This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 867
Key Event Title
Decrease, Intracellular pH
Short name
Biological Context
Level of Biological Organization |
---|
Cellular |
Cell term
Cell term |
---|
eukaryotic cell |
Organ term
Key Event Components
Process | Object | Action |
---|---|---|
regulation of intracellular pH | decreased |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
pH Induced Nasal Tumors | MolecularInitiatingEvent | Undefined (send email) | Open for citation & comment | Under Review |
Taxonomic Applicability
Life Stages
Sex Applicability
Key Event Description
Cells regulate proton concentrations within a narrow range with intracellular buffers and plasma membrane-bound transportors such as the Na+/H+ antiportor, and others such as the vacuolar proton pump[1]. Increased production or reduced buffering of protons can exceed homeostatic control mechanisms and cause intracellular acidification.
How It Is Measured or Detected
Intracellular pH can be measured in vitro using membrane permeable pH sensitive dyes, [2] and in vivo using ratiometric NIR fluorescent probes[3]. pH change can be measured using pH sensitive dyes distributed to the intracellular space, as was done in liver cells and nasal tissue and oral cavity epithelia[4].
Domain of Applicability
All cells regulate intracellular pH and produce protons as a normal byproduct of metabolism.
References
- ↑ Izumi, Torigoe, Ishiguchi, Uramoto, Yoshida, Tanabe, Ise, Murakami, Yoshida, Nomoto and Kohno (2003). Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev. 29: 541-549
- ↑ Bogdanffy (2002). Vinyl acetate-induced intracellular acidification: implications for risk assessment. Toxicol Sci. 66: 320-326, Lantz, Orozco and Bogdanffy (2003). Vinyl acetate decreases intracellular pH in rat nasal epithelial cells. Toxicol Sci. 75: 423-431, Nakamoto, Wagner, Melvin and Bogdanffy (2005). Vinyl acetate induces intracellular acidification in mouse oral buccal epithelial cells. Toxicol Lett. 158: 116-121
- ↑ Li, Wang, Yang, Zhao, Yuan, Zheng and Yang (2015). Hemicyanine-based high resolution ratiometric near-infrared fluorescent probe for monitoring pH changes in vivo. Anal Chem. 87: 2495-2503
- ↑ Bogdanffy (2002). Vinyl acetate-induced intracellular acidification: implications for risk assessment. Toxicol Sci. 66: 320-326, Lantz, Orozco and Bogdanffy (2003). Vinyl acetate decreases intracellular pH in rat nasal epithelial cells. Toxicol Sci. 75: 423-431, Nakamoto, Wagner, Melvin and Bogdanffy (2005). Vinyl acetate induces intracellular acidification in mouse oral buccal epithelial cells. Toxicol Lett. 158: 116-121
- ↑ Bogdanffy (2002). Vinyl acetate-induced intracellular acidification: implications for risk assessment. Toxicol Sci. 66: 320-326
- ↑ Lantz, Orozco and Bogdanffy (2003). Vinyl acetate decreases intracellular pH in rat nasal epithelial cells. Toxicol Sci. 75: 423-431, Nakamoto, Wagner, Melvin and Bogdanffy (2005). Vinyl acetate induces intracellular acidification in mouse oral buccal epithelial cells. Toxicol Lett. 158: 116-121
- ↑ Simon, Filser and Bolt (1985). Metabolism and pharmacokinetics of vinyl acetate. Arch Toxicol. 57: 191-195, Bogdanffy and Taylor (1993). Kinetics of nasal carboxylesterase-mediated metabolism of vinyl acetate. Drug Metabolism and Disposition. 21: 1107-1111, Bogdanffy, Sarangapani, Kimbell, Frame and Plowchalk (1998). Analysis of vinyl acetate metabolism in rat and human nasal tissues by an in vitro gas uptake technique. Toxicological Sciences. 46: 235-246, Bogdanffy, Manning and Sarangapani (1999). High-affinity nasal extraction of vinyl acetate vapor is carboxylesterase dependent. Inhal Toxicol. 11: 927-941, Morris, Symanowicz and Sarangapani (2002). Regional distribution and kinetics of vinyl acetate hydrolysis in the oral cavity of the rat and mouse. Toxicol Lett. 126: 31-39