This AOP is licensed under the BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
AOP: 425
Title
Oxidative Stress Leading to Decreased Lung Function via Decreased FOXJ1
Short name
Graphical Representation
Point of Contact
Contributors
- Karsta Luettich
- Hasmik Yepiskoposyan
- Damien Breheny
- Frazer Lowe
Coaches
OECD Information Table
OECD Project # | OECD Status | Reviewer's Reports | Journal-format Article | OECD iLibrary Published Version |
---|---|---|---|---|
This AOP was last modified on April 29, 2023 16:03
Revision dates for related pages
Page | Revision Date/Time |
---|---|
Oxidative Stress | August 26, 2024 10:26 |
FOXJ1 Protein, Decreased | September 10, 2021 04:56 |
Motile Cilia Number/Length, Decreased | September 10, 2021 03:24 |
Cilia Beat Frequency, Decreased | September 10, 2021 01:38 |
Mucociliary Clearance, Decreased | September 10, 2021 07:19 |
Decrease, Lung function | September 08, 2021 04:54 |
Oxidative Stress leads to FOXJ1 Protein, Decreased | September 28, 2021 07:28 |
FOXJ1 Protein, Decreased leads to Motile Cilia Number/Length, Decreased | August 02, 2021 10:08 |
Motile Cilia Number/Length, Decreased leads to CBF, Decreased | September 28, 2021 07:41 |
CBF, Decreased leads to MCC, Decreased | March 24, 2023 08:17 |
MCC, Decreased leads to Decreased lung function | March 24, 2023 08:27 |
Cigarette smoke | September 28, 2021 09:07 |
Abstract
This AOP evaluates one of the major processes known to be involved in regulating efficient mucociliary clearance (MCC). MCC is a key aspect of the innate immune defense against airborne pathogens and inhaled chemicals and is governed by the concerted action of its functional components, the cilia and the airway surface liquid (ASL), which is composed of mucus and periciliary layers (Bustamante-Marin and Ostrowski, 2017). In response to various irritants and pathogens mucus is secreted by goblet cells, and cilia sweep mucus upward by coordinated beating motions thus clearing the airways from these substances. The ciliated airway epithelial cells are typically covered by hundreds of motile cilia. Cilia formation is initiated and coordinated by a distinct gene expression program, led by the transcription factor forkhead box J1 (FOXJ1) (Brody et al., 2000; Zhou and Roy, 2015). FOXJ1 appears to be the major factor in multiciliogenesis, whereby its activity is necessary and also sufficient for programming cells to assemble functional motile cilia (Vij et al., 2012). A decrease in the levels or absence of FOXJ1 protein in cells of the respiratory tract therefore inhibits ciliogenesis, preventing physiological mucus clearance and decreasing MCC. MCC dysfunction is linked to airway diseases such as chronic obstructive pulmonary disease (COPD) or asthma, both of which are characterized by decreased lung function and bear a significant risk of increased morbidity and mortality.
AOP Development Strategy
Context
With a surface area of ~100 m2 and ventilated by 10,000 to 20,000 liters of air per day (National Research Council, 1988; Frohlich et al., 2016), the lungs are a major barrier that protect the body from a host of external factors that enter the respiratory system and may cause lung pathologies. Mucociliary clearance (MCC) is a key aspect of the innate immune defense against airborne pathogens and inhaled particles and is governed by the concerted action of its functional components, the cilia and the airway surface liquid (ASL), which comprises mucus and the periciliary layer (Bustamante-Marin and Ostrowski, 2017). In healthy subjects, ≥10 mL airway secretions are continuously produced and transported daily by the mucociliary escalator. Disturbances in any of the processes regulating ASL volume, mucus production, mucus viscoelastic properties, or ciliary function can cause MCC dysfunction and are linked to airway diseases such as chronic obstructive pulmonary disease (COPD) or asthma, both of which bear a significant risk of increased morbidity and mortality. The mechanism by which exposure to inhaled toxicants might lead to mucus hypersecretion and thereby impact pulmonary function has already been mapped in AOP148 on decreased lung function. However, whether an exposure-related decline in lung function is solely related to excessive production of mucus is debatable, particularly in light of the close relationship between mucus, ciliary function, and efficient MCC. To date, no single event has been attributed to MCC impairment, and it is likely that events described in this AOP as well as in AOPs 148, 411 and 424 have to culminate to lead to decreased lung function.
