Stressor: 337

Title

To create a new stressor, from the Listing Stressors page at https://aopwiki.org/stressors click ‘New stressor.’ This will bring you to a page entitled “New Stressor” where a stressor title can be entered. Click ‘Create stressor’ to create a new Stressor page listing the stressor title at the top. More help

Bleomycin

Stressor Overview

The stressor field is a structured data field that can be used to annotate an AOP with standardised terms identifying stressors known to trigger the MIE/AOP. Most often these are chemical names selected from established chemical ontologies. However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. More help

AOPs Including This Stressor

This table is automatically generated and lists the AOPs associated with this Stressor. More help

Events Including This Stressor

This table is automatically generated and lists the Key Events associated with this Stressor. More help
Event Name
Pulmonary fibrosis

Chemical Table

The Chemical Table lists chemicals associated with a stressor. This table contains information about the User’s term for a chemical, the DTXID, Preferred name, CAS number, JChem InChIKey, and Indigo InChIKey.To add a chemical associated with a particular stressor, next to the Chemical Table click ‘Add chemical.’ This will redirect you to a page entitled “New Stressor Chemical.’ The dialog box can be used to search for chemical by name, CAS number, JChem InChIKey, and Indigo InChIKey. Searching by these fields will bring forward a drop down list of existing stressor chemicals formatted as  Preferred name, “CAS- preferred name,” “JChem InChIKey – preferred name,” or “Indigo InChIKey- preferred name,” depending on by which field you perform the search. It may take several moments for the drop down list to display. Select an entity from the drop down list and click ‘Add chemical.’ This will return you to the Stressor Page, where the new record should be in the ‘Chemical Table’ on the page.To remove a chemical associated with a particular stressor, in the Chemical Table next to the chemical you wish to delete, click ‘Remove’ and then click 'OK.' The chemical should no longer be visible in the Chemical table. More help
User term DTXID Preferred name Casrn jchem_inchi_key indigo_inchi_key
Bleomycin DTXSID1030862 Bleomycin 11056-06-7

AOP Evidence

This table is automatically generated and includes the AOPs with this associated stressor as well as the evidence term and evidence text from this AOP Stressor. More help
Substance interaction with the lung resident cell membrane components leading to lung fibrosis

Bleomycin is a potent anti-tumour drug, routinely used for treating various types of human cancers (Umezawa et al., 1967; Adamson, 1976). Lung injury and lung fibrosis are the major adverse effects of this drug in humans (Hay J et al., 1991). Bleomycin is shown to induce lung fibrosis in experimental animals - in dogs (Fleischman et al., 1971), mice (Adamson IY and Bowden DH, 1974), hamsters (Snider GL et al., 1978) and is widely used as a model chemical to study the mechanisms of fibrosis in humans (reviewed in Moeller et al., 2008; Gilhodes et al., 2017).

  1. Adamson, I. (1976). Pulmonary Toxicity of Bleomycin. Environmental Health Perspectives, 16, p.119.
  2. Adamson, IYR. and Bowden, DH. (1974). The Pathogenesis of Bleomycin-Induced Pulmonary Fibrosis in Mice. The American Journal of Pathology. 77(2), pp185-198.
  3. Fleischman, R., Baker, J., Thompson, G., Schaeppi, U., Illievski, V., Cooney, D. and Davis, R. (1971). Bleomycin-induced interstitial pneumonia in dogs. Thorax, 26(6), pp.675-682.
  4. Gilhodes, J., Julé, Y., Kreuz, S., Stierstorfer, B., Stiller, D. and Wollin, L. (2017). Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis. PLOS ONE, 12(1), p.e0170561.
  5. Hay, J., Shahzeidi, S. and Laurent, G. (1991). Mechanisms of bleomycin-induced lung damage. Archives of Toxicology, 65(2), pp.81-94.
  6. Moeller, A., Ask, K., Warburton, D., Gauldie, J. and Kolb, M. (2008). The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis?. The International Journal of Biochemistry & Cell Biology, 40(3), pp.362-382.
  7. Snider GL., Celli, BR., Goldstein, RH., O'Brien, JJ. and Lucey, EC. (1978). Chronic interstitial pulmonary fibrosis produced in hamsters by endotracheal bleomycin. Lung volumes, volume-pressure relations, carbon monoxide uptake, and arterial blood gas studied. Am Rev Respir Dis. Feb; 117(2). pp289-97.
  8. Umezawa, H., Ishizuka, M., Maeda, K. and Takeuchi, T. (1967). Studies on bleomycin. Cancer, 20(5), pp.891-895.

Event Evidence

This table is automatically generated and includes the Events with this associated stressor as well as the evidence text from this Event Stressor. More help
Pulmonary fibrosis

Bleomycin is a potent anti-tumour drug, routinely used for treating various types of human cancers (Umezawa H et al., 1967; Adamson IY, 1976). Lung injury and lung fibrosis are the major adverse effects of this drug in humans (Hay J et al., 1991). Bleomycin is shown to induce lung fibrosis in animals – such as dogs (Fleischman RW et al., 1971), mice (Adamson IY and Bowden DH, 1974), and hamsters (Snider GL et al., 1978) and is widely used as a model to study the mechanisms of fibrosis (reviewed in Moeller A et al., 2008; Gilhodes J-C et al., 2017).

