This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 64

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Reduction, Ionotropic GABA receptor chloride channel conductance

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Reduction, Ionotropic GABA receptor chloride channel conductance
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Cellular

Cell term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Cell term
neuron

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Organ term
brain

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
GABA-gated chloride ion channel activity chloride decreased

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE.Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
Blocking iGABA receptor ion channel leading to seizures KeyEvent Ping Gong (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
human Homo sapiens High NCBI
rats Rattus norvegicus High NCBI
mouse Mus musculus High NCBI
Drosophila melanogaster Drosophila melanogaster High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help

Sex Applicability

An indication of the the relevant sex for this KE. More help

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

This key event occurs at the cellular level and is characterized by a dose-dependent post-synaptic inhibition of membrane currents in iGABAR-containing cells, especially neuronal cells (Dichter and Ayala 1987; Bromfield et al. 2006), leading to the reduction of iGABAR chloride channel conductance.

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

The change in membrane conductance can be measured by determining the alteration (i.e., inhibition) in muscimol-stimulated (Banerjee et al. 1999) or GABA-induced uptake (Babot et al. 2007) of 36Cl- in cortical and cerebellar membranes or primary cerebellar granule cell cultures, prior to and after exposure to a GABA antagonist. Inglefield and Schwartz-Bloom (1998) reported a Cl--sensitive fluorescent dye-based method where to measure real-time changes in intracellular chloride concentration with UV laser scanning confocal microscopy.

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

Banerjee et al. (1999) reported functional modulation of GABAA receptors by Zn2+, pentobarbital, neuroactive steroid alphaxalone, and flunitrazepam in the cerebral cortex and cerebellum of rats undergoing status epilepticus induced by pilocarpine.

Babot et al. (2007) measured the reduction in mouse GABAA receptor function by 3 μM dieldrin using the GABA-induced 36Cl- uptake method.

Bromfield et al. (2006) reviewed evidence for GABAA receptors in human and mammalian brains, whereas Narahashi (1996) and Costa (2015) reviewed organochlorine and some pyrethroid compounds as insecticides with the target site of chloride channel.

Grolleau and Sattelle (2000) reported a complete blocking of inward current by 100 μM picrotoxin in the wild-type RDL (iGABAR) of Drosophila melanogaster.

References

List of the literature that was cited for this KE description. More help

Babot Z, Vilaro MT, Sunol C. (2007) Long-term exposure to dieldrin reduces gamma-aminobutyric acid type A and N-methyl-D-aspartate receptor function in primary cultures of mouse cerebellar granule cells. J. Neurosci. Res. 85(16), 3687-3695.

Banerjee PK, Olsen RW, Snead OC, III. (1999) Zinc inhibition of gamma-aminobutyric acid(A) receptor function is decreased in the cerebral cortex during pilocarpine-induced status epilepticus. J Pharmacol Exp Ther 1999; 291(1):361-366.

Bromfield EB, Cavazos JE, Sirven JI. (2006) Chapter 1, Basic Mechanisms Underlying Seizures and Epilepsy. In: An Introduction to Epilepsy [Internet]. West Hartford (CT): American Epilepsy Society; Available from: http://www.ncbi.nlm.nih.gov/books/NBK2510

Costa LG. (2015) The neurotoxicity of organochlorine and pyrethroid pesticides. Handb Clin Neurol. 131:135-48.

Dichter MA, Ayala GF. (1987) Cellular mechanisms of epilepsy: a status report. Science 237(4811), 157-164.

Gong P. Hong HH, Perkins EJ. (2015) Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers. Biomark. Med. 9(11):1225-39.

Grolleau F, Sattelle DB. (2000) Single channel analysis of the blocking actions of BIDN and fipronil on a Drosophila melanogaster GABA receptor (RDL) stably expressed in a Drosophila cell line. Br J Pharmacol. 130(8):1833-42.

Inglefield JR, Schwartz-Bloom RD. (1998) Optical imaging of hippocampal neurons with a chloride-sensitive dye: early effects of in vitro ischemia. J Neurochem. 70(6):2500-9.

Narahashi T. (1996). Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol. 79(1):1-14.