This AOP is licensed under the BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
AOP: 264
Title
Uncoupling of oxidative phosphorylation leading to growth inhibition via ATP depletion associated cell death
Short name
Graphical Representation
Point of Contact
Contributors
- You Song
Coaches
- Dan Villeneuve
OECD Information Table
OECD Project # | OECD Status | Reviewer's Reports | Journal-format Article | OECD iLibrary Published Version |
---|---|---|---|---|
1.92 | Under Development |
This AOP was last modified on June 20, 2024 02:54
Revision dates for related pages
Page | Revision Date/Time |
---|---|
Decrease, Coupling of oxidative phosphorylation | May 28, 2021 07:59 |
Decrease, Adenosine triphosphate pool | June 14, 2021 13:40 |
Increase, Cell injury/death | May 27, 2024 07:23 |
Decrease, Growth | July 06, 2022 07:36 |
Decrease, Coupling of OXPHOS leads to Decrease, ATP pool | July 06, 2022 07:39 |
Decrease, ATP pool leads to Cell injury/death | September 27, 2022 13:24 |
Cell injury/death leads to Decrease, Growth | September 27, 2022 13:22 |
Abstract
Uncoupling of oxidative phosphorylation (OXPHOS) is a well-known mechanism of action of many chemicals. Mitochondrial uncoupler-mediated energetic dysfunction is known to affect growth, a critical process in most organisms and a chronic toxicity endpoint included in many OECD test guidelines. This adverse outcome pathway (AOP) causally links uncoupling of OXPHOS to growth inhibition, through ATP depletion and reduced cell proliferation as the intermediate key events (KEs), with strong weight of evidence support. The AOP is generalized to reflect its expected applicability to a broad range of taxa, ranging from microalga to human. Three out of four KEs included can be quantified using high-throughput methods, making this AOP particularly useful for screening, prioritization and hazard assessment of mitochondrial uncouplers as potential growth inhibiting chemicals. This AOP is of high regulatory relevance, as it is considered applicable to both human health and ecological risk assessments. The AOP also forms the core of a larger AOP network addressing uncoupling of OXPHOS mediated growth inhibition (AOP 263-268).
AOP Development Strategy
Context
The mitochondrial OXPHOS machinery is a key physiological process responsible for producing the primary cellular energy, adenosine triphosphate (ATP). During OXPHOS, a series of redox reactions (oxidation) are mediated by protein complexes in an electron transport chain to create a protonmotive force (PMF) across the inner mitochondrial membrane (Liberman 1969). The PMF acts as a driving force of ATP synthesis through phosphorylation of adenosine diphosphate (ADP). Mitochondrial oxidation and phosphorylation are coupled to ensure continuous ATP supply for various physiological processes. A number of chemicals can bind to the inner mitochondrial membrane and dissipate the PMF, thus leading to uncoupling of OXPHOS and reduction in ATP synthetic efficiency. Classical “uncouplers” are normally protonophores with major characteristics of bulky hydrophobic moiety, an acid dissociable group and a strong electron-withdrawing group (Terada 1990). With the rapid development of in silico (Russom 1997; Schultz 1997; Naven 2012; Dreier 2019; Troger 2020) and in vitro (Escher 2002; Attene-Ramos 2013; Attene-Ramos 2015; Xia 2018) approaches, more and more uncouplers have been identified. However, their hazards to biota remain to be assessed. Uncoupling of OXPHOS can affect many ATP-dependent biological functions. In particular, cell proliferation as a major process to achieve organismal growth is positively correlated with the cellular ATP level and highly susceptible to energy depletion (Ramaiah 1964; Bonora 2012). Therefore, a link between uncoupling of OXPHOS and growth inhibition can be established with ATP depletion and reduced cell proliferation as the intermediate steps.
Strategy
Summary of the AOP
Events:
Molecular Initiating Events (MIE)
Key Events (KE)
Adverse Outcomes (AO)
Type | Event ID | Title | Short name |
---|
MIE | 1446 | Decrease, Coupling of oxidative phosphorylation | Decrease, Coupling of OXPHOS |
KE | 1771 | Decrease, Adenosine triphosphate pool | Decrease, ATP pool |
KE | 55 | Increase, Cell injury/death | Cell injury/death |
AO | 1521 | Decrease, Growth | Decrease, Growth |
Relationships Between Two Key Events (Including MIEs and AOs)
Title | Adjacency | Evidence | Quantitative Understanding |
---|
Decrease, Coupling of OXPHOS leads to Decrease, ATP pool | adjacent | Moderate | Not Specified |
Decrease, ATP pool leads to Cell injury/death | adjacent | Moderate | Not Specified |
Cell injury/death leads to Decrease, Growth | adjacent | Moderate | Not Specified |
Network View
Prototypical Stressors
Life Stage Applicability
Taxonomic Applicability
Sex Applicability
Overall Assessment of the AOP
The weight of evidence (WoE) assessment of the AOP was conducted based on the evolved Bradford-Hill considerations (Becker 2015) and according to the criteria in OECD’s Guidance Document for Developing and Assessing AOPs (OECD 2018). In terms of evidence for the essentiality of the key events, the MIE (Event 1446) and KE1 (Event 1771) were scored as high, whereas KE2 (Event 1821) was scored as moderate due to a lack of solid evidence to support its essentiality. The overall WoE of KER1 (Relationship 2203) is considered high, as strong biological plausibility, empirical evidence and fairly good quantitative understanding were evidenced from multiple studies. The overall WoE of KER2 (Relationship 2204) is considered moderate, due to high biological plausibility, acceptable empirical concordance and some biological understanding. The overall WoE of KER3 (Relationship 2205) is scored as moderate, mainly due to biological plausibility, but there is presently a lack of empirical evidence and quantitative understanding to further support causality. The AOP is considered applicable to a wide range of species as well as a broad domain of chemicals. The rationales for making these judgements will be discussed in detail in the following sections.