  1. Umezawa H, Ishizuka M, Maeda K, Takeuchi T. Studies on bleomycin. Cancer. 1967 May;20(5):891-5.
  2. Adamson IY. Pulmonary toxicity of bleomycin. Environ Health Perspect. 1976 Aug;16:119-26.
  3. Hay J, Shahzeidi S, Laurent G  Mechanisms of bleomycin induced lung damage. 1991 Arch Toxicol 65:81–94.
  4. Fleischman RW, Baker JR, Thompson GR, et al. Bleomycin-induced interstitial pneumonia in dogs. Thorax. 1971;26(6):675-682.
  5. Adamson IYR, Bowden DH. The Pathogenesis of Bleomycin-Induced Pulmonary Fibrosis in Mice. The American Journal of Pathology. 1974;77(2):185-198.
  6. Snider GL, Celli BR, Goldstein RH, O'Brien JJ, Lucey EC. Chronic interstitial pulmonary fibrosis produced in hamsters by endotracheal bleomycin. Lung volumes, volume-pressure relations, carbon monoxide uptake, and arterial blood gas studied. Am Rev Respir Dis. 1978 Feb; 117(2):289-97.
  7. Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? The international journal of biochemistry & cell biology. 2008;40(3):362-382.
  8. Gilhodes J-C, Julé Y, Kreuz S, Stierstorfer B, Stiller D, Wollin L (2017) Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis. PLoS ONE 12(1): e0170561.

Stressor Info

Text sections under this subheading include the Chemical/Category Description and Characterization of Exposure. More help
Chemical/Category Description
To edit the Chemical/Category Description” section, on a KER page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “Chemical/Category Description” section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “Chemical/Category Description”  section on the page. More help

Bleomycin is a potent anti-tumour drug, routinely used for treating various types of human cancers (Umezawa et al., 1967; Adamson, 1976). Lung injury and lung fibrosis are the major adverse effects of this drug in humans (Hay J et al., 1991). Bleomycin is shown to induce lung fibrosis in experimental animals - in dogs (Fleischman et al., 1971), mice (Adamson IY and Bowden DH, 1974), hamsters (Snider GL et al., 1978) and is widely used as a model chemical to study the mechanisms of fibrosis in humans (reviewed in Moeller et al., 2008; Gilhodes et al., 2017).

  1. Adamson, I. (1976). Pulmonary Toxicity of Bleomycin. Environmental Health Perspectives, 16, p.119.
  2. Adamson, IYR. and Bowden, DH. (1974). The Pathogenesis of Bleomycin-Induced Pulmonary Fibrosis in Mice. The American Journal of Pathology. 77(2), pp185-198.
  3. Fleischman, R., Baker, J., Thompson, G., Schaeppi, U., Illievski, V., Cooney, D. and Davis, R. (1971). Bleomycin-induced interstitial pneumonia in dogs. Thorax, 26(6), pp.675-682.
  4. Gilhodes, J., Julé, Y., Kreuz, S., Stierstorfer, B., Stiller, D. and Wollin, L. (2017). Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis. PLOS ONE, 12(1), p.e0170561.
  5. Hay, J., Shahzeidi, S. and Laurent, G. (1991). Mechanisms of bleomycin-induced lung damage. Archives of Toxicology, 65(2), pp.81-94.
  6. Moeller, A., Ask, K., Warburton, D., Gauldie, J. and Kolb, M. (2008). The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis?. The International Journal of Biochemistry & Cell Biology, 40(3), pp.362-382.
  7. Snider GL., Celli, BR., Goldstein, RH., O'Brien, JJ. and Lucey, EC. (1978). Chronic interstitial pulmonary fibrosis produced in hamsters by endotracheal bleomycin. Lung volumes, volume-pressure relations, carbon monoxide uptake, and arterial blood gas studied. Am Rev Respir Dis. Feb; 117(2). pp289-97.
  8. Umezawa, H., Ishizuka, M., Maeda, K. and Takeuchi, T. (1967). Studies on bleomycin. Cancer, 20(5), pp.891-895.

 

 

 

 

 

Characterization of Exposure
To edit the “Characterization of Exposure” section, on a Stressor page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “Characterization of Exposure”  section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “Characterization of Exposure” section on the page. More help

References

List of the literature that was cited for this Stressor description. Ideally, the list of references, should conform, to the extent possible, with the OECD Style Guide (https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf) (OECD, 2015).To edit the “References” section, on a Stressor page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “References” section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “References” section on the page. More help
  1. Adamson, I. (1976). Pulmonary Toxicity of Bleomycin. Environmental Health Perspectives, 16, p.119.
  2. Adamson, IYR. and Bowden, DH. (1974). The Pathogenesis of Bleomycin-Induced Pulmonary Fibrosis in Mice. The American Journal of Pathology. 77(2), pp185-198.
  3. Fleischman, R., Baker, J., Thompson, G., Schaeppi, U., Illievski, V., Cooney, D. and Davis, R. (1971). Bleomycin-induced interstitial pneumonia in dogs. Thorax, 26(6), pp.675-682.
  4. Gilhodes, J., Julé, Y., Kreuz, S., Stierstorfer, B., Stiller, D. and Wollin, L. (2017). Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis. PLOS ONE, 12(1), p.e0170561.
  5. Hay, J., Shahzeidi, S. and Laurent, G. (1991). Mechanisms of bleomycin-induced lung damage. Archives of Toxicology, 65(2), pp.81-94.
  6. Moeller, A., Ask, K., Warburton, D., Gauldie, J. and Kolb, M. (2008). The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis?. The International Journal of Biochemistry & Cell Biology, 40(3), pp.362-382.
  7. Snider GL., Celli, BR., Goldstein, RH., O'Brien, JJ. and Lucey, EC. (1978). Chronic interstitial pulmonary fibrosis produced in hamsters by endotracheal bleomycin. Lung volumes, volume-pressure relations, carbon monoxide uptake, and arterial blood gas studied. Am Rev Respir Dis. Feb; 117(2). pp289-97.
  8. Umezawa, H., Ishizuka, M., Maeda, K. and Takeuchi, T. (1967). Studies on bleomycin. Cancer, 20(5), pp.891-895.