To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KE:358

Event: 358

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Increase, Pericardial edema

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Increase, Pericardial edema
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Organ

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Organ term
heart

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
pericardial edema increased

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE. Clicking on the name of the AOP will bring you to the individual page for that AOP. More help

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
chicken Gallus gallus High NCBI
zebrafish Danio rerio High NCBI
fish fish High NCBI
mouse Mus musculus High NCBI
guinea pig Cavia porcellus High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
Embryo High

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Unspecific High

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

Pericardial edema is the build-up of fluid in the pericardial sac of the heart (http://www.informatics.jax.org/vocab/mp_ontology/MP:0001787).  Not to be confused with pericardial effusion which describes the accumlation of fluid in the pericardial cavity (https://en.wikipedia.org/wiki/Pericardial_effusion), rather than the intercellular tissue spaces.

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

In experimental studies, edema is often scored as present or absent rather than being measured quantitatively. The severity of the edema can be scored based on the area of the pericardial cavity, which can be estimated using CT, ultrasound or MRI equipped with imaging software. This technique has been demonstrated by Prasch et al. (2003) in zebrafish to quantify the pericardial sac area.

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

Birds (Kopt and Walker 2009), fish (Prasch et al. 2003) and mammals are susceptible to pericardial edema (Flores et al. 2014; Cawdellsmith et al. 1992).

References

List of the literature that was cited for this KE description. More help

1. Thakur, V., Fouron, J. C., Mertens, L., and Jaeggi, E. T. (2013). Diagnosis and management of fetal heart failure. Can. J Cardiol. 29(7), 759-767.

2. Prasch, A. L., Teraoka, H., Carney, S. A., Dong, W., Hiraga, T., Stegeman, J. J., Heideman, W., and Peterson, R. E. (2003). Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. Toxicol. Sci. 76(1), 138-150.

3. Kopf, P. G., and Walker, M. K. (2009). Overview of developmental heart defects by dioxins, PCBs, and pesticides. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 27(4), 276-285.

4. Flores, L.E., Hildebrandt, T.B., Kuhl, A.A., and Drews, B. (2014) Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy. Reproductive Biology and Endocrinology 12(38). DOI: 10.1186/1477-7827-12-38

5. Cawdellsmith, J., Upfold, J., Edwards, M., and Smith, M. (1992) Neural-tube and other developmental anomalies in the guinea-pig following maternal hyperthermia during early neural-tube development. Teratogenesis Carcinogenesis and Mutagenesis. 12(1): 1-9. DOI: 10.1002/tcm.1770120102