To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:868

Relationship: 868


The title of the KER should clearly define the two KEs being considered and the sequential relationship between them (i.e., which is upstream and which is downstream). Consequently all KER titles take the form “upstream KE leads to downstream KE”.  More help

Induction, CYP1A2/CYP1A5 leads to Oxidation, Uroporphyrinogen

Upstream event
Upstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help
Downstream event
Downstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

This table is automatically generated upon addition of a KER to an AOP. All of the AOPs that are linked to this KER will automatically be listed in this subsection. Clicking on the name of the AOP in the table will bring you to the individual page for that AOP. More help
AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Aryl hydrocarbon receptor activation leading to uroporphyria adjacent Moderate Low Amani Farhat (send email) Open for citation & comment TFHA/WNT Endorsed

Taxonomic Applicability

Select one or more structured terms that help to define the biological applicability domain of the KER. In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER. Authors can indicate the relevant taxa for this KER in this subsection. The process is similar to what is described for KEs (see pages 30-31 and 37-38 of User Handbook) More help
Term Scientific Term Evidence Link
mouse Mus musculus High NCBI
rat Rattus norvegicus High NCBI
human Homo sapiens High NCBI
chicken Gallus gallus High NCBI

Sex Applicability

Authors can indicate the relevant sex for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of the User Handbook). More help
Sex Evidence
Unspecific High

Life Stage Applicability

Authors can indicate the relevant life stage for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of User Handbook). More help
Term Evidence
Adults High
Juvenile High

Key Event Relationship Description

Provide a brief, descriptive summation of the KER. While the title itself is fairly descriptive, this section can provide details that aren’t inherent in the description of the KEs themselves (see page 39 of the User Handbook). This description section can be viewed as providing the increased specificity in the nature of upstream perturbation (KEupstream) that leads to a particular downstream perturbation (KEdownstream), while allowing the KE descriptions to remain generalised so they can be linked to different AOPs. The description is also intended to provide a concise overview for readers who may want a brief summation, without needing to read through the detailed support for the relationship (covered below). Careful attention should be taken to avoid reference to other KEs that are not part of this KER, other KERs or other AOPs. This will ensure that the KER is modular and can be used by other AOPs. More help

The oxidation of uroporphyrinogen to its corresponding porphyrin (UROX) is preferentially catalyzed by the phase one metabolizing enzyme, CYP1A2, in mammals[1][2] and CYP1A5 in birds[3]. Uroporphyrinogen, an intermediate in heme biosynthesis, is normally converted to coproporphyrinogen by uroporphyrinogen decarboxylase (UROD)[4]; induction of CYP1A2 expression translates to increased protein levels and therefore an increased incidence of binding, and oxidation of uroporphyrinogen, preventing its normally dominant conversion to coproporphyrinogen.

Evidence Supporting this KER

Assembly and description of the scientific evidence supporting KERs in an AOP is an important step in the AOP development process that sets the stage for overall assessment of the AOP (see pages 49-56 of the User Handbook). To do this, biological plausibility, empirical support, and the current quantitative understanding of the KER are evaluated with regard to the predictive relationships/associations between defined pairs of KEs as a basis for considering WoE (page 55 of User Handbook). In addition, uncertainties and inconsistencies are considered. More help

WOE for this KER is moderate.

Biological Plausibility
Define, in free text, the biological rationale for a connection between KEupstream and KEdownstream. What are the structural or functional relationships between the KEs? For example, there is a functional relationship between an enzyme’s activity and the product of a reaction it catalyses. Supporting references should be included. However, it is recognised that there may be cases where the biological relationship between two KEs is very well established, to the extent that it is widely accepted and consistently supported by so much literature that it is unnecessary and impractical to cite the relevant primary literature. Citation of review articles or other secondary sources, like text books, may be reasonable in such cases. The primary intent is to provide scientifically credible support for the structural and/or functional relationship between the pair of KEs if one is known. The description of biological plausibility can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured (see page 40 of the User Handbook for further information).   More help

Uroporphyrinogen has clearly been identified as a substrate of CYP1A2/5, which results in its oxidation to uroporphyrin[1][2][3].

