This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 1931


A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Increase, DNA strand breaks leads to Increase, Mutations

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes.Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Oxidative DNA damage leading to chromosomal aberrations and mutations non-adjacent High Low Carole Yauk (send email) Open for comment. Do not cite WPHA/WNT Endorsed
Deposition of energy leading to lung cancer non-adjacent High Low Vinita Chauhan (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
human Homo sapiens High NCBI
mouse Mus musculus High NCBI
rat Rattus norvegicus High NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Unspecific High

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
All life stages High

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

DNA single strand breaks (SSB) are generally repaired rapidly and efficiently. However, if left unrepaired, SSBs can interfere with replication and cause the replication fork to collapse resulting in double strand breaks (DSB). Multiple SSBs in close proximity to each other can also give rise to DSBs. DSBs can be repaired virtually error-free by homologous recombination (HR), which uses DNA sequence in the homologous chromosome or sister chromatid as a template for new strand synthesis (Polo and Jackson, 2011). Alternatively, the broken ends may be joined to other sites in the genome regardless of homology via non-homologous end joining (NHEJ), irreversibly altering the DNA sequence (deletion, addition, rearrangement). Because HR is a more time-consuming and labour-intensive process, larger proportions of DSBs are repaired via NHEJ than via HR (Mao et al., 2008a; Mao et al., 2008b).

Alterations in DNA sequence can also occur from structural damage to the chromosomes; observations of micronucleus indicate chromosomal aberrations and that a permanent loss of DNA segments has occurred.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER. For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

The mechanisms by which strand breaks lead to mutations are very well studied and understood. Thus, we provide a small selection of empirical evidence below supporting this KER; i.e., we did not undertake and exhaustive literature search.

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

The error-prone nature of DSB repair in eukaryotes has been described in numerous reviews. In mammalian and yeast cells, both HR and NHEJ can lead to alteration in DNA sequence; insertions, deletions, and translocations can arise from NHEJ and base substitutions can occur during the repair synthesis of HR (Hicks and Haber, 2010; Bunting and Nussenzweig, 2013; Byrne et al., 2014; Rodgers and McVey, 2016; Dwivedi and Haber, 2018).


Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

In Kuhne et al. (2005) and Rydberg et al. (2005) studies provided above, mutation was not directly measured. The PFGE and hybridization assay detects a 3.2-Mbp restriction fragment from chromosome 21. Deviation of DNA restriction fragments from the 3.2-Mbp mark during electrophoresis suggests occurrence of breakage and failed reconstruction in this segment of chromosome 21; induction of mutations can be inferred from the change in the size of the restriction fragments. The remaining 22 chromosomes are not considered. This method may not be sensitive enough to detect small base changes.

Cell cycle can influence the repair pathway of DSBs and, thus, the risk of incorrect rejoining of broken ends. In G1 phase, NHEJ may be favoured, while in S, G2, or M phase, both HR and NHEJ have been observed to be active in repair (Mao et al., 2008b)

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

DNA strand breaks and subsequent mutations can occur in any eukaryotic and prokaryotic cell. Any DNA strand break has potential to cause alterations in DNA sequence (e.g., deletions and insertions), whether it is due to insufficient or faulty repair.


List of the literature that was cited for this KER description. More help

Bunting, S. & A. Nussenzweig (2013), "End-joining, Translocations and Cancer", Nat Rev Cancer, 13:443-454.

Byrne, M. et al. (2014), "Mechanisms of oncogenic chromosomal translocations", Ann. N.Y. Acad. Sci., 1310:89-97.

Dikomey, E. & I. Brammer (2000), "Relationship between cellular radiosensitivity and non-repaired double-strand breaks studied for different growth states, dose rates and plating conditions in a normal human Žfibroblast line.", Int. J. Radiat. Biol., 76:773-781.

Dwivedi, G. & J.E. Haber (2018), "Assaying Mutations Associated With Gene Conversion Repair of a Double-Strand Break", Methods Enzymiol., 601:145-160.

Hicks, W. & J.E. Haber (2010), "Increased Mutagenesis and Unique Mutation Signature Associated with Mitotic Gene Conversion", Nat. Rev. Cancer, 329:82-84.

Kuhne, M., K. Rothkamm & M. Lobrich (2000), "No dose-dependence of DNA double-strand break misrejoining following a -particle irradiation.", Int. J. Radiat. Biol. 76(7):891-900

Kuhne, M., G. Urban & M. Lo, (2005), "DNA Double-Strand Break Misrejoining after Exposure of Primary Human Fibroblasts to C K Characteristic X Rays, 29 kVp X Rays and Co g-Rays.", Radiation Research. 164(5):669-676. doi:10.1667/RR3461.1.

Lobrich, M. et al. (2000), "Joining of Correct and Incorrect DNA Double-Strand Break Ends in Normal Human and Ataxia Telangiectasia Fibroblasts.", 68(July 1999):59–68. doi: 10.1002/(SICI)1098-2264(200001)27:1<59::AID-GCC8>3.0.CO;2-9.

Mao, Z. et al. (2008a), "Comparison of nonhomologous end joining and homologous recombination in human cells.", DNA Repair, 7:1765-1771.

Mao, Z. et al. (2008b), "DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells.", Cell Cycle, 7:2902-2906.

McMahon, S.J. et al. (2016), "Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage.", Nat. Publ. Gr.(April):1–14. doi:10.1038/srep33290.

Platel, A. et al. (2011), "Study of oxidative DNA damage in TK6 human lymphoblastoid cells by use of the thymidine kinase gene-mutation assay and the in vitro modified comet assay: Determination of No-Observed-Genotoxic-Effect-Levels.", Mutat. Res., 726:151-159.

Polo, S. & S. Jackson (2011), "Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications.", Genes Dev., 25:409-433.

Ptacek, O. et al. (2001), "Induction and repair of DNA damage as measured by the Comet assay and the yield of somatic mutations in gamma-irradiated tobacco seedlings.", Mutat. Res., 491:17-23.

Rodgers, K. & M. McVey (2016), "Error-prone repair of DNA double-strand breaks.", J. Cell. Physiol., 231:15-24.

Rothkamm, K. & M. Lobrich (2003), "Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses.", PNAS, 100(9):5057-62. doi:10.1073/pnas.0830918100.

Rydberg, B. et al. (2005), "Dose-Dependent Misrejoining of Radiation-Induced DNA Double-Strand Breaks in Human Fibroblasts: Experimental and Theoretical Study for High- and Low-LET Radiation.", Radiat. Res. 163(5):526–534. doi:10.1667/RR3346.

Spassova, M. et al. (2013), "Dose-Response Analysis of Bromate-Induced DNA Damage andMutagenicity Is Consistent With Low-Dose Linear,Nonthreshold Processes", Environ. Mol. Mutagen., 54:19-35.