Strategy
Summary of the AOP
Events:
Molecular Initiating Events (MIE)
Key Events (KE)
Adverse Outcomes (AO)
Type | Event ID | Title | Short name |
---|
MIE | 1392 | Oxidative Stress | Oxidative Stress |
KE | 1911 | FOXJ1 Protein, Decreased | FOXJ1 Protein, Decreased |
KE | 1912 | Motile Cilia Number/Length, Decreased | Motile Cilia Number/Length, Decreased |
KE | 1908 | Cilia Beat Frequency, Decreased | CBF, Decreased |
KE | 1909 | Mucociliary Clearance, Decreased | MCC, Decreased |
AO | 1250 | Decrease, Lung function | Decreased lung function |
Relationships Between Two Key Events (Including MIEs and AOs)
Title | Adjacency | Evidence | Quantitative Understanding |
---|
Network View
Prototypical Stressors
Name |
---|
Cigarette smoke |
Life Stage Applicability
Life stage | Evidence |
---|---|
All life stages |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
human | Homo sapiens | NCBI |
Sex Applicability
Sex | Evidence |
---|---|
Mixed |
Overall Assessment of the AOP
The experimental evidence to support the biological plausibility of the KERs from MIE to AO is moderate to strong overall for the AOP presented here, while there is a moderate concordance of dose-response relationships. In terms of essentiality, we have rated all of the KEs as either moderate or high.
AOPs such as this one can play a central role in risk assessment strategies for a wide variety of regulatory purposes by providing mechanistic support to an integrated approach to testing and assessment (IATA; (Clippinger et al., 2018)). IATAs are flexible frameworks that can be adapted to best address the regulatory question or purpose at hand. More specifically, this AOP can be applied to the risk assessment of inhaled toxicants, by enabling the development of testing strategies through the assembly of existing information and the generation of new data where they are currently lacking. Targeted approaches to fill data gaps can be developed using new approach methodologies (NAMs) informed by this AOP.
Domain of Applicability
All KE proposed in this AOP occur and are measurable in several species, including frogs, mice, rats, guinea pigs, ferrets, sheep, and humans. The majority of the supporting empirical evidence derives from studies in rodent and human systems, and experimental findings in animals appear to be highly translatable to humans.
Data regarding the applicability of KE to all life-stages from birth to adulthood are available for the MIE (Oxidative Stress), KE2 (FOXJ1 Protein, Decreased), KE3 (Motile Cilia Number/Length, Decreased), KE4 (Cilia Beat Frequency, Decreased), KE5 (Mucociliary Clearance, Decreased), and AO (Decreased Lung Function), and indicate that they apply to all life stages. It is also worth noting here that age-dependent decreases in CBF, MCC, and lung function have been demonstrated in several species (e.g., guinea pigs, mice, and humans) and reflect normal physiological aging processes (Bailey et al., 2014; Grubb et al., 2016; Ho et al., 2001; Joki and Saano, 1997; Paul et al., 2013; Sharma and Goodwin, 2006).
Gender-specific data relevant to the AOP are not as widely available as species-specific data, and to our knowledge, the role of gender has not been systematically evaluated for all KE described here. Considering the essentiality of FOXJ1 for the ciliogenesis program and the impact of ciliary beating on MCC, we consider this AOP applicable to both genders.
Essentiality of the Key Events
The definition of essentiality implies that the modulation of upstream KEs impacts the downstream KEs in an expected fashion. If blocked or failing to occur, the KEs in the current AOP will not necessarily stop the progression to subsequent KEs. Due to the complex biology of motile cilia formation and function, ASL homeostasis, mucus properties and MCC, the KEs and AO may be triggered because of alternative pathways or biological redundancies. However, when exacerbated, the KEs promote the occurrence of downstream events eventually leading to the AO. The causal pathway starting from the exposure to oxidants and leading to decreased lung function involves parallel routes with KEs, each of which is sufficient to cause the downstream KE to occur. Different mechanisms, such as oxidant-induced decreases in ASL height via CFTR function decline (AOP424) or oxidant-induced decreases in cilia number and length as a result of decreased FOXJ1 levels, lead to decreased CBF and decreased MCC. Each of these pathways contributes to the AO, but their relative contributions are difficult to evaluate. Based on the evidence we judge the MIE (Oxidative Stress), KE2 (FOXJ1 Protein, Decreased), KE3 (Motile Cilia Number/Length, Decreased), KE4 (Cilia Beat Frequency, Decreased), and KE5 (Mucociliary Clearance, Decreased) highly essential.
Evidence Assessment
We judge the overall biological plausibility of this AOP as strong. The KER Decreased FOXJ1 protein leading to decreased motile cilia length/number is supported by multiple studies across different species with ample empirical evidence reflecting both dose-response and time concordance. Other KER, such as Oxidative stress leading to decreased FOXJ1 lack this expanse of empirical evidence, or the evidence does not fully support the causality between the KE (Reduced cilia number/length leading to decreased CBF, Decreased CBF leading to decreased MCC) even though the relationship is logical and plausible.