Uncertainties and Inconsistencies
In addition to outlining the evidence supporting a particular linkage, it is also important to identify inconsistencies or uncertainties in the relationship. Additionally, while there are expected patterns of concordance that support a causal linkage between the KEs in the pair, it is also helpful to identify experimental details that may explain apparent deviations from the expected patterns of concordance. Identification of uncertainties and inconsistencies contribute to evaluation of the overall WoE supporting the AOPs that contain a given KER and to the identification of research gaps that warrant investigation (seep pages 41-42 of the User Handbook).Given that AOPs are intended to support regulatory applications, AOP developers should focus on those inconsistencies or gaps that would have a direct bearing or impact on the confidence in the KER and its use as a basis for inference or extrapolation in a regulatory setting. Uncertainties that may be of academic interest but would have little impact on regulatory application don’t need to be described. In general, this section details evidence that may raise questions regarding the overall validity and predictive utility of the KER (including consideration of both biological plausibility and empirical support). It also contributes along with several other elements to the overall evaluation of the WoE for the KER (see Section 4 of the User Handbook).  More help

It is worth noting that Cyp1a2(-/-) knockout mice have up to 40% of the UROX activity of Cyp1a2(+/+) mice[7], suggesting that some UROX activity is CYP1A2-independent. Likewise, transfection of human Cyp1a1, Cyp3a4, Cyp3a5, or Cyp2e1 in insect cells resulted in UROX activity[10], suggesting that UROX can be catalyzed by other CYPs than CYP1A2 both in mouse and human. Additionally, iron overload or other induced pathways can potentially induce UROX [13]. However, it was shown in mice that only CYP1A2-dependent UROX activity is associated with UROD inhibition[7]. No such experiment was conducted in human, therefore, uncertainties remain for that species. 

In mice, TCDD can elicit AhR-dependent, CYP1A1/A2-independent mitochondrial ROS production suggesting that general oxidative stress induced independently of CYP1A2 induction may contribute to the resulting overall UROX by TCDD [14].  

Phillips et al.[11] were able to generate uroporphyria in a Cyp1A2-/- mouse model that is genetically predisposed (Hfe-/-, Urod-/+, which translates into intrinsic iron-overload and reduced UROD activity) to develop porphyria in the absence of external stimuli; CYP1A2 knockout alone prevented porphyrin accumulation, but with the addition of iron and ALA to the triple knockout, modest porphyria was observed. Therefore, under extreme porphyric conditions, UROX leading to porphyria can occur in the absence of the CYP1A2 enzyme.

Altogether, these results indicate that while CYP1A2 is a major catalysis of UROX activity, other CYPs and/or modulating factors are involved in the pathway.

Response-response Relationship
This subsection should be used to define sources of data that define the response-response relationships between the KEs. In particular, information regarding the general form of the relationship (e.g., linear, exponential, sigmoidal, threshold, etc.) should be captured if possible. If there are specific mathematical functions or computational models relevant to the KER in question that have been defined, those should also be cited and/or described where possible, along with information concerning the approximate range of certainty with which the state of the KEdownstream can be predicted based on the measured state of the KEupstream (i.e., can it be predicted within a factor of two, or within three orders of magnitude?). For example, a regression equation may reasonably describe the response-response relationship between the two KERs, but that relationship may have only been validated/tested in a single species under steady state exposure conditions. Those types of details would be useful to capture.  More help
This sub-section should be used to provide information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). This can be useful information both in terms of modelling the KER, as well as for analyzing the critical or dominant paths through an AOP network (e.g., identification of an AO that could kill an organism in a matter of hours will generally be of higher priority than other potential AOs that take weeks or months to develop). Identification of time-scale can also aid the assessment of temporal concordance. For example, for a KER that operates on a time-scale of days, measurement of both KEs after just hours of exposure in a short-term experiment could lead to incorrect conclusions regarding dose-response or temporal concordance if the time-scale of the upstream to downstream transition was not considered. More help
Known modulating factors
This sub-section presents information regarding modulating factors/variables known to alter the shape of the response-response function that describes the quantitative relationship between the two KEs (for example, an iodine deficient diet causes a significant increase in the slope of the relationship; a particular genotype doubles the sensitivity of KEdownstream to changes in KEupstream). Information on these known modulating factors should be listed in this subsection, along with relevant information regarding the manner in which the modulating factor can be expected to alter the relationship (if known). Note, this section should focus on those modulating factors for which solid evidence supported by relevant data and literature is available. It should NOT list all possible/plausible modulating factors. In this regard, it is useful to bear in mind that many risk assessments conducted through conventional apical guideline testing-based approaches generally consider few if any modulating factors. More help


Iron status can profoundly modify the level of uroporphyrin accumulation especially in mice. In fact iron overload alone of mice will eventually produce a strong hepatic uroporphyria which is markedly genetically determined and toxicity can be ameliorated by chelators [15-16]. In human suffering from uroporphyrin accumulation, it was found that lowering body iron stores by bleeding or now chelators causes remission [17].

