2009). Dendritic protein synthesis is required for many types of long-term synaptic plasticity (Sutton & Schuman 2006). Changes to the levels of protein synthesis greatly affects neuronal communication. The CNS architecture is also affected by decreases in neurogenesis and increases in neurodegeneration, as dendritic complexity decreases. These events provoke changes in synaptic plasticity and action potential, ultimately leading to the disruption of neuronal signalling (Cekanaviciute et al., 2018).
How It Is Measured or Detected
Method of Measurement |
References |
Description |
OECD-Approved Assay |
MRI Scan |
Jiang et al., 2014 |
Magnetic resonance imaging (MRI) is an imaging technique used to visualize organs and tissues in the body. MRI can be used to view demyelination. |
No |
Fluoro-Jade stain |
Schmued and Hopkins, 2000 |
Detects and labels degenerating neurons. |
No |
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) Assay – colorimetric assay used to assess cell metabolic activity based on the reduction of (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. |
Riss et al., 2004 |
Cell viability and proliferation assays can be used to measure increased levels of neurodegeneration or decreased levels of neurogenesis. |
Yes |
Bromodeoxyuridine (BrdU) labeling |
Vallieres et al., 2002 |
Staining method used to identify proliferating cells and measures neurogenesis. |
No |
SYNPLA |
Dore et al., 2020 |
Synaptic proximity ligation assay (SYNPLA) is a technique that detects learning-induced synaptic plasticity. |
No |
ELISA |
Falsig et al., 2003; Lund et al., 2006; Monnet-Tschudi et al., 2011 |
The enzyme-linked immunosorbent assay (ELISA) is a technique that detects and quantifies levels of macromolecules such as peptides, proteins, antibodies, and hormones. It can be used to detect specific molecules in neurons that represent loss in integrity such as PSD-95, synapsin 1 or drebrin. |
No |
Immunoassay/microscopy |
Falsig et al., 2003; Lund et al., 2006; Monnet-Tschudi et al., 2011 |
Various methods that use the specificity of antigen-antibody binding for detection and quantification of target molecules such as PSD-95, synpasin 1, Ki-67 and drebrin. |
No |
Western Blot |
Yang and Mahmood, 2012 |
Protein identification from a complex mixture after size separation, transfer to solid support and marking target protein. Specific markers include PSD-95, synpasin 1, Ki-67 and drebrin. |
No |
Golgi-Cox Method |
Zaqout and Kaindl, 2016 |
Visualizes neuronal morphology in vivo. |
No |
Whole-cell electrophysiology |
Hill and Stephens, 2021 |
Measures intracellular electrical properties by visualizing ionic currents. |
No |
Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay |
Kressel and Groscurth, 1994 |
Apoptosis is detected with the TUNEL method to assay the endonuclease cleavage products by enzymatically end-labeling the DNA strand breaks. |
Yes |
Domain of Applicability
Taxonomic applicability: The ability to process complex spatiotemporal information through neuronal networking is a fundamental process underlying the behavior of all higher organisms. The most studied are the neuronal networks of vertebrates such as rodents (Cekanaviciute et al., 2018) and primates (Wang and Arnsten, 2015). https://pubmed.ncbi.nlm.nih.gov/26876924/Invertebrates hold neural circuitries in various degrees of complexity and there are studies describing how neurons are organized into functional networks to generate behaviour (Wong and Wong, 2004; Marder, 1994).
Life stage applicability: This key event is applicable to all life stages, most evidence is derived from studies in adults (Cekanaviciute et al., 2018; Hladik & Tapio, 2016).
Sex applicability: This key event is not sex specific (Hladik & Tapio, 2016).
Evidence for perturbation by a prototypic stressor: Current literature provides ample evidence of neural remodeling being induced by stressors including ionizing radiation (Allen et al., 2015; Cekanaviciute et al., 2018; J. R. Fike et al., 1984; John R. Fike et al., 1988; Hladik & Tapio, 2016; Kiffer et al., 2020; Mizumatsu et al., 2003; Okamoto et al., 2009; Vipan K. Parihar et al., 2016; Vipan K. Parihar; Rola et al., 2005; Tiller-Borcich et al., 1987).