Domain of Applicability
The taxonomic application domain of the AOP potential covers all animals, plants and some microorganisms such as fungus and protists, as mitochondrial OXPHOS is highly conserved in eukaryotes (Roger 2017).
The life stage applicability domain of the AOP mainly contains embryos and juveniles, as growth is more relevant to developing organisms. It should be noted that fully grown adults are also susceptible to uncouplers, as tissue/organ (e.g., adipose tissue) growth and regeneration still occur in adults (Yun 2015; Demine 2019). Classical uncouplers such as 2,4-DNP have been reported to cause weight loss in adult humans (Grundlingh 2011). In fact, 2,4-DNP was sold for weight loss until its legal sale was banned over toxicity and abuse concerns (Baker 2020). These suggest that adults are in the applicability domain of this AOP.
The sex applicability domain of the AOP is unspecific, as the AOP is mainly targeting growth effects in sexually immature organisms and the KEs are therefore harmonized between male and females. However, male and females may have different sensitivities to OXPHOS uncoupling, as strategies for allocating energy for developmental processes may be gender specific (Demarest 2015).
The chemical applicability domain of the AOP mainly includes weak acids, such as phenols, benzimidazoles, N-phenylanthranilates, salicylanilides, phenylhydrazones, salicylic acids, acyldithiocarbazates, cumarines, and aromatic amines, which are well-known protonophoric uncouplers. Uncouplers typically have properties as both weak acids and hydrophobic substances. As weak acids, they are capable of gaining and losing an electron. As hydrophobic substances, they are capable of distributing a negative charge over a number of atoms (often by π-orbitals which delocalize a proton's charge when it attaches to the molecule), so that they can diffuse back and forth across the inner mitochondrial membrane in either the charged or uncharged state, thus moving protons back across the concentration gradient generated by the electron transport chain. Classical uncouplers, such as 2,4-dinitrophenol (2,4-DNP), carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP), carbonyl cyanide m-chlorophenyl hydrazone (CCCP), pentachlorophenol (PCP), 3,5-dichlorophenol (3,5-DCP), 6-sec-butyl-2,4-dinitrophenol (dinoseb), SF 6847 (3,5-di-t-butyl-4-hydroxybenzylidinemalononitrile) have been widely used as positive controls in (eco)toxicological tests, whereas the hazards of “new” uncouplers, such as triclosan, emodin and metabolites of polybrominated diphenyl ethers (PBDEs) are also under extensive assessments. Other types of uncouplers that are SH-reactive chemicals or hydrophobic ions may also be in the applicability domain of this AOP. A number of potential uncouplers have been identified by in silico (Russom 1997; Schultz 1997; Naven 2012; Dreier 2019; Troger 2020) and in vitro (Escher 2002; Attene-Ramos 2013; Attene-Ramos 2015; Xia 2018) approaches, and are considered in the chemical applicability domain of the AOP.
Essentiality of the Key Events
Evidence Assessment
Known Modulating Factors
Modulating Factor (MF) | Influence or Outcome | KER(s) involved |
---|---|---|
Quantitative Understanding
Considerations for Potential Applications of the AOP (optional)
The present AOP has several potential applications. First, the AOP anchors a recognized endpoint of regulatory concern (i.e., growth), at least in OECD member countries, and is directly relevant for a number of OECD test guidelines (e.g., TG206, 208, 201, 210, 211, 212, 215, 221, 228, 241, 407, 408, 416, 422, 443 and 453). These guidelines cover a diversity of taxonomic groups including mammals, birds, fish, amphibians, terrestrial plants, aquatic plants and algae, and various invertebrates. Second, the AOP anchors an important molecular initiating event (e.g., uncoupling of oxidative phosphorylation) and can be used to support several initiatives (e.g., Tox21 and ToxCast) for identification of mitochondrial toxicants. The present AOP helps establish the utility of such assays for identifying chemicals with potential to cause growth impacts. Third, three out of four key events in this AOP can be measured using high-throughput in vitro assays, hence offering a tiered testing strategy (i.e., in silico→in vitro→in vivo) or integrated approaches to testing and assessment (IATA) for efficient screening, classification and assessment of potential mitochondrial uncouplers and growth-regulating chemicals. The key events can be considered as useful biomarkers in (eco)toxicological studies. However, it is not recommended to use a single key event (e.g., ATP level alone) as a biomarker for classification and hazard assessment of chemicals, as key events such as decreased ATP pool and cell proliferation can also be the consequences of other biological processes. A combined measurement of 2-3 key events can normally yield more reliable results. Finally, the quantitative relationships of the key events in this AOP have been relatively well defined, allowing it to be further developed into quantitative prediction models for higher tier assessments. This is a range of potential applications that were conceived during the development of the present AOP. However, it is neither an exhaustive list of potential applications, nor can explicit examples of these applications in practice be cited at this time.
We invite users of this AOP to share their applications of this AOP via the Discussion so that practical examples of use can be added.