Stressor: 635

Title

To create a new stressor, from the Listing Stressors page at https://aopwiki.org/stressors click ‘New stressor.’ This will bring you to a page entitled “New Stressor” where a stressor title can be entered. Click ‘Create stressor’ to create a new Stressor page listing the stressor title at the top. More help

Arsenic

Stressor Overview

The stressor field is a structured data field that can be used to annotate an AOP with standardised terms identifying stressors known to trigger the MIE/AOP. Most often these are chemical names selected from established chemical ontologies. However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. More help

AOPs Including This Stressor

This table is automatically generated and lists the AOPs associated with this Stressor. More help

Events Including This Stressor

This table is automatically generated and lists the Key Events associated with this Stressor. More help

Chemical Table

The Chemical Table lists chemicals associated with a stressor. This table contains information about the User’s term for a chemical, the DTXID, Preferred name, CAS number, JChem InChIKey, and Indigo InChIKey.To add a chemical associated with a particular stressor, next to the Chemical Table click ‘Add chemical.’ This will redirect you to a page entitled “New Stressor Chemical.’ The dialog box can be used to search for chemical by name, CAS number, JChem InChIKey, and Indigo InChIKey. Searching by these fields will bring forward a drop down list of existing stressor chemicals formatted as  Preferred name, “CAS- preferred name,” “JChem InChIKey – preferred name,” or “Indigo InChIKey- preferred name,” depending on by which field you perform the search. It may take several moments for the drop down list to display. Select an entity from the drop down list and click ‘Add chemical.’ This will return you to the Stressor Page, where the new record should be in the ‘Chemical Table’ on the page.To remove a chemical associated with a particular stressor, in the Chemical Table next to the chemical you wish to delete, click ‘Remove’ and then click 'OK.' The chemical should no longer be visible in the Chemical table. More help
User term DTXID Preferred name Casrn jchem_inchi_key indigo_inchi_key
Arsenic DTXSID4023886 Arsenic 7440-38-2 RQNWIZPPADIBDY-UHFFFAOYSA-N RQNWIZPPADIBDY-UHFFFAOYSA-N

AOP Evidence

This table is automatically generated and includes the AOPs with this associated stressor as well as the evidence term and evidence text from this AOP Stressor. More help

Event Evidence

This table is automatically generated and includes the Events with this associated stressor as well as the evidence text from this Event Stressor. More help
Chronic reactive oxygen species

There is no evidence text for this event.

Increases in cellular reactive oxygen species

There is no evidence text for this event.

Inhibition, Mitochondrial Electron Transport Chain Complexes

Prakash, Soni, and Kumar (2015) measured the level of inhibition of mitochondrial electron transport chain complexes in rat brains after exposure to sodium arsenite in their drinking water for 12 weeks. They found that CII (32%), CIV (35%), and CI (42%) were all significantly inhibited (Prakash, Soni, and Kumar, 2015).

Increase, Oxidative Stress

Bhadauria and Flora (2007) studied the effects of arsenic treatment on rat kidneys. They found that lipid peroxidation levels were increased by 1.5 times and the GSH/GSSG ratio was decreased significantly (Bhadauria and Flora, 2007).

Kharroubi et al. (2014) also investigated the effect of arsenic treatment on rat kidneys and found that lipid peroxidation was significantly increased, while GSH content was significantly decreased.

In their study of the effects of arsenic treatment on rat kidneys, Turk et al. (2019) found that lipid peroxidation was significantly increased while GSH and GPx renal content were decreased.

Occurrence, Kidney toxicity

Kharroubi et al. (2014) investigated the histological effects of arsenate on rat kidneys. In their study, they found that the arsenate-treated groups had glomerular atrophy and showed an expansion of the area between the glomeruli and the Bowman’s capsule, indicating that renal corpuscular degeneration was occurring (Kharroubi et al., 2014). When Kharroubi et al. (2014) examined renal functional markers in response to two different doses and two different time periods of arsenate, they found a dose- and time-dependant increase in serum creatinine and urea, and a decrease in total protein (Kharroubi et al., 2014).

In their study of the effects of arsenite treatment on rats, Turk et al. (2019) found that the arsenic treated group showed much more necrosis than the control, including hydropic degeneration in the tubulus epithelia, dilation in the Bowman’s capsule, and coagulation necrosis. They also noted increased IL-6 content in the kidney tissues of the treated rats, indicating that inflammation was occurring. Turk et al. (2019) also found that serum urea and serum creatinine in the arsenic-treated group were significantly increased compared to the control levels.

Oxidative Stress

Bhadauria and Flora (2007) studied the effects of arsenic treatment on rat kidneys. They found that lipid peroxidation levels were increased by 1.5 times and the GSH/GSSG ratio was decreased significantly (Bhadauria and Flora, 2007).

Kharroubi et al. (2014) also investigated the effect of arsenic treatment on rat kidneys and found that lipid peroxidation was significantly increased, while GSH content was significantly decreased.

In their study of the effects of arsenic treatment on rat kidneys, Turk et al. (2019) found that lipid peroxidation was significantly increased while GSH and GPx renal content were decreased.

Increase, Cytotoxicity (renal tubular cell)

Turk et al. (2019) treated rats with arsenic and observed the kidneys for biochemical changes. Their results showed increased caspase-3 activity in the treated kidneys, indicating an increase in cellular death when the cells were treated with arsenic (Turk et al., 2019).

Stressor Info

Text sections under this subheading include the Chemical/Category Description and Characterization of Exposure. More help
Chemical/Category Description
To edit the Chemical/Category Description” section, on a KER page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “Chemical/Category Description” section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “Chemical/Category Description”  section on the page. More help
Characterization of Exposure
To edit the “Characterization of Exposure” section, on a Stressor page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “Characterization of Exposure”  section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “Characterization of Exposure” section on the page. More help

References

List of the literature that was cited for this Stressor description. Ideally, the list of references, should conform, to the extent possible, with the OECD Style Guide (https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf) (OECD, 2015).To edit the “References” section, on a Stressor page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “References” section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “References” section on the page. More help