References
Allen, A. R. et al. (2015), "56Fe Irradiation Alters Spine Density and Dendritic Complexity in the Mouse Hippocampus", Radiation Research, Vol. 184/6, BioOne, Washington, https://doi.org/10.1667/RR14103.1.
Alvarez, M. L. and S. C. Doné. (2014), "SYBR® Green and TaqMan® Quantitative PCR Arrays: Expression Profile of Genes Relevant to a Pathway or a Disease State" (pp. 321–359), Springer Nature, Berlin, https://doi.org/10.1007/978-1-4939-1062-5_27.
Auffret, A. et al. (2009), "Age-Dependent Impairment of Spine Morphology and Synaptic Plasticity in Hippocampal CA1 Neurons of a Presenilin 1 Transgenic Mouse Model of Alzheimer’s Disease", Journal of Neuroscience, Vol. 29/32, Society for Neuroscience, Washington, https://doi.org/10.1523/JNEUROSCI.1856-09.2009.
Cekanaviciute, E., S. Rosi and S. V. Costes. (2018), "Central nervous system responses to simulated galactic cosmic rays", International Journal of Molecular Sciences, Vol. 19/11, Multi-Disciplinary Digital Publishing Institute, Basel, https://doi.org/10.3390/ijms19113669.
Chakraborti, A. et al. (2012), "Cranial Irradiation Alters Dendritic Spine Density and Morphology in the Hippocampus", (P.J. Tofilon, Ed.) PLoS ONE, Vol. 7/7, Public Library of Science, San Francisco, https://doi.org/10.1371/journal.pone.0040844.
Dore, K. et al. (2020), "SYNPLA, a method to identify synapses displaying plasticity after learning", Proceedings of the National Academy of Sciences, Vol. 117/6, Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.1919911117.
Falsig, J., M. Latta and M. Leist. (2003), "Defined inflammatory states in astrocyte cultures: correlation with susceptibility towards CD95-driven apoptosis", Journal of Neurochemistry, Vol. 88/1, John Wiley & Sons, Inc., Hoboken, https://doi.org/10.1111/j.1471-4159.2004.02144.x.
Fike, J. R. et al. (1984), "Computed Tomography Analysis of the Canine Brain: Effects of Hemibrain X Irradiation", Radiation Research, Vol. 99/2, Allen Press, Lawrence, https://doi.org/10.2307/3576373.
Fike, J. R. et al. (1988), "Radiation dose response of normal brain", International Journal of Radiation Oncology, Biology, Physics, Vol. 14/1, Elsevier, Amsterdam, https://doi.org/10.1016/0360-3016(88)90052-1.
Harris, K. and J. Stevens. (1989), "Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics", The Journal of Neuroscience, Vol. 9/8, Society for Neuroscience, Washington, https://doi.org/10.1523/JNEUROSCI.09-08-02982.1989.
Hill, C. L. and G. J. Stephens. (2021), "An Introduction to Patch Clamp Recording" (pp. 1–19), https://doi.org/10.1007/978-1-0716-0818-0_1.
Hladik, D. and S. Tapio. (2016), "Effects of ionizing radiation on the mammalian brain", Mutation Research/Reviews in Mutation Research, Vol. 770, Elsevier B. b., Amsterdam, https://doi.org/10.1016/j.mrrev.2016.08.003.
Kiffer, F. et al. (2020), "Late Effects of 1H + 16O on Short-Term and Object Memory, Hippocampal Dendritic Morphology and Mutagenesis", Frontiers in Behavioral Neuroscience, Vol. 14, Frontiers Media S.A., https://doi.org/10.3389/fnbeh.2020.00096.
Kressel, M. and P. Groscurth (1994), "Distinction of apoptotic and necrotic cell death by in situ labelling of fragmented DNA", Cell and tissue research, Vol. 278/3, Nature, https://doi.org/10.1007/BF00331373.
Kukurba, K. R. and S. B. Montgomery. (2015), "RNA Sequencing and Analysis", Cold Spring Harbor Protocols, Vol. 2015/11, https://doi.org/10.1101/pdb.top084970.
Jandial, R. et al. (2018), "Space–brain: The negative effects of space exposure on the central nervous system", Surgical Neurology International, Vol. 9/1, https://doi.org/10.4103/sni.sni_250_17.