Known Modulating Factors
Quantitative Understanding
Overall, our quantitative understanding of the AOP network is moderate.
There is robust evidence that provides an insight into several KER presented here, and the dose response and temporal relationship between the two KE in question are well described and quantified for different stressors across different test systems (Decreased FOXJ1 protein leading to decreased motile cilia length/number; Decreased motile cilia length/number leading to decreased cilia beating frequency; Decreased cilia beat frequency leading to decreased MCC). In some instances, we are less confident in our quantitative understanding. For example, dose response data as well as data supportive of the KE causality are limited for the KER Decreased MCC leading to decreased lung function.
Considerations for Potential Applications of the AOP (optional)
Given the individual and public health burden of the consequences of lung function impairment, gaining a greater understanding of the underlying mechanisms is extremely important in the risk assessment of respiratory toxicants. An integrated assessment of substances with the potential to be inhaled, either intentionally or unintentionally, could incorporate inhalation exposure and dosimetry modelling to inform an in vitro approach with appropriate exposure techniques and cell systems to assess KEs in this AOP (EPA’s Office of Chemical Safety and Pollution Prevention, 2019). Standardization and robustness testing of assays against explicit performance criteria using suitable reference materials can greatly increase the level of confidence in their use for KE assessment (Petersen et al., 2021). Much of the empirical evidence that supports the KERs in the qualitative AOP described here was obtained from in vitro studies using well-established methodologies for biological endpoint assessment. Being chemical agnostic, this AOP can be applied to a variety of substances that share the AO. For example, impaired MCC and decreased lung function have a long-known relationship with smoking, but little is known about the consequences of long-term use of alternative inhaled nicotine delivery products such as electronic cigarettes and heated tobacco products. This AOP can form the basis of an assessment strategy to evaluate the effects of exposure to aerosol from these products based on the KEs identified here.
References
Antunes, M.B., and Cohen, N.A. (2007). Mucociliary clearance–a critical upper airway host defense mechanism and methods of assessment. Curr. Opin. Allergy Clin. Immunol. 7, 5-10.
Bailey, K.L., Bonasera, S.J., Wilderdyke, M., Hanisch, B.W., Pavlik, J.A., DeVasure, J., et al. (2014). Aging causes a slowing in ciliary beat frequency, mediated by PKCε. Am. J. Physiol. Lung Cell. Mol. Physiol. 306, L584-L589.
Bustamante-Marin, X.M., and Ostrowski, L.E. (2017a). Cilia and Mucociliary Clearance. Cold Spring Harb. Persp. Biol. 9, a028241. EPA’s Office of Chemical Safety and Pollution Prevention (2019). "FIFRA Scientific Advisory Panel Meeting Minutes and Final Report No. 2019-01 Peer Review on Evaluation of a Proposed Approach to Refine the Inhalation Risk Assessment for Point of Contact Toxicity: A Case Study Using a New Approach Methodology (NAM) December 4 and 6, 2018 FIFRA Scientific Advisory Panel Meeting". U.S. Environmental Protection Agency).
Frohlich, E., Mercuri, A., Wu, S., and Salar-Behzadi, S. (2016). Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds. Front. Pharmacol. 7, 181.
Grubb, B.R., Livraghi-Butrico, A., Rogers, T.D., Yin, W., Button, B., and Ostrowski, L.E. (2016). Reduced mucociliary clearance in old mice is associated with a decrease in Muc5b mucin. Am. J. Physiol. Lung Cell. Mol. Physiol. 310, L860-L867.
Ho, J.C., Chan, K.N., Hu, W.H., Lam, W.K., Zheng, L., Tipoe, G.L., et al. (2001). The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am. J. Respir. Crit. Care Med. 163, 983-988.
Joki, S., and Saano, V. (1997). Influence of ageing on ciliary beat frequency and on ciliary response to leukotriene D4 in guinea-pig tracheal epithelium. Clin. Exp. Pharmacol. Physiol. 24, 166-169.
National Research Council (1988). Air Pollution, the Automobile, and Public Health. Washington, DC: The National Academies Press.
Paul, P., Johnson, P., Ramaswamy, P., Ramadoss, S., Geetha, B., and Subhashini, A. (2013). The effect of ageing on nasal mucociliary clearance in women: a pilot study. ISRN 2013, 598589.
Petersen, E.J., Sharma, M., Clippinger, A.J., Gordon, J., Katz, A., Laux, P., et al. (2021). Use of Cause-and-Effect Analysis to Optimize the Reliability of In Vitro Inhalation Toxicity Measurements Using an Air–Liquid Interface. Chem. Res. Toxicol. 34, 1370–1385.
Sharma, G., and Goodwin, J. (2006). Effect of aging on respiratory system physiology and immunology. Clin. Interv. Aging 1, 253-260.