To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:1070

Relationship: 1070

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Inhibition, UROD leads to Accumulation, Highly carboxylated porphyrins

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Aryl hydrocarbon receptor activation leading to uroporphyria adjacent Moderate Moderate Amani Farhat (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
mouse Mus musculus High NCBI
rat Rattus norvegicus High NCBI
human Homo sapiens High NCBI
chicken Gallus gallus Moderate NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Unspecific Not Specified

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
Adult High

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

Through the normal heme biosynthesis pathway, uroporphyrinogen is converted to coproporphyrinogen by uroporphyrinogen decarboxylase (UROD)[1]. In the event that UROD activity is reduced (due to genetic disorders or chemical inhibition) uroporphyrinogen, and other porphyrinogen substrates of UROD, are preferentially oxidized to highly stable porphyrins by the phase one metabolizing enzyme CYP1A2 (in mammals;CYP1A5 in birds)[2][3][4] . Uroporphyrin and hepta- and hexa-carboxylic acid porphyrins (highly carboxylated porphyrins)[5] accumulate in the liver, kidneys, spleen, skin and blood leading to a heme disorder known as porphyria [6][7].

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

The WOE for this KER is strong in mammals and Moderate in birds.

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help
Hepatic uroporphyrinogen accumulation versus inhibition of uroporphyrinogen decarboxylase activity from individual mice treated with iron and HCB. Control: ○, Treated: ∆. (Source: Lambrecht, R.W. et al. (1988) Biochem. J. 253 (1), 131-138.)

It is well established that porphyrin accumulation, which is a result of uroporphyrin oxidation (UROX), and UROD inhibition go hand in hand[8]. Because CYP1A2/5 binds a broad range of substrates, significant UROX only occurs when there is an excess of uroporphyrinogen, which occurs when UROD is inhibited. Each of the four acetic acid substituents of porphyrinogen is decarboxylated in sequence with the consequent formation of hepta-, hexa-, and pentacarboxylic porphyrinogens as intermediates[9]. Oxidation of these intermediates results in their corresponding, highly stable porphyrins.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

Uroporphyrin accumulation in avian models is less consistently accompanied by decreased UROD activity, and when it does occur, it is less marked than in mammals[13][14]. Although numerous studies show both a decrease in UROD activity and porphyrin accumulation in avian species, Lambrecht et al.[14] reported the accumulation of porphyrins in chicken embryo hepatocytes and Japanese quail liver without a decrease in UROD activity. They also note that the modest reduction in UROD activity (often less than 50%) is not enough to explain the extent of porphyrin accumulation observed and suggests there may be another mechanism at play. Alternatively, the difference between avian and mammals in regard to UROD inhibition may lie in the time-course of the response rather than its mechanism[19].

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Induction of CYP1A2 increases its availability and consequently its ability to compete with UROD to oxidize uroporphyrinogen. At least one of these oxidation products is believed to be a competitive inhibitor of UROD. Therefore, UROD inhibition potentiates the oxidation of uroporphyrinogens by CYP1A2 to porphyrins leading to increased porphyrin accumulation and in turn UROD inhibition.

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

Chemical induces porphyrin accumulation has been demonstrated in, rats, mice and chicken[18][4][2]. Human porphyria cutanea tarda is also characterized biochemically by an increase in porphyrinogen oxidation leading to accumulation of porphyrins[15]. The correlation between reduced UROD activity and HCP accumulation in mammals is well defined[15][16][17] but is less consistent in avian models[14].