Cycling between the ferrous (Fe2+) and ferric (Fe3+) redox states allows Fe to catalyze the Haber-Weiss reaction, in which highly reactive OH is generated from H2O2 and O2•−. Thus, by catalyzing the formation of reactive oxygen species, it is suggested that iron can increase the rate at which uroporphyrinogen is oxidized to uroporphyrin and therefore enhance uroporphyrin formation [18].

Ascorbic acid

Ascorbic acid (AA) can prevent uroporphyrin accumulation experimental uroporphyria, but only when hepatic iron stores are normal or mildly elevated [19]. It was shown in chick embryo liver cells that AA could prevent uroporphyrin accumulation caused by treatment with 3,3',4,4'-tetrachlorobiphenyl and 5-aminole-vulinate by competitively inhibiting microsomal CYP1A2-catalyzed oxidation of uroporphyrinogen[20]. Oppositely, in a spontaneous mutant rat that requires dietary AA, hepatic uroporphyrin accumulation caused by treatment with 3-methylcholanthrene or hexachlorobenzene was found to be enhanced when the animals were maintained on a very low AA dietary intake[21].

Known Feedforward/Feedback loops influencing this KER
This subsection should define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits? In some cases where feedback processes are measurable and causally linked to the outcome, they should be represented as KEs. However, in most cases these features are expected to predominantly influence the shape of the response-response, time-course, behaviours between selected KEs. For example, if a feedback loop acts as compensatory mechanism that aims to restore homeostasis following initial perturbation of a KE, the feedback loop will directly shape the response-response relationship between the KERs. Given interest in formally identifying these positive or negative feedback, it is recommended that a graphical annotation (page 44) indicating a positive or negative feedback loop is involved in a particular upstream to downstream KE transition (KER) be added to the graphical representation, and that details be provided in this subsection of the KER description (see pages 44-45 of the User Handbook).  More help

Domain of Applicability

As for the KEs, there is also a free-text section of the KER description that the developer can use to explain his/her rationale for the structured terms selected with regard to taxonomic, life stage, or sex applicability, or provide a more generalizable or nuanced description of the applicability domain than may be feasible using standardized terms. More help

CYP1A2 catalyzes UROX in mice, rats and humans[1][2][11], as does CYP1A5 in chickens[3] .