Jiang, X. et al. (2014), "A GSK-3β Inhibitor Protects Against Radiation Necrosis in Mouse Brain", International Journal of Radiation Oncology*Biology*Physics, Vol. 89/4, Elsevier, Amsterdam, https://doi.org/10.1016/j.ijrobp.2014.04.018.
Lodish, H., et al. (2000). Overview of Neuron Structure and Function. https://www.ncbi.nlm.nih.gov/books/NBK21535/
Lund, S. et al. (2006), "The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions", Journal of Neuroimmunology, Vol. 180/1–2, Elsevier, Amsterdam, https://doi.org/10.1016/j.jneuroim.2006.07.007.
Marder, E. (1994), "Invertebrate Neurobiology: Polymorphic neural networks", Current Biology, Vol. 4/8, Elsevier, Amsterdam, https://doi.org/10.1016/S0960-9822(00)00169-X.
Mizumatsu, S. et al. (2003), "Extreme sensitivity of adult neurogenesis to low doses of X-irradiation", Cancer Research, Vol. 63/14.
Monnet‐Tschudi, F. et al. (2011), "Methods to Assess Neuroinflammation", Current Protocols in Toxicology, Vol. 50/1, John Wiley & Sons, Inc., Hoboken, https://doi.org/10.1002/0471140856.tx1219s50.
Okamoto, M. et al. (2009), "Effect of radiation on the development of immature hippocampal neurons in vitro", Radiation Research, Vol. 172/6, BioOne, Washington, https://doi.org/10.1667/RR1741.1.
Parihar, V. K. et al. (2016), "Cosmic radiation exposure and persistent cognitive dysfunction", Scientific Reports, Vol. 6/June, Nature Publishing Group, Berlin, https://doi.org/10.1038/srep34774.
Parihar, V. K. et al. (2015), "What happens to your brain on the way to Mars", Science Advances, Vol. 1/4, American Association for the Advancement of Science, Washington, https://doi.org/10.1126/SCIADV.1400256.
Riss, T. L. et al. (2004), Cell Viability Assays, Assay Guidance Manual, http://www.ncbi.nlm.nih.gov/pubmed/23805433.
Rola, R. et al. (2005), "High-LET radiation induces inflammation and persistent changes in markers of hippocampal neurogenesis", Radiation Research (Volume 164, pp. 556–560), BioOne, Washington, https://doi.org/10.1667/RR3412.1.
Schmued, L. C. and K. J. Hopkins. (2000), "Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration", Brain Research, Vol. 874/2, Elsevier, Amsterdam, https://doi.org/10.1016/S0006-8993(00)02513-0.
Sutton, M. A. and E. M. Schuman. (2006), "Dendritic Protein Synthesis, Synaptic Plasticity, and Memory", Cell, Vol. 127/1, Elsevier, Amsterdam, https://doi.org/10.1016/j.cell.2006.09.014.
Tiller-Borcich, J. K. et al. (1987), "Pathology of Delayed Radiation Brain Damage: An Experimental Canine Model", Radiation Research, Vol. 110/2, Allen Press, Lawrence, https://doi.org/10.2307/3576896.
Valliéres, L. et al. (2002), "Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6", Journal of Neuroscience, Vol. 22/2, Society for Neuroscience, Washington, https://doi.org/10.1523/jneurosci.22-02-00486.2002.
Wang, M. and A. F. T. Arnsten. (2015), "Contribution of NMDA receptors to dorsolateral prefrontal cortical networks in primates", Neuroscience Bulletin, Vol. 31/2, Springer Nature, Berlin, https://doi.org/10.1007/s12264-014-1504-6.
Wong Y.H. and Wong J.T.Y. (2004), Invertebrate Neural Networks, (Y.H. Wong & J.T.Y. Wong, Eds.), S. Karger AG, https://doi.org/10.1159/isbn.978-3-318-01075-6.
Yang, P.-C. and T. Mahmood. (2012), "Western blot: Technique, theory, and trouble shooting", North American Journal of Medical Sciences, Vol. 4/9, Wolters Kluwer, Alphen aan den Rijn, https://doi.org/10.4103/1947-2714.100998.
Zaqout, S. and A. M. Kaindl. (2016), "Golgi-Cox Staining Step by Step", Frontiers in Neuroanatomy, Vol. 10, Frontiers Media, https://doi.org/10.3389/fnana.2016.00038.