References

List of the literature that was cited for this KER description. More help
  1. Smith, A. G., Clothier, B., Carthew, P., Childs, N. L., Sinclair, P. R., Nebert, D. W., and Dalton, T. P. (2001) Protection of the Cyp1a2(-/-) null mouse against uroporphyria and hepatic injury following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 173 (2), 89-98.
  2. 2.0 2.1 Jacobs, J. M., Sinclair, P. R., Bement, W. J., Lambrecht, R. W., Sinclair, J. F., and Goldstein, J. A. (1989). Oxidation of uroporphyrinogen by methylcholanthrene-induced cytochrome P-450. Essential role of cytochrome P-450d. Biochem. J 258 (1), 247-253.
  3. Lambrecht, R. W., Sinclair, P. R., Gorman, N., and Sinclair, J. F. (1992). Uroporphyrinogen oxidation catalyzed by reconstituted cytochrome P450IA2. Arch. Biochem. Biophys. 294 (2), 504-510.
  4. 4.0 4.1 Sinclair, P. R., Gorman, N., Walton, H. S., Sinclair, J. F., Lee, C. A., and Rifkind, A. B. (1997). Identification of CYP1A5 as the CYP1A enzyme mainly responsible for uroporphyrinogen oxidation induced by AH receptor ligands in chicken liver and kidney. Drug Metab. Dispos. 25 (7), 779-783.
  5. Marks, G. S., Powles, J., Lyon, M., McCluskey, S., Sutherland, E., and Zelt, D. (1987). Patterns of porphyrin accumulation in response to xenobiotics. Parallels between results in chick embryo and rodents. Ann. N. Y. Acad. Sci. 514, 113-127.
  6. Frank, J., and Poblete-Gutierrez, P. (2010) Porphyria cutanea tarda--when skin meets liver. Best. Pract. Res. Clin Gastroenterol. 24(5), 735-745.
  7. Doss, M., Schermuly, E., and Koss, G. (1976). Hexachlorobenzene porphyria in rats as a model for human chronic hepatic porphyrias. Ann. Clin Res. 8 Suppl 17, 171-181.
  8. Smith, A. G., and Elder, G. H. (2010) Complex gene-chemical interactions: hepatic uroporphyria as a paradigm. Chem. Res. Toxicol. 23 (4), 712-723.
  9. Elder, G. H., and Roberts, A. G. (1995). Uroporphyrinogen decarboxylase. J Bioenerg. Biomembr. 27 (2), 207-214.
  10. Phillips, J. D., Bergonia, H. A., Reilly, C. A., Franklin, M. R., and Kushner, J. P. (2007) A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proc. Natl. Acad. Sci. U. S. A 104 (12), 5079-5084.
  11. Sano, S., Kawanishi, S., and Seki, Y. (1985) Toxicity of polychlorinated biphenyl with special reference to porphyrin metabolism. Environ. Health Perspect. 59, 137-143.
  12. Sinclair, P. R., Gorman, N., Trask, H. W., Bement, W. J., Szakacs, J. G., Elder, G. H., Balestra, D., Sinclair, J. F., and Gerhard, G. S. (2003). Uroporphyria caused by ethanol in Hfe(-/-) mice as a model for porphyria cutanea tarda. Hepatology 37 (2), 351-358.
  13. James, C. A., and Marks, G. S. (1989). Inhibition of chick embryo hepatic uroporphyrinogen decarboxylase by components of xenobiotic-treated chick embryo hepatocytes in culture. Can. J Physiol Pharmacol. 67 (3), 246-249.
  14. 14.0 14.1 14.2 Lambrecht, R. W., Sinclair, P. R., Bement, W. J., Sinclair, J. F., Carpenter, H. M., Buhler, D. R., Urquhart, A. J., and Elder, G. H. (1988) Hepatic uroporphyrin accumulation and uroporphyrinogen decarboxylase activity in cultured chick-embryo hepatocytes and in Japanese quail (Coturnix coturnix japonica) and mice treated with polyhalogenated aromatic compounds. Biochem. J. 253 (1), 131-138.
  15. 15.0 15.1 15.2 Caballes F.R., Sendi, H., and Bonkovsky, H. L. (2012). Hepatitis C, porphyria cutanea tarda and liver iron: an update. Liver Int. 32 (6), 880-893.
  16. 16.0 16.1 Mylchreest, E., and Charbonneau, M. (1997) Studies on the mechanism of uroporphyrinogen decarboxylase inhibition in hexachlorobenzene-induced porphyria in the female rat. Toxicol. Appl. Pharmacol. 145 (1), 23-33.
  17. 17.0 17.1 Seki, Y., Kawanishi, S., and Sano, S. (1987). Mechanism of PCB-induced porphyria and yusho disease. Ann. N. Y. Acad. Sci. 514, 222-234.
  18. Nakano, K., Ishizuka, M., Sakamoto, K. Q., and Fujita, S. (2009). Absolute requirement for iron in the development of chemically induced uroporphyria in mice treated with 3-methylcholanthrene and 5-aminolevulinate. Biometals 22 (2), 345-351.
  19. Lambrecht, R. W., Jacobs, J. M., Sinclair, P. R., & Sinclair, J. F. (1990). Inhibition of uroporphyrinogen decarboxylase activity. The role of cytochrome P-450-mediated uroporphyrinogen oxidation. Biochemical Journal269(2), 437-441.