List of the literature that was cited for this KER description using the appropriate format. Ideally, the list of references should conform, to the extent possible, with the OECD Style Guide (OECD, 2015). More help
  1. 1.0 1.1 1.2 1.3 Jacobs, J. M., Sinclair, P. R., Bement, W. J., Lambrecht, R. W., Sinclair, J. F., and Goldstein, J. A. (1989). Oxidation of uroporphyrinogen by methylcholanthrene-induced cytochrome P-450. Essential role of cytochrome P-450d. Biochem. J 258 (1), 247-253.
  2. 2.0 2.1 2.2 2.3 Lambrecht, R. W., Sinclair, P. R., Gorman, N., and Sinclair, J. F. (1992). Uroporphyrinogen oxidation catalyzed by reconstituted cytochrome P450IA2. Arch. Biochem. Biophys. 294 (2), 504-510.
  3. 3.0 3.1 3.2 Sinclair, P. R., Gorman, N., Walton, H. S., Sinclair, J. F., Lee, C. A., and Rifkind, A. B. (1997). Identification of CYP1A5 as the CYP1A enzyme mainly responsible for uroporphyrinogen oxidation induced by AH receptor ligands in chicken liver and kidney. Drug Metab. Dispos. 25 (7), 779-783.
  4. 4.0 4.1 Elder, G. H., and Roberts, A. G. (1995). Uroporphyrinogen decarboxylase. J Bioenerg. Biomembr. 27 (2), 207-214.
  5. 5.0 5.1 Gorman, N., Ross, K. L., Walton, H. S., Bement, W. J., Szakacs, J. G., Gerhard, G. S., Dalton, T. P., Nebert, D. W., Eisenstein, R. S., Sinclair, J. F., and Sinclair, P. R. (2002). Uroporphyria in mice: thresholds for hepatic CYP1A2 and iron. Hepatology 35 (4), 912-921.
  6. Greaves, P., Clothier, B., Davies, R., Higginson, F. M., Edwards, R. E., Dalton, T. P., Nebert, D. W., and Smith, A. G. (2005) Uroporphyria and hepatic carcinogenesis induced by polychlorinated biphenyls-iron interaction: absence in the Cyp1a2(-/-) knockout mouse. Biochem. Biophys. Res. Commun. 331 (1), 147-152.
  7. Sinclair, P. R., Gorman, N., Dalton, T., Walton, H. S., Bement, W. J., Sinclair, J. F., Smith, A. G., and Nebert, D. W. (1998) Uroporphyria produced in mice by iron and 5-aminolaevulinic acid does not occur in Cyp1a2(-/-) null mutant mice. Biochem. J. 330 ( Pt 1), 149-153.
  8. Smith, A. G., Clothier, B., Carthew, P., Childs, N. L., Sinclair, P. R., Nebert, D. W., and Dalton, T. P. (2001) Protection of the Cyp1a2(-/-) null mouse against uroporphyria and hepatic injury following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 173 (2), 89-98.
  9. Davies, R., Clothier, B., Robinson, S. W., Edwards, R. E., Greaves, P., Luo, J., Gant, T. W., Chernova, T., and Smith, A. G. (2008) Essential role of the AH receptor in the dysfunction of heme metabolism induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chem. Res. Toxicol. 21 (2), 330-340.
  10. Sinclair, P. R., Gorman, N., Tsyrlov, I. B., Fuhr, U., Walton, H. S., and Sinclair, J. F. (1998b). Uroporphyrinogen oxidation catalyzed by human cytochromes P450. Drug Metab Dispos. 26 (10), 1019-1025.
  11. 11.0 11.1 11.2 Phillips, J. D., Kushner, J. P., Bergonia, H. A., and Franklin, M. R. (2011) Uroporphyria in the Cyp1a2-/- mouse. Blood Cells Mol. Dis. 47 (4), 249-254.
  12. van Birgelen, A. P., DeVito, M. J., Akins, J. M., Ross, D. G., Diliberto, J. J., and Birnbaum, L. S. (1996). Relative potencies of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls derived from hepatic porphyrin accumulation in mice. Toxicol. Appl. Pharmacol. 138 (1), 98-109.
  13. Caballes F.R., Sendi, H., and Bonkovsky, H. L. (2012). Hepatitis C, porphyria cutanea tarda and liver iron: an update. Liver Int. 32 (6), 880-893.
  14. Senft, A.P., Dalton, T.P., Nebert, D.W., Genter, M.B., Puga, A., Hutchinson, R.J., Kerzee, J.K., Uno, S., and Shertzer, H.G. (2002). Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor. Free Radic Biol Med 33, 1268-1278.

  15. Smith, A. G., & Francis, J. E. (1993). Genetic variation of iron-induced uroporphyria in mice. Biochemical Journal291 (1), 29.
  16. Gorman, N., Zaharia, A., Trask, H. S., Szakacs, J. G., Jacobs, N. J., Jacobs, J. M., Sinclair, P. R. (2007). Effect of an oral iron chelator or iron‐deficient diets on uroporphyria in a murine model of porphyria cutanea tarda. Hepatology46 (6), 1927-1834.
  17. Ippen H. (1977). Treatment of porphyria cutanea tarda by phlebotomy. Semin Hematol.14, 253-9.
  18. Fader, K. A., Nault, R., Kirby, M. P., Markous, G., Matthews, J., & Zacharewski, T. R. (2017). Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity. Toxicology and applied pharmacology321, 1-17.
  19. Gorman, N., Zaharia, A., Trask, H. S., Szakacs, J. G., Jacobs, N. J., Jacobs, J. M., ... & Sinclair, P. R. (2007). Effect of iron and ascorbate on uroporphyria in ascorbate‐requiring mice as a model for porphyria cutanea tarda. Hepatology, 45 (1), 187-194.
  20. Sinclair PR, Gorman N, Walton HS, Bement WJ, Jacobs JM, Sinclair JF. (1993). Ascorbic acid inhibition of cytochrome P450-catalyzed uroporphyrin accumulation. Arch Biochem Biophys. 304, 464-470.
  21. Sinclair PR, Gorman N, Sinclair JF, Walton HS, Bement WJ, Lambrecht RW. (1995). Ascorbic acid inhibits chemically induced uroporphyria in ascorbate-requiring rats. Hepatology. 22, 565-572.