Stressor: 723

Title

To create a new stressor, from the Listing Stressors page at https://aopwiki.org/stressors click ‘New stressor.’ This will bring you to a page entitled “New Stressor” where a stressor title can be entered. Click ‘Create stressor’ to create a new Stressor page listing the stressor title at the top. More help

Zinc

Stressor Overview

The stressor field is a structured data field that can be used to annotate an AOP with standardised terms identifying stressors known to trigger the MIE/AOP. Most often these are chemical names selected from established chemical ontologies. However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. More help

AOPs Including This Stressor

This table is automatically generated and lists the AOPs associated with this Stressor. More help

Events Including This Stressor

This table is automatically generated and lists the Key Events associated with this Stressor. More help

Chemical Table

The Chemical Table lists chemicals associated with a stressor. This table contains information about the User’s term for a chemical, the DTXID, Preferred name, CAS number, JChem InChIKey, and Indigo InChIKey.To add a chemical associated with a particular stressor, next to the Chemical Table click ‘Add chemical.’ This will redirect you to a page entitled “New Stressor Chemical.’ The dialog box can be used to search for chemical by name, CAS number, JChem InChIKey, and Indigo InChIKey. Searching by these fields will bring forward a drop down list of existing stressor chemicals formatted as  Preferred name, “CAS- preferred name,” “JChem InChIKey – preferred name,” or “Indigo InChIKey- preferred name,” depending on by which field you perform the search. It may take several moments for the drop down list to display. Select an entity from the drop down list and click ‘Add chemical.’ This will return you to the Stressor Page, where the new record should be in the ‘Chemical Table’ on the page.To remove a chemical associated with a particular stressor, in the Chemical Table next to the chemical you wish to delete, click ‘Remove’ and then click 'OK.' The chemical should no longer be visible in the Chemical table. More help
User term DTXID Preferred name Casrn jchem_inchi_key indigo_inchi_key
Zinc DTXSID7035012 Zinc 7440-66-6 HCHKCACWOHOZIP-UHFFFAOYSA-N HCHKCACWOHOZIP-UHFFFAOYSA-N

AOP Evidence

This table is automatically generated and includes the AOPs with this associated stressor as well as the evidence term and evidence text from this AOP Stressor. More help

Event Evidence

This table is automatically generated and includes the Events with this associated stressor as well as the evidence text from this Event Stressor. More help
Increase, Oxidative Stress

Yeh et al. (2011) investigated the effects of zinc treatment on rat kidneys and found that treatment with 150 μM or more for 2 weeks or more caused a time- and dose-dependant increase in lipid peroxidation. They also found that renal GSH content was decreased in the rats treated with 150 μM or more for 8 weeks (Yeh et al., 2011).

It should be noted that Hao et al. (2014) found that rat kidneys exposed to lower concentrations of zinc (such as 100 μM) for short time periods (such as 1 day), showed a protective effect against toxicity induced by other heavy metals, including uranium. Soussi, Gargouri, and El Feki (2018) also found that pre-treatment with a low concentration of zinc (10 mg/kg treatment for 15 days) protected the renal cells of rats were from changes in varying oxidative stress markers, such as lipid peroxidation, protein carbonyl, and GPx levels.

Occurrence, Kidney toxicity

Yeh et al. (2011) conducted a study on the effect of dietary zinc on rat renal functioning. In their study they found that both blood urea nitrogen and plasma creatinine levels were elevated in a dose-dependant manner when rats were treated with 100 to 600 ppm of zinc in their diet.  

It should be noted however that at low concentrations zinc displays protective effects against the nephrotoxicity of other heavy metals (Soussi, Gargouri, and El Feki, 2018). When 10 mg/kg bodyweight of zinc was administered concurrently with 343.6 mg/kg bodyweight of lead, the zinc reduced the change in serum creatinine, LDH, and blood urea nitrogen levels from the control, in comparison to the lead only treatments. They also found that treating the rats with only zinc at this concentration caused non-significant changes in any of the nephrotoxicity markers (Soussi, Gargouri, and El Feki, 2018).

Oxidative Stress

Yeh et al. (2011) investigated the effects of zinc treatment on rat kidneys and found that treatment with 150 μM or more for 2 weeks or more caused a time- and dose-dependant increase in lipid peroxidation. They also found that renal GSH content was decreased in the rats treated with 150 μM or more for 8 weeks (Yeh et al., 2011).

It should be noted that Hao et al. (2014) found that rat kidneys exposed to lower concentrations of zinc (such as 100 μM) for short time periods (such as 1 day), showed a protective effect against toxicity induced by other heavy metals, including uranium. Soussi, Gargouri, and El Feki (2018) also found that pre-treatment with a low concentration of zinc (10 mg/kg treatment for 15 days) protected the renal cells of rats were from changes in varying oxidative stress markers, such as lipid peroxidation, protein carbonyl, and GPx levels.

Stressor Info

Text sections under this subheading include the Chemical/Category Description and Characterization of Exposure. More help
Chemical/Category Description
To edit the Chemical/Category Description” section, on a KER page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “Chemical/Category Description” section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “Chemical/Category Description”  section on the page. More help
Characterization of Exposure
To edit the “Characterization of Exposure” section, on a Stressor page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “Characterization of Exposure”  section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “Characterization of Exposure” section on the page. More help

References

List of the literature that was cited for this Stressor description. Ideally, the list of references, should conform, to the extent possible, with the OECD Style Guide (https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf) (OECD, 2015).To edit the “References” section, on a Stressor page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “References” section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “References” section on the